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Background Overview Background Overview

Overview: Research topics Overview: R packages
The following R packages implement these methods:
Graphical methods for univariate response models well-developed. What @ car package: provides the infrastructure for hypothesis tests (Anova ())
about MLMs? and tests of linear hypotheses (1inearHypothesis ())in MLMs,
@ This talk outlines research on graphical methods for multivariate linear including repeated measures designs.
models (MLMs)— extending visualization for multiple regression, ANOVA, @ heplots package: implements the HE plot framework in 2D (heplot ()),
and ANCOVA designs to those with several response variables. 3D (heplot3d()), and scatterplot matrix form (pairs.mlm()). Also
@ The topics addressed include: provides: _ , ) ) ) o
o Visualizing multivariate tests with Hypothesis—Error (HE) plots in 2D and 3D ® covEllipses () for covariance ellipses, with optional robust estimation
e Low-D views: Generalized canonical discriminant analysis — canonical HE ® boxM() and related methods for testing / visualizing equality of covariance
plots matrices in MANOVA
e Visualization methods for tests of equality of covariance matrices in e Tutorial vignettes and many data set examples of use
MANOVA designs @ candisc package: generalized canonical discriminant analysis for an
o Extending these methods to robust MLMs MLM, and associated plot methods.
° Pe‘ﬁm'“g multivariate analogs of influence measures and diagnostic plots e mvinfluence package: Multivariate extensions of leverage and influence
or S.

(Cook’s D) and influencePlot.mlm() in various forms.
@ genridge package: Generalized 2D & 3D ridge regression plots.
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Background Visual overview Background Visual overview

Visual overview: Multivariate data, Y., Visual overview: Multivariate linear model,
Y=XB+U

What is new here?
@ 2 vars: HE plot— data ellipses of H (fitted) and E (residual) SSP matrices
@ pvars: HE plot matrix (all pairs)

@ p vars: Reduced-rank display— show max. H wrt. E — Canonical HE
plot

What we know how to do well (almost)
@ 2 vars: Scatterplot + annotations (data ellipses, smoothers)
@ p vars: Scatterplot matrix (all pairs)
@ pvars: Reduced-rank display— show max. total variation — biplot
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Background Visual overview Background Data ellipses
Visual overview: Recent extensions Data ellipsoids: Visually sufficient summaries
Extending univariate methods to MLMs:
@ Robust estimation for MLMs
@ Influence measures and diagnostic plots for MLMs @ For any p-variable, multivariate normal y ~ Np(u, X), the mean vector y
@ Visualizing canonical correlation analysis and sample covariance S are sufficient statistics
e ool G . @ Geometrically, contours of constant density are ellipsoids centered at p
. ﬁ . € CanmrosTaTIN - with size and shape determined by ¥
B " ¢ ©0 / @ — the data (concentration) ellipsoid, £(y, S) is a sufficient visual

\\\\\

summary
@ Easily robustified by using robust estimators of location and scatter
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Background Data ellipses

Data Ellipses: Galton’s data
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Galton’s data on Parent & Child height: 40%, 68% and 95% data ellipses

Background The Multivariate Linear Model

The univariate linear model

(*] MOdel: ynx‘] - anqﬂqx1 + €nx1, With € ~ N(O, Uzln)
o LS estimates: 5 = (X"X) ' XTy

@ General Linear Test: Hy : Cpyq Bgx1 = 0, where C = matrix of
constants; rows specify h linear combinations or contrasts of parameters.

@ e.g., Testof Hy: 81 = B2 = 0 in model y; = By + B1X1; + PBoXoi + €;
Bo
010 0
co-[5 o 1] )=(3)
B2
@ All — F-test: How big is SSy relative to SSg?

_ SSy/df,  MSy
~ SSg/df,  MSg

F — (MSy — FMSE) =0
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Background Data ellipses

The Data Ellipse: Details

e Visual summary for bivariate relations

o Shows: means, standard deviations, correlation, regression line(s)
o Defined: set of points whose squared Mahalanobis distance < ¢?,

DPy)=(y-y)'s'(y-y)<c

S = sample covariance matrix

o Radius: when y is ~ bivariate normal, D?(y) has a large-sample x3
distribution with 2 degrees of freedom.

@ ¢ =x3(0.40) ~ 1: 1 std. dev univariate ellipse— 1D shadows: y & 1s
@ 2 =x3(0.68) = 2.28: 1 std. dev bivariate ellipse
@ 2 = x35(0.95) ~ 6: 95% data ellipse, 1D shadows: Scheffé intervals

o Construction: Transform the unit circle, & = (sin 0, cos 8),
&=y +cS"%U

§'/2 = any “square root” of S (e.g., Cholesky)
@ p variables: Extends naturally to p-dimensional ellipsoids
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Background The Multivariate Linear Model

The multivariate linear model

@ Model: Y., = X,xq Bgxp + U, for presponses, Y = (y1,¥>, ...
@ General Linear Test: Hy : Chxq Bgxp = Onxp
@ Analogs of sums of squares, SSy and SSg are (p x p) matrices, H and E

7yp)

H=(CB)T[c(X"X)"C"]"(CB) ,
E=U'U=YT[I-H]Y .
@ Analog of univariate F is
det(H—-\E)=0,

@ How big is H relative to E ?
o Latent roots A1, Az, ... A\s measure the “size” of H relative to E in
s = min(p, df,) orthogonal directions.
o Test statistics (Wilks’ A, Pillai trace criterion, Hotelling-Lawley trace criterion,
Roy’s maximum root) all combine info across these dimensions
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HE plots Motivating example

Motivating Example: Romano-British Pottery

Tubb, Parker & Nicholson analyzed the chemical composition of 26 samples
of Romano-British pottery found at four kiln sites in Britain.

@ Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn

@ Variables: aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca) and
sodium (Na)

@ — One-way MANOVA design, 4 groups, 5 responses

R> library (heplots)
R> Pottery

Site Al Fe Mg Ca Na
1 Llanedyrn 14.4 7.00 4.30 0.15 0.51
2 Llanedyrn 13.8 7.08 3.43 0.12 0.17
3 Llanedyrn 14.6 7.09 3.88 0.13 0.20
25 AshleyRails 14.8 2.74 0.67 0.03 0.05
26 AshleyRails 19.1 1.64 0.60 0.10 0.03
13/34
HE plots Motivating example

Motivating Example: Romano-British Pottery

Univariate plots are limited

@ Do not show the relations of response variables to each other
@ Do not show how variables contribute to multivariate tests
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Visual answer: HE plot 8.

HE plots Motivating example

Motivating Example: Romano-British Pottery

@ Can the content of Al, Fe, Mg, Ca and Na differentiate the sites?
@ How to understand the contributions of chemical elements to
discrimination?

Numerical answers:

R> pottery.mod <- 1lm(cbind(Al, Fe, Mg,
R> car::Manova (pottery.mod)

Ca, Na) ~ Site)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
Site 3 1.55 4.30 15 60 2.4e-05 **x

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 '%x' 0.05 '.' 0.1 ' ' 1

What have we learned?

@ Can: YES! We can discriminate sites.
@ But: How to understand the pattern(s) of group differences: ???
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HE plots Motivating example

Motivating Example: Romano-British Pottery

@ Shows variation of means (H) b
relative to residual (E) variation Fe, .

@ Size and orientation of H wrt E:
how much and how variables
contribute to discrimination 0

@ Evidence scaling: H is scaled so R T R T
that it projects outside E iff null @/'?// H
2
M
6
1 R> heplot3d (pottery.mod)

e 5
. isksThame

hypothesis is rejected.
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HE plots Visualizing H and E variation HE plots MANOVA designs

HE plots: Visualizing H and E variation HE plot details: H and E matrices
" (@ Indvicual group scatter " (b) Between and Within Soater Recall the data on 5 chemical elements in samples of Romano-British pottery
1 ] oo from 4 kiln sites:
Seater around group means Deviations of group means from
represented by each ellipse within-group (E) ellipses. o )
How big is H relative to E? . L
501 - %0 H matrix 1 R> summary (Manova (pottery.mod)) @ E matrix: Within-group
.\/ *g/ 1 Sum of squares and products for error: (co)varlatlon of residuals
- 2 Al Fe Mg Ca Na [P :
| PR s Al 48.29 7.080 0.608 0.106 0.589 o diag: SSE for each variable
2 72 A J % 4 Fe 7.08 10.951 0.527 -0.155 0.067 o off-diag: ~ partial
N A s Mg 0.61 0.527 15.430 0.435 0.028 :
Fes) LZF ¢ Ca 0.11 -0.155 0.435 0.051 0.010 correlations
I E; . 7 Na 0.59 0.067 0.028 0.010 0.199 @ H matrix: Between-group
e S ) (co)variation of means
LA © o 10 Term: Site e diag: SSH for each variable
0% ; ; ; ) oo ‘ ‘ ‘ ‘ 2 Sum of squares and products for hypothesis: e off-diag: ~ correlations of
0 10 :(i 30 40 0 10 5(; 30 40 13 Al Fe Mg Ca Na means
\deas behind multivariate tests: (a) Data ell (b) H and E matri 4 Al 175.6 -149.3 -130.8 -5.89 -5.37
eas behind multivariate tests: (a) Data ellipses; and E matrices s Fe -149.3 134.2 117.7 4.82 5.33 iqi i 2
P s Mg -130.8 117.7 103.4 4.21 4.71 © How big is H relative to E*
17 Ca -5.9 4.8 4.2 0.20 0.15 o EI“pSOldS d|m(H) = rank(H) =
@ H ellipse: data ellipse for fitted values, y; = ;. # Na  -5.4 5.3 4.7 0.15 0.26 min(p, df,)
@ E ellipse: data ellipse of residuals, y; — y;.
17/34 18/34
HE plots MANOVA designs HE plots MANOVA designs
HE plot details: Scaling H and E HE plot details: Contrasts and linear hypotheses
o L?G_E e”lpse IS dc;vltded”by f d I ") An Overa” effect — an H e”IpSOId Of Pottery data: Contrasts
- (n N p) — cata elipse of residuas N Effect scaling:H /df, S= min(p’ dfh) dimensions Site: 3dfH
o Centered at grand means — show factor y g . -] e
means in same plot. N @ Linear hypotheses, of rank h,
_ , , Ho : ChxgBgxp =0 — sub-ellipsoid of . |
@ “Effect size” scaling— H/df, — data ellipse , . 0 - “hxq =axp = Thxp P
. &) & dimension h
of fitted values. e | 2
e “Significance” scaling— H ellipse protrudes c_10 100
beyond E ellipse iff Hy can be rejected by e 0 010 ~
Roy maximum root test
o H/(adf,) where )\, is critical value of T o 1D tests and contrasts +— degenerate 1D
Roy’s statistic at level a. s, T ellipses (lines) N
e direction of Hwrt E + linear @ Beautiful geometry:
combinations that depart from Ho. o Sub-hypotheses are tangent to enclosing
R> heplot (pottery.mod, size="effect") R> hypotheses

@ Orthogonal contrasts form conjugate axes
heplot (pottery.mod, size="evidence") 9 U9
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HE plots

MANOVA designs

HE plot matrices: All bivariate views

Liafiedyy
Caldicggtfor -

AL stands out —
opposite pattern
r(Fe,Mg) ~ 1

STte

Error -
L \ edyri
e

R> pairs (pottery.mod)
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Reduced-rank displays Canonical discriminant HE plots

Canonical discriminant HE plots
@ As with biplot, we can visualize MLM hypothesis variation for all
responses by projecting H and E into low-rank space.

@ Canonical projection: Ynyp — Zyxs = YE~'/2V, where V = eigenvectors
of HE—1.

@ This is the view that maximally discriminates among groups, ie max. H

wrt E' |
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Reduced-rank displays Low-D displays of high-D data

Low-D displays of high-D data
@ High-D data often shown in 2D (or 3D) views— orthogonal projections in
variable space— scatterplot

@ Dimension-reduction techniques: project the data into subspace that has
the largest shadow— e.g., accounts for largest variance.

@ — low-D approximation to high-D data

A: B:

Minimum variance

. . b
@ Maximum variance %
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Reduced-rank displays

Canonical discriminant HE plots

Canonical discriminant HE plots
@ Canonical HE plot is just the HE plot of canonical scores, (21, 2») in 2D,
@ of, Z1,2»,23,in 3D.
@ As in biplot, we add vectors to show relations of the y; response variables
to the canonical variates.

@ variable vectors here are structure coefficients = correlations of variables
with canonical scores.
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Reduced-rank displays Canonical discriminant HE plots

Reduced-rank displays Canonical discriminant HE plots

Canonical discriminant HE plots: Properties Canonical discriminant HE plots: Pottery data
e Canonical variates are uncorrelated: E ellipse is spherical @ Canonical HE plots provide 2D (3D) visual summary of H vs. E variation
@ — axes must be equated to preserve geometry ® Pottery data: p = 5 variables, 4 groups +— dfy; = 3

@ Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot,
Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation
@ Na and Ca contribute an additional 3.5%. End of story!

@ Variable vectors show how variables discriminate among groups
@ Lengths of variable vectors ~ contribution to discrimination
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Recent extensions Robust MLMs Recent extensions Robust MLMs

Robust MLMs Robust MLMs: Example

For the Pottery data:

o
e e 20, oo oo

@ R has a large collection of packages dealing with robust estimation:
@ robust: :lmrob (), MASS: :xr1m/(), for univariate LMs 1 . o
@ robust: :glmrob () for univariate generalized LMs g4 ! .
e High breakdown-bound methods for robust PCA and robust covariance
estimation
e However, none of these handle the fully general MLM

@ heplots now provides robmlm () for robust MLMs:

o Uses a simple M-estimtor via iteratively re-weighted LS.
o Weights: calculated from Mahalanobis squared distances, using a simple
robust covariance estimator, MASS : : cov.trob () and a weight function,

$(DP).

—— Classical
- - Robust

Observation weight
04

0.2

o . . Caldicot AshleyR{ o
DP=(Y-Y)'S (Y-Y)~ Xg (1) S Llanedyrn - | alslf:e%'hornss e.‘y

o This fully extends the "m1m" class 0 5 10 15 20 2
o Compatible with other m1m extensions: car: : : Anova () and heplot (). Index Al

@ Some observations are given weights ~ 0
@ The E ellipse is considerably reduced, enhancing apparent significance
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Recent extensions

Influence diagnostics

Influence diagnostics for MLMs

@ Influence measures & diagnostic plots well-developed for univariate LMs

o Influence measures: Cook’s D, DFFITS, dfbetas, etc.
:influencePlot () for LMs
@ However, these are have been unavailable for MLMs

o Diagnostic plots: Index plots, car: :

@ The mvinfluence package now provides:

o Calculation for multivariate analogs of univariate influence measures
(following Barrett & Ling, 1992), e.g., Hat values & Cook’s D:

Hi=X(X"X)7'X|

D, = [vec(B — Byy)]"[S™"

Provides deletion diagnostics for subsets (/) of size m > 1.
e.g., m = 2 can reveal cases of masking or joint influence.
Extension of influencePlot () to the multivariate case.
A new plot format: leverage-residual (LR) plots (McCulloch & Meeter, 1983)

Recent extensions

Influence diagnostics

® (X" X)][vec(B — By)]

Influence diagnostics for MLMs: LR plots

@ Main idea: Influence ~ Leverage
(L) x Residual (R)

@ — log(Infl) = log(L) + log(R)

@ — contours of constant influence
lie on lines with slope = -1.

@ Bubble size ~ influence (Cook’s
D)

@ This simplifies interpretation of
influence measures

log Residual

-1

(©)
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Recent extensions Influence diagnostics

Influence diagnostics for MLMs: Example

For the Rohwer data:

025
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0.1 0.2 0.3 0.4 0.5 -3.0 -25 -2.0 -15 -1.0 -0.5 0.0
Hat value log Leverage
Cook’s D vs. generalized Hat value Leverage - Residual (LR) plot
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Recent extensions Ridge regression plots
Ridge regression plots
Shrinkage methods often use ridge trace plots to visualize effects
@ Typical: univariate line plot of "
Bk vs. shrinkage, k < B
B-.
@ What can you see here regarding é T mve
bias vs. precision? ¢ e
.. . i —_— . 4CGNPdeflator
@ This is the wrong graphic form, I e s Fopuision
. . e e Ao pa—— " & Armed Foroes
for a multivariate problem! S S BEpS oo Unemployes
@ Goal: visualize 3y vs. Var(3y) Lie i’
0.:3E| 0.:]2 EI.::H EI.‘DG EI.:JS DI10

Ridge constart (k)
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Recent extensions Ridge regression plots Conclusions

Generalized ridge trace plots Conclusions: Graphical methods for MLMs
Rather than plotting just the univariate trajectories of 3« vs. K, plot the 2D Summary & Opportunities
(3D) confidence ellipsoids over the same range of k. @ Data ellipse: visual summary of bivariate relations

@ Centers of the ellipsoids are @ — same info as in univariate plot. e Useful for multiple-group, MANOVA data

@ Can see how change in one coefficient is related to changes in others. o Embed in scatterplot matrix: pairwise, bivariate relations

@ Relative size & shape of ellipsoids show directly effect on precision. o Easily extend to show partial relations, robust estimators, etc.

. @ HE plots: visual summary of multivariate tests for MANOVA and MMRA
' o Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation

e Embed in HE plot matrix: all pairwise, bivariate relations

e Extend to show partial relations: HE plot of “adjusted responses”
@ Dimension-reduction techniques: low-rank (2D) visual summaries

e Biplot: Observations, group means, biplot data ellipses, variable vectors

@ Canonical HE plots: Similar, but for dimensions of maximal discrimination
@ Beautiful and useful geometries:

o Ellipses everywhere; eigenvector—ellipse geometries!

o Visual representation of significance in MLM

@ Opportunities for other extensions

-14 -1.2

Unemployed
-16
Population

N - — FIN et Merci —
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