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 GRAPHICAL METHODS FOR CATEGORICAL DATA

 Michael Friendly, York University

 Abstract The graphical displays shown here are implemented in SAS/IML
software whose combination of matrix operations, built-in

Statistical methods for categorical data, such as loglinear models functions for contingency table analysis, and graphics provide a
and logistic regression, represent discrete analogs of the analysis of convenient environment for graphical display for multiway
variance and regression methods for continuous response variables. categorical data (Friendly 1991a; 1992).
However, while graphical display techniques are common adjuncts
to analysis of variance and regression, methods for plotting
contingency table data are not as widely used.  Plots for two-way frequency tables

 This paper provides a brief introduction to graphical methods Several schemes for representing contingency tables graphically are
that are useful for understanding the pattern of association among based on the fact that when the row and column variables are
categorical variables. These methods can be helpful both for data independent, the estimated expected frequencies, eij , are products of
exploration and for communicating results to others. The methods the row and column totals (divided by the grand total). Then, each
described include association plots for two-way tables, mosaic cell can be represented by a rectangle whose area shows the cell
displays for multiway tables, correspondence analysis and effectfrequency, fij , or deviation from independence.
plots for logit models.

Sieve diagrams

 Introduction Table 1 shows data on the relation between hair color and eye color
among 592 subjects (students in a statistics course) collected by

Graphical methods for quantitative data are well developed. From Snee (1974). The Pearson χ2 for these data is 138.3 with 9 degrees
the basic display of data in a scatterplot, to diagnostic methods for of freedom, indicating substantial departure from independence.
assessing assumptions and finding transformations, to the final The question is how to understand the nature of the association
presentation of results, graphical techniques are commonplace between hair and eye color.
adjuncts to most methods of statistical analysis. In contrast,
graphical methods for categorical data are still in infancy. There ———————————————————————————
are not many methods, those that are available in the literature are
not accessible in common statistical software, and consequently  Table 1: Hair-color eye-color data
they are not widely used. This contrast between graphical methods
for quantitative vs. qualitative data leads to the following

 Hair Color
observations:

Eye
Color BLACK BROWN RED BLOND | Total

• Exploratory methods: Many of the graphical methods
 |

 described here make minimal assumptions about the data.
Brown 68 119 26 7 | 220

 Their goal is to help the viewer see the data, detect patterns,
Blue 20 84 17 94 | 215

 and suggest hypotheses.
Hazel 15 54 14 10 | 93

• Graphic metaphor: The visual metaphor for displaying
Green 5 29 14 16 | 64

 quantitative data is magnitude ∼ position along an axis .
--------------------------------------------+------

 Some of the methods described here (e.g., sieve diagram,
Total 108 286 71 127 | 592

 mosaic display) suggest that the appropriate visual metaphor
 for counts of observations in discrete categories is ———————————————————————————
 count ∼ area .
• Generalizations?: The scatterplot is a basic tool for viewing  For any two-way table, the expected frequencies under
 raw (quantitative) data. It generalizes readily to three or more independence can be represented by rectangles whose widths are
 variables in the form of the scatterplot matrix -- a matrix of proportional to the total frequency in each column, f+j , and whose
 pairwise scatterplots. The mosaic display is a simple graphic

heights are proportional to the total frequency in each row, fi+ ; the method for looking at cross-classified data which generalizes to
area of each rectangle is then proportional to eij . Figure 1 shows the more than two-way tables. Are there others?
expected frequencies for the hair and eye color data.• Presentation plots for model-based methods: Results of

 model-based analysis are almost invariably presented in tables
 Riedwyl and Schüpbach (1983, 1994) proposed a sieve of estimated frequencies, parameter estimates, log-linear model
diagram (later called a parquet diagram) based on this principle. effects, and so forth. Effect displays of estimated probabilities
In this display the area of each rectangle is proportional to expected of response or log odds provide a useful alternative.
frequency and observed frequency is shown by the number of• Practical power = Statistical power * Probability of Use:
squares in each rectangle. Hence, the difference between observed Statistical and graphical methods are of practical value to the
and expected frequency appears as the density of shading, using extent that they are available and easy to use. Statistical
color to indicate whether the deviation from independence is methods for categorical data analysis have nearly reached that
positive or negative. (In monochrome versions, positive deviations point. Graphical methods still have a long way to go. One aim
are shown by solid lines, negative by broken lines.) The sieve for today is to show what can now be done, with some
diagram for hair color and eye color is shown in Figure 2. examples of how to do it.
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the association plot, each cell is shown by a rectangle that has
(signed) height ∼ dij and width ∼ √ eij . The area of each rectangle is
therefore proportional to fij − eij . The rectangles for each row in the
table are positioned relative to a baseline representing
independence (dij = 0 ) shown by a dotted line. Cells with observed
> expected frequency rise above the line (and are colored black);
cells that contain less than the expected frequency fall below it (and
are shaded red). Figure 3 shows the association plot for the hair-
eye color data.
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Figure 1: Expected frequencies under independence
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Figure 3: Association plot for hair-eye data

Four-fold display for 2 x 2 tables

For a 2× 2 table, the departure from independence can be measured
by the sample odds ratio, θ = (f11 / f12) / (f21 / f22) . The four-fold
display shows the frequencies in a 2× 2 table in a way that depicts
the odds ratio. In this display the frequency in each cell is shown
by a quarter circle, whose radius is proportional to √ fij , so again
area is proportional to count. An association between the variables
(odds ratio ≠ 1 ) is shown by the tendency of diagonally opposite
cells in one direction to differ in size from those in the opposite
direction, and we use color and shading to show this direction. If
the marginal proportions in the table differ markedly, the table may
first be standardized (using iterative proportional fitting) to a table
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with equal margins but the same odds ratio.

Figure 2: Sieve diagram for hair-eye data
 Figure 4 shows aggregate data on applicants to graduate school
at Berkeley for the six largest departments in 1973 classified byAssociation plot for two-way tables
admission and gender. At issue is whether the data show evidence
of sex bias in admission practices (Bickel et al., 1975). The figureIn the sieve diagram the foreground (rectangles) shows expected
shows the cell frequencies numerically, but margins for both sexfrequencies; deviations from independence are shown by color and
and admission are equated in the display. For these data the sampledensity of shading. The association plot (Cohen, 1980; Friendly,
odds ratio, Odds (Admit|Male) / (Admit|Female) is 1.84 indicating1991a) puts deviations from independence in the foreground: the
that males are almost twice as likely in this sample to be admitted.area of each box is made proportional to observed − expected
The four-fold display shows this imbalance clearly.frequency.

 For a two-way contingency table, the signed contribution to
Pearson χ2 for cell i, j is dij = (fij − eij) / √ eij , so that χ2 = ΣΣij dij

2 . In
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Figure 4: Four-fold display for Berkeley admissions. The area of
 each shaded quadrant shows the frequency,
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 standardized to equate the margins for sex and
 admission. Circular arcs show the limits of a 99%

Figure 5: Condensed column proportion mosaic
 confidence interval for the odds ratio.

2 or 4. Mosaic displays for n-way tables

The mosaic display, proposed by Hartigan & Kleiner (1981),
represents the counts in a contingency table directly by tiles whose
area is proportional to the cell frequency. This display generalizes
readily to n-way tables and can be used to display the residuals
from various log-linear models.

 One form of this plot, called the condensed mosaic display, is
similar to a divided bar chart. The width of each column of tiles in
Figure 5 is proportional to the marginal frequency of hair colors.
Again, the area of each box is proportional to the cell frequency,
and complete independence is shown when the tiles in each row all
have the same height.

Detecting patterns

In Hartigan & Kleiner's (1981) original version (Figure 5), all the
tiles are unshaded and drawn in one color, so only the relative sizes
of the rectangles indicate deviations from independence. Friendly
(1991b) shows how to increase the visual impact of the mosaic by
using color and shading to reflect the size of the residual, and by
reordering rows and columns to make the pattern more coherent.
The resulting display shows both the observed frequencies and the
pattern of deviations from a specified model. Black Brown Red   Blond 
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 Displaying residuals. Figure 6 gives the extended the
mosaic plot, showing the standardized deviation from Figure 6: Enhanced mosaic, reordered and shaded
independence, dij by the color and shading of each rectangle: cells

 Reordering categories. When the row or columnwith positive deviations are drawn black, outlined with solid lines,
variables are unordered, we are also free to rearrange thewith shading slanted from upper left to lower right (NE to SW);
corresponding categories in the plot to help show the nature ofnegative deviations are drawn red, outlined with broken lines and
association. For example, in Figure 6, the eye color categoriesshaded SE-NW. The absolute value of the deviation is portrayed
have been permuted so that the deviations from independence haveby shading density: cells with absolute values less than 2 are
an opposite-corner pattern, with positive values running from SWempty; cells with |dij| ≥ 2 are filled; those with |dij| ≥ 4 are filled
to NE corners, negative values along the opposite diagonal.with a darker pattern. Standardized deviations are often referred to
Coupled with size and shading of the tiles, the excess in the black-a standard Gaussian distribution. Under the assumption of
brown and blond-blue cells, together with the underrepresentationindependence, these values roughly correspond to two-tailed
of brown-haired blonds and people with black hair and blue eyes isprobabilities p < .05 and p < .0001 that a given value of |dij| exceeds
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now quite apparent. Though the table was reordered based on the
dij values, both dimensions in Figure 6 are ordered from dark to
light, suggesting an explanation for the association.

Multi-way tables

 The condensed form of the mosaic plot generalizes readily to
the display of multi-dimensional contingency tables. Imagine that
each cell of the two-way table for hair and eye color is further
classified by one or more additional variables—sex and level of
education, for example. Then each rectangle can be subdivided
horizontally to show the proportion of males and females in that
cell, and each of those horizontal portions can be subdivided
vertically to show the proportions of people at each educational
level in the hair-eye-sex group.

Fitting models

When three or more variables are represented in the mosaic, we can
fit  several different models of independence and display the
residuals from that model. We treat these models as null or
baseline models, which may not fit the data particularly well. The
deviations of observed frequencies from expected, displayed by
shading, will often suggest terms to be added to to an explanatory
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model that achieves a better fit.

Figure 7: Mosaic display for hair color, eye color, and sex
• Complete independence: The model of complete
 independence asserts that all joint probabilities are products of H{ A⊗ B⊗ C} = H{ A⊗ B} ∩ H{ AB⊗ C} ,  (3)
 the one-way marginal probabilities:

where H{ A⊗ B} denotes the hypothesis that A and B are independent in
 πijk = πi++ π+j+ π++k  (1)

the marginal subtable formed by collapsing over variable C , and
H{ AB⊗ C} denotes the hypothesis of joint independence of C from the

 for all i,j,k in a three-way table. This corresponds to the log-
AB combinations. When expected frequencies under each linear model [A] [B] [C] . Fitting this model puts all higher
hypothesis are estimated by maximum likelihood, the likelihood terms, and hence all association among the variables, into the
ratio G2 s are additive: residuals.

• Joint independence: Another possibility is to fit the model in
 which variable C is jointly independent of variables A and B , G{ A⊗ B⊗ C}

2 = G{ A⊗ B}

2 + G{ AB⊗ C}

2 .  (4)

For example, for the hair-eye data, the mosaic displays for the πijk = πij+ π++k .  (2)
[Hair] [Eye] marginal table and the [HairEye] [Sex] table can be
viewed as representing the partition This corresponds to the log-linear model [AB] [C] . Residuals

 from this model show the extent to which variable C is related
Model df G2 to the combinations of variables A and B but they do not show

 any association between A and B .
[Hair] [Eye] 9 146.44
[Hair, Eye] [Sex] 15 29.35 For example, with the data from Table 1 broken down by sex,
------------------------------------------fitting the model [HairEye][Sex] allows us to see the extent to
[Hair] [Eye] [Sex] 24 179.79which the joint distribution of hair-color and eye-color is associated

with sex. For this model, the likelihood-ratio G2 is 29.35 on 15 df 
 This partitioning scheme extends readily to higher-way tables.(p = .015 ), indicating some lack of fit. The three-way mosaic,

shown in Figure 7, highlights two cells: males are underrepresented
among people with brown hair and brown eyes, and

 Correspondence analysisoverrepresented among people with brown hair and blue eyes.
Females in these cells have the opposite patterns, with residuals just

Correspondence analysis is an exploratory technique related toshy of ±2 . The dij

2 for these four cells account for 15.3 of the χ2 for
principal components analysis that finds a multidimensional

the model [HairEye] [Sex]. Hence, except for these cells hair color
representation of the association between the row and column

and eye color appear unassociated with sex.
categories of a two-way contingency table. This technique finds
scores for the row and column categories on a small number of Sequential plots and models. The series of mosaic
dimensions that account for the greatest proportion of the χ2 forplots fitting models of joint independence to the marginal subtables
association between the row and column categories. For graphicalcan be viewed as partitioning the hypothesis of complete
display, two or three dimensions are typically used to give aindependence in the full table.
reduced rank approximation to the data.

 For a three-way table, the the hypothesis of complete
 For a two-way table the scores for the row categories, namelyindependence, H{ A⊗ B⊗ C} can be expressed as
xim , and column categories, yjm , on dimension m = 1, ... ,M are
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derived from a singular value decomposition of residuals from Multi-way tables
independence, expressed as dij / √ n , to account for the largest

A three- or higher-way table can be analyzed by correspondenceproportion of the χ2 in a small number of dimensions.
analysis in several ways (Friendly, 1991a). One approach is called
“stacking”. A three-way table, of size I × J × K can be sliced into I  Thus, correspondence analysis is designed to show how the
two-way tables, each J × K . If the slices are concatenateddata deviate from expectation when the row and column variables
vertically, the result is one two-way table, of size (I × J) × K . Inare independent, as in the association plot and mosaic display. The
effect, the first two variables are treated as a single compositeassociation plot and mosaic display depict every cell in the table,
variable, which represents the main effects and interaction betweenhowever, and for large tables it may be difficult to see patterns.
the original variables that were combined. Van der Heijden and deCorrespondence analysis shows only row and column categories in
Leeuw (1985) discuss this use of correspondence analysis forthe two (or three) dimensions which account for the greatest
multi-way tables and show how each way of slicing and stacking aproportion of deviation from independence.
contingency table corresponds to the analysis of a specified log-
linear model. In particular, for the three-way table that is reshaped In SAS Version 6, correspondence analysis is performed using
as a table of size (I × J) × K , the correspondence analysis solutionPROC CORRESP in SAS/STAT. An OUT= data set from PROC
analyzes residuals from the log-linear model [AB] [C].CORRESP contains the row and column coordinates, which can be

plotted with PROC PLOT or PROC GPLOT. The program below
reads the hair and eye color data into the data set COLORS, and  Effect plots for logit modelscalls the CORRESP procedure.

Loglinear and logit models generalize tests of association to three-
data colors;

and higher-way tables. A log-linear model expresses the
 input BLACK BROWN RED BLOND EYE $;

relationship among all variables as a model for the log of the
 cards;

expected cell frequency. For example, for a three-way table, the
 68 119 26 7 Brown

hypothesis of no three-way association can be expressed as the log-
 20 84 17 94 Blue

linear model,
 15 54 14 10 Hazel
 5 29 14 16 Green

 log mijk = µ + λi

A + λj

B + λk

C + λij

AB + λik

AC + λjk

BC ;
proc corresp data=colors out=coord short;

The log-linear model treats the variables symmetrically: none of the var BLACK BROWN RED BLOND;
variables is distinguished as a response variable. However, the id eye;
association parameters may be difficult to interpret, and the
absence of a dependent variable makes it awkward to plot results in The printed output from the CORRESP procedure indicates
terms of the log-linear model. In this case, correspondence analysisthat over 98% of the χ2 for association is accounted for by two
and the mosaic display provide a simpler way to display thedimensions, with most of that attributed to the first dimension. A
patterns of association in a contingency table.plot of the row and column points, shown in Figure 8, can be

constructed from the OUT= data set COORD requested in the
 On the other hand, if one variable can be regarded as a responsePROC CORRESP step. The plot shows that both hair color and
variable then the effects of the other, independent variables may beeye color vary from dark to light across Dimension 1, confirming
expressed as a logit model. For example, if variable C is a binarythe impression from the mosaic display. Dimension 2 reflects an
response, then the log-linear model can be expressed as anindependent association of red hair and green eyes. In fact, in the
equivalent logit model,mosaic display we use scores on the first (largest) dimension to

reorder the categories of variables in order to display the pattern of
 log(mij1/mij2) = (λ1

C−λ2

C) + (λ i1

AC−λi2

AC) + (λ j1

BC−λj2

BC) association most clearly.

= α + βi

A + βj

B 

where α = 2λ1

C , βi

A = 2λ i1

AC , and βj

B = 2λ j1

BC , because all λ terms sum to
zero.

 Both log-linear and logit models can be fit using PROC
CATMOD in SAS. For logit models, plots of observed and
predicted logits provide an effective way to interpret a fitted model,
and are easily constructed from an output data set produced by
CATMOD. Fox (1987) describes general methods for constructing
these plots for generalized linear models; see Friendly and Fox
(1992) for further examples and comparisons of these plots with
mosaic displays.
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Figure 8: Correspondence analysis plot

 5



Example: Berkeley Admissions To plot the fitted logits, select the _TYPE_ = 'FUNCTION'
observations in a data step:

The example below analyzes the Berkeley admissions data by
department to determine the source of the apparent gender bias in data predict;
favor of males shown in the four-fold display (Figure 4). The log-  set predict;
linear model [AdmitDept] [AdmitGender] [DeptGender] allows for  if _type_ = 'FUNCTION';
effects of both Gender and Department on admission, and is
equivalent to the logit model A simple plot of predicted logits can then be obtained as a plot of

_pred_ * dept = gender in a PROC GPLOT step. The plot
displayed in Figure 9 uses the Annotate facility to add 95%logit (Admit) = α + βi

DEPT + βj

GENDER  (5)
confidence limits, calculated as _pred_ ±1.96_sepred_ , and a
probability scale at the right. These steps are combined in a macro Model (5) is fit using the statements below. The RESPONSE
program, CATPLOT, used as follows:statement is used to produce an output data set, PREDICT, for

plotting.
%catplot(data=predict, class=gender, xc=dept,
 z=1.96, anno=pscale)data berkeley;

 do dept = 'A','B','C','D','E','F';
 do gender = 'Male ', 'Female';
 do admit = 'Admit', 'Reject';
 input freq @@;
 output;
 end; end; end;
cards;
 512 313 89 19
 353 207 17 8
 120 205 202 391
 138 279 131 244
 53 138 94 299
 22 351 24 317
;
proc catmod order=data data=berkeley;
 weight freq;
 response / out=predict;
 model admit = dept gender / ml noiter;

The results of the PROC CATMOD step show a strong effect of
Department, but none of Gender and a significant lack of fit.

 MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

 Source DF Chi-Square Prob

Berkeley Admissions Data
Observed and Fitted Logits (95% CI)
Model:  logit(Admit) = Dept Gender
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 -------------------------------------------------
 INTERCEPT 1 262.49 0.0000 Figure 9: Effects of Gender and Department on Admission
 GENDER 1 1.53 0.2167
 DEPT 5 534.78 0.0000  The effects shown in Figure 9 for each department contradict

the apparent gender bias shown in the aggregate data; in fact, the
 LIKELIHOOD RATIO 5 20.20 0.0011 predicted odds of admission is slightly higher for females than

males. The resolution of this contradiction (an example of
 To interpret these results we plot the observed and predictedSimpson's paradox) can be found in the large differences in
values for each Dept-Gender group. The response variable has a admission rates among departments. Men and women apply to
simple, additive form (5) on the logit scale (log odds), but is easier different departments differentially, and in these data women apply
to understand on the probability scale. One compromise is to plot in larger numbers to departments that have a low acceptance rate.
results on the logit scale, adding a second scale showing probability The aggregate results are misleading because they falsely assume
values. The data set PREDICT contains observed (_OBS_) and men and women are equally likely to apply in each field. (This
predicted (_PRED_) values, and estimated standard errors explanation ignores the possibility of structural bias against
(_SEPRED_) on both scales. The logit values have _TYPE_ = women, e.g., lack of resources allocated to departments that attract
'FUNCTION'. women applicants.)

DEPT GENDER ADMIT _TYPE_ _OBS_ _PRED_ _SEPRED_  These effects may all be seen in Figure 10, a mosaic display of
the data showing observed frequencies and residuals from the log-

 A Male FUNCTION 0.492 0.582 0.069 linear model [AdmitDept] [GenderDept] which asserts that
 A Male Admit PROB 0.621 0.642 0.016 admission and gender are conditionally independent, given
 A Male Rejec PROB 0.379 0.358 0.016 department (equivalent to logit (Admit)= α + βi

DEPT ). The four
 A Female FUNCTION 1.544 0.682 0.099

large blocks corresponding to admission by gender show the
 A Female Admit PROB 0.824 0.664 0.022

greater overall acceptance of males than females. Among admitted
 A Female Rejec PROB 0.176 0.336 0.022

applicants, however, there are larger proportions of women in the
 ...

departments (C-F) with low admission rates. The lack of fit of
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model [AD] [GD] is concentrated entirely in Department A, where Heijden, P. G. M. van der, and de Leeuw, J. (1985).
a greater proportion of females is admitted.  Correspondence analysis used complementary to loglinear

 analysis. Psychometrika, 50, 429-447.
Riedwyl, H., & Schüpbach, M. (1983). Siebdiagramme:
 Graphische Darstellung von Kontingenztafeln. Technical
 Report No. 12, Institute for Mathematical Statistics,
 University of Bern, Bern, Switzerland.
Snee, R. D. (1974). Graphical display of two-way contingency
 tables. The American Statistician, 28, 9-12.
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Figure 10: Mosaic display of Berkeley admissions data
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