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Abstract
This paper provides an illustrated history of the visual and conceptual ideas leading to the development

of mosaic displays. We trace the origins of the use of rectangles and area to depict data quantities and their
relations, of early forms of mosaic displays including sub-divided bar-like charts and various cartograms,
to the modern forms used in log-linear analysis and in space-filling tree maps.
Key words: data visualization, space-filling displays, cartogram, thematic cartography, log-linear models,
mosaic matrix, tree map

1 Introduction

Mosaics are space-filling designs composed of contiguous shapes (“tiles”). From the earliest Greek and
Roman pictorial mosaics, to the intricate, non-representational Islamic mosaics of the Alhambra, to the
playfully mathematical graphic works of M. C. Escher, and the beautifully chaotic architectural renderings
of Antonio Gaudi, mosaic tilings have long been objects of beauty, wonder, and instruction.

In statistical graphics, as in any other field, lessons and achievements from the past should inform work-
ers in the present— if only we knew and appreciated them. In like token, present developments may serve
to stimulate future work, particularly if the bird’s-eye view of history can put them in perspective— where
they came from, where they might go. What follows is an attempt at a small piece of historiography in data
visualization: the use of space-filling mosaic-like designs to portray quantitative and categorical data.

This account is thematic, rather than (restrictively) chronological: we wish to emphasize the development
of visual and statistical ideas for data display. To motivate this paper, the remainder of this section briefly
outlines the present use of mosaic plots for n-way contingency tables, listing the salient graphical features
and principles employed. Section 2 gives a conceptual history of the visual and statistical ideas leading to
the present uses. Section 3 describes the graphical and statistical innovations introduced in modern data
visualization.

1.1 Background

In statistical graphics, the mosaic display, attributed to Hartigan and Kleiner (1981), is a graphical method to
show the values (cell frequencies) in a contingency table cross-classified by one or more “factors”. Figure 1
shows the basic form of the display for a two-way table of individuals classified by hair color and eye color
(data from Snee (1974))—perhaps a trite, but by now canonical example (Friendly, 1991, 1994, 1995, 2000b,
Spence, 2001). As explained below, the area of each tile is proportional to the cell frequency, n ij , and if
hair color and eye color were independent, nij would be proportional to the product of the row and column
marginal totals, ni+n+j , so the tiles in each column would align horizontally. The fact that they do not align
reveals an association between these two variables.

As extended to show both the data, and residuals from a log-linear model (Friendly, 1994, Theus and
Lauer, 1999), mosaic displays have become a primary graphical tool for visualization and analysis of cate-
gorical data in the form of n-way contingency tables. Theus and Lauer (1999) and Friendly (2000b, x4.5)
show how mosaic displays can be used to understand the structure of log-linear models themselves.

�Michael Friendly is Professor, Psychology Department, York University, Toronto, ON, M3J 1P3 Canada, E-mail:
friendly@yorku.ca.
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Figure 1: Basic mosaic display for hair color and eye color data. The area of each rectangular “tile” is
proportional to the frequency in that cell.

Some examples are shown in Figure 2, for two-way and three-way tables, showing the relations among
the categories of hair color, eye color and sex. In these figures, the area of each tile is proportional to the
observed cell frequency, as in Figure 1, but the tiles are shaded according to the residuals from a particular
log-linear model, thus showing the pattern of associations which remain. The interpretation of these figures,
presented here simply to illustrate this graphic form, is described in Section 3.2.

The graphical features of the mosaic display are:

� A unit area (square or rectangle) is divided into bars, whose widths represent the quantities (marginal
frequencies, ni+ or probabilities pi+ = ni+=n++) of one variable.

� Those bars are sub-divided into “tiles”, whose heights represent the quantities (conditional probabili-
ties pj j i = nij=ni+) of a second variable.

� This process of sub-division can be extended to any number of variables.

� At any stage, the area of each tile represents the total quantity (cell frequency, nij ) in the cross-
classification of the variables included.

� For cross-classified frequency data, the tiles in the mosaic will align when the variables are statistically
independent.

The principal graphical ideas are:

� using area = height� width, to represent a quantity which depends on a product of two other variables,
each of interest,

� using recursive sub-division to show any number of variables,

� using shading to display some other attribute of the data,

� purely multiplicative relations (e.g., pij = pi+p+j) produce equal sub-divisions,

� for two or more variables, the levels of sub-division are spaced with larger gaps at the earlier levels, to
allow easier perception of the groupings at various levels, and to provide for empty cells.
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Figure 2: Mosaic displays for frequencies of hair color, eye color and sex. Left: two-way table, hair color
by eye color; right: three-way table, divided by sex.

2 History

Harry S. Truman is quoted as saying, “The only new thing in the world is the history you don’t know.”
Indeed, the visual and conceptual ideas leading to mosaic displays have been re-invented many times, but
their history is not well-known. We trace a few of the strands which led to this visual representation below.
There are two subthemes to this historiography: the use of area to display numerical quantities, and rect-
angular displays where height and width depict two primary quantities, whose product (area) is also to be
represented.

2.1 Use of area to represent statistical quantities

The earliest known pictorial representation using rectangular area to display a quantity derived from height
� width was Edmund Halley’s (Halley, 1693) diagram (see Figure 3) to show the chances for survival and
death for two independent lives. Halley analyzed data from the best-known, and most reputable life-tables
of survival at the time (Graunt, 1662), with a view to informing the English government on the value to be
set for the purchase of an annuity.

Having done so, he remarks that the value of an annuity based on two independent lives, may be found
from the same table, since “the number of Chances of each single Life, found in the Table, being multiplied
together, become the Chances of Two Lives.” Figure 3 shows the partition of a unit area according to living or
dying in a given interval of time, for two individuals, assumed to do so independently. With an understanding
of the graph, the annuities for any combination of life and death could be readily calculated from the table
for a single life. Halley generalizes this result to three independent lives, foreseeing the notion of mutual
independence in a three-way contingency table by over one hundred years.

The visual representation of actual data by areas was introduced in the early 1780s, in France by Charles
de Fourcroy (Palsky, 1996, Fig. 15) and in Germany by August Friedrich Wilhelm Crome (1785). Fourcroy
used proportional superimposed squares to compare demographic quantities (see Figure 4), while Crome
used areas— with a literal interpretation— in a graph showing the areas of the European states by superim-
posed squares, so that these could be compared more easily than when shown separately on a map. However,
these are simple area diagrams, rather than proto-mosaics.

A later development was the use of rectangles as thematic cartographic symbols, where height and width
represented two variables, whose product (area) should also be visually prominent. The first use of this
type is not known, but a fine early example is a map of Paris by Jacques Bertillon (Bertillon, 1896) of the
foreign-born population in 1891, shown in Figure 5.
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Figure 3: Halley’s diagram, on the chances for two independent lives, x and y. Lx (Ly) are the numbers
living at a given time, Lx+t (Ly+t) are the numbers living t years later, and Dx;t = Lx � Lx+t (Dy;t) are
the numbers dying in that interval of time, t. Source: redrawn from Hald (1990, Fig. 9.3.3)

For each sector (some arrondisements are sub-divided) the height of the rectangle is proportional to
overall population, and width to percent foreigners; so area is proportional (�) to the absolute number of
foreigners. Many interesting details may be read easily from the map, e.g., small total numbers of foreigners
on the left bank, very small percentage of foreigners in the 1e and 2e arrondisements (right bank, left of Ile
de la Cité), large percentage of foreigners in the northern region, particularly the 18e (top), large variation
within some arrondisements (12e, bottom right), and so forth.

Of course, area was also used to represent frequencies, but in a circular form in Florence Nightingale’s
coxcomb diagrams showing number of deaths in the Crimean War. However, as these early examples illus-
trate, rectangular displays have the advantage of showing two primary quantities by lineal extent and their
product as an area.

Most recently, psychophysical experiments comparing judgments of graphical attributes (length, position
along an axis, area, color, texture, etc.) by Cleveland and McGill (Cleveland and McGill, 1984, 1985) have
shown that, for tasks of magnitude estimation (“how much is x?), judgments of area are less accurate than
attributes of length or position along an axis. Others, e.g., Simkin and Hastie (1987), Lewandowsky and
Spence (1989) demonstrate that the ordering of visual attributes depends strongly on the viewer’s task (“what
fraction of the total is x?”, “which is greater, x or y?”). However, all of these experimental results focus
on what Bertin (Bertin, 1977, 1981) calls “elementary” or “intermediate” tasks. The true virtue of mosaic
displays, as used today, is for more complex tasks: assessing patterns, trends, and anomalies. Moreover,
Friendly (1995) shows that area is a natural visual representation for frequency data, with strong links to
statistical theory (maximum likelihood estimation) and phenomena (power), and an underlying physical
model which likens counted observations to gas molecules in a pressure chamber.

2.2 Early mosaic displays

By the early 1800s, all the modern forms of statistical graphics had been invented (pies, bars, line graphs,
scatterplots) (Beniger and Robyn, 1978, Friendly and Denis, 2001). On the surface, mosaic plots descend
from bar charts, but it was not until 1844 that Charles Joseph Minard introduced two simultaneous inno-
vations: the use of divided and proportional bars in his “Tableau-graphique,” showing the transportation of
commercial traffic along canal routes in France by variable-width, divided bars Minard (1844). In these dis-
plays (Figure 6) the width of each vertical segment shows distance; the divided bars have height � amount
of goods, so area � cost of transport. Minard, a true visual engineer (Friendly, 2000a), developed such
diagrams to argue visually for setting differential price rates for partial vs. complete runs (Minard, 1842).
Playfair had made data “speak to the eyes,” but Minard wished to make them “calculer par l’oeil.”
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Figure 4: Charles de Fourcroy’s Tableau Poléométrique. Source: Palsky (1996, Fig. 15).

From Ostermann (1999), it appears that Georg von Mayr (Mayr, 1877) was the first to use the format
of the mosaic display in its modern form, at least for two variables. In Mayr (1877, S. 80) (see Figure 7)
he shows the representation of a 3 � 3 table, where a total count of 1000 is subdivided first into categories
A;B;C of size 600, 300, and 100. Each of these bars is then subdivided by categories a; b; c, and von Mayr
uses different cross-hatch patterns to distinguish the levels of the second variable. It is not entirely clear
whether von Mayr contemplated the display of additional variables, but the graph title, “Area diagram with
two splittings” does suggest this extension.

These proportional, divided squares soon appeared again in the French Albums de Statistique Graphique
and Swiss Graphische-statistischer Atlas, though in quite different forms.

In the French Album of 1885 (Ministère des Travaux Publics, 1879–1899), the mosaic form was used
in a remarkable graphic tour-de-force to show the distribution of passengers and goods throughout France,
starting in Paris, with one mosaic showing the breakdown of this variable according to the principal railway
routes (Gare du Nord, Gare d’Est, etc.). Each destination was then represented by a proportionally smaller
divided square showing the distribution there (color coded by origin), with lines connecting that square to
its’ origin and destinations (see Figure 8). This is certainly the finest early example of the use of mosaics to
portray quantitative data, and it is the image which led to the present historical account.

In the Swiss Atlas (Statistischen Bureau, 1897), Tableau III, titled “Superficie territoriale de la Suisse et
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Figure 5: Bertillon’s 1896 map of the population of foreigners in Paris. Source: Palsky (1996, Fig. 85).

densité de la population par cantons” shows one-way proportional squares of the area of each Swiss canton,
broken down as productive vs. unproductive land, together with bar graphs of population density. (These
were not displayed on a map, but rather on a page, arranged by area. It is of some graphical interest that the
smallest cantons had the greatest population density, so, in order to keep the scales consistent, the population
density bars for small cantons were bent and folded to make them fit the available space.)

2.3 Hundred-per-cent squares

By the early 1900s, the use of charts and graphs had become commonplace, and a variety of texts on their
construction and use were written. In 1925, we find Karl Karsten’s “Charts and Graphs” (Karsten, 1925)
devoting one chapter to what he called “hundred-per-cent bars” and another to “hundred-per-cent squares”
(true mosaics). These may have been described in earlier texts, but we know of no other which states the
principles (and their limitations) so clearly. He says,

We have so consistently inveighed against the use of areas to illustrate quantities that the
reader will indeed be surprised at some coming retractions... But the fact is that we now propose
to turn to advantage the very feature of areas which has previously been their greatest fault. ...

We now come to data in which we wish to show simultaneously three ratios or sets of ratios,
one of which is always the product of the other two. In other words, we wish to show two factors
or sets of factors and their product.

Karsten then illustrates (in painstaking detail) the breakdown of a table of occupational categories (man-
agers, clerks, skilled-workers, semi-skilled, laborers) by sector (agriculture, mining, manufacturing, etc.),
and shows several other examples, including one of the estimated unmined world coal supplies, shown both
as a mosaic and in nested circular form.

His use of the phrase “or sets of factors” anticipates the extension to three or more dimensions, but
his hand-drawn two-way diagrams were, evidently, difficult enough that a multi-way mosaic would not be
constructed until computer hardware and software eased the burden.

Looking forward, Karsten’s hundred-per-cent squares were recently re-discovered by Hummel (1996) as
“spine-plots,” an alternative to stacked bar charts where the bar widths are proportional to the magnitudes
of one variable, and some present workers derive the mosaic by generalization of the spine-plot (Hofmann,
2000). However, the present review shows that this derivation is conceptual rather than historically based.
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Figure 6: Minard’s Tableau Graphique, showing the transportation of commercial goods along the Canal du
Centre (Chalon–Dijon). Intermediate stops are spaced by distance, and each bar is divided by type of goods,
so the area of each tile represents the cost of transport. Arrows show the direction of transport. Source:
ENPC:5860/C351 (Col. et cliché ENPC; used by permission)

2.4 The rectangular statistical cartogram

In geography and cartography, these ideas seem to have been re-discovered by Raisz (1934) as the “rectan-
gular statistical cartogram.” He says,

The idea ... occurred to the author when he had occasion to prepare maps of the United
States showing the distribution of various economic units, such as steel factories, textile mills,
power plants, banks, etc. These maps were far too crowded in the northeast to be useful, while
elsewhere, for the most part, they were relatively empty. ... The system used here starts always
with the larger divisions and by “proportional halving” arrives at the smaller ones.

Raisz goes on to show cartograms representing land area, population, national wealth, value from man-
ufacture, agriculture, etc. These cartograms represent the United States by a rectangle, 1 � 1.5, to which
he added smaller rectangles for New England (upper right) and Florida (lower right). Vertical divisions
separated the Pacific states, Mountain States, West Central, East Central, and Atlantic states, while other
divisions were made within each region as he deemed appropriate for a particular display. It is of some
interest that each cartogram is recognizable both as a schematic map, and as a mosaic sub-division of a given
quantitative total.

The rectangular cartogram apparently became sufficiently well-known in cartography for Birch (1964) to
include in his treatment of “diagrams and diagram maps.” As an example, he shows (Figure 9) a cartogram
of land use in eight states of Australia, stratified by type of use (held under lease, unoccupied, etc.).
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Figure 7: von Mayr’s Area Diagram, the earliest-known modern mosaic. Source: Ostermann (1999, Fig.
3.3).

2.5 Sieve diagrams

The original form of the mosaic display (Figure 1) shows the observed cell frequencies, but departure from
independence is shown only by differences in height among corresponding bars. Riedwyl and Schüpbach
(1983, 1994) proposed the “sieve diagram” (later called a “parquet diagram”) to provide a direct, visual
comparison of observed and expected frequencies under independence. However, unlike the mosaic, this
form does not generalize readily to more than two variables.

In this display the tiles have height and width proportional to the marginal frequencies, ni+ and n+j

respectively, so the area of each rectangle is proportional to expected frequency, mij = ni+n+j=n++.
The observed frequency is shown by the number of cross-ruled squares in each rectangle. Hence, the dif-
ference between observed and expected frequency appears as variations in the density of shading. Cells
whose observed frequencynij exceeds the expectedmij appear denser than average. The pattern of positive
and negative deviations from independence can be more easily seen by using color, say, red for negative
deviations, and blue for positive, as shown in Figure 10 for the same data as in Figure 1.

3 Modern mosaic displays

3.1 Mosaic displays for log-linear analysis

As mentioned at the outset, the modern mosaic display in statistical graphics is usually attributed to Hartigan
and Kleiner (1981). However, it is fair to say that Bertin’s (1977, 1981) “la matrice pondérée” is very similar
to, and contains most of the graphic features of present-day mosaics. It may also be said that much of the
present interest in mosaic plots stems from their use as statistical visualization tool for frequency data and
log-linear modeling (Friendly, 1992a, 1994, 2000b) along with recent extensions of these methods (Friendly,
1999, Theus and Lauer, 1999) and a wide variety of computational realizations, listed next.

Computationally, the implementation was first described in FORTRAN (Wang, 1985). This method
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Figure 8: Map-based multi-mosaic of the distribution of passengers and goods in France. Source: Author’s
collection

has now been implemented in many statistical systems and programming languages, including SAS/IML
(Friendly, 1992b), SAS/INSIGHT, JMP (SAS Institute, Inc., 2000), S-Plus (Emerson, 1998), Java (MONDRIAN,
Theus (1997)), VISTA (Young and Bann, 1996, Young et al., 2000), and MANET (Unwin et al., 1996, Hof-
mann, 2000). The last three are notable for providing dynamic, interactive visualization of contingency table
data (as do SAS/INSIGHT and JMP, but only for two-way tables). MANET and MONDRIAN are also notable
for providing an explicit representation for empty cells.

3.2 Graphical innovations

For two-way tables, one variable is sub-divided on the horizontal axis and the other on the vertical, so
whether the tiles are contiguous or separated by small gaps is immaterial. For larger, multi-way tables (3 or
more variables), two or more variables must be assigned in a cross-classification to one or both axes, making
it more difficult to discern (and label) the various subcategories. Hartigan and Kleiner (1984) illustrated the
mosaic display of a six-way table of television ratings, where the tiles were spaced with larger gaps between
levels of variables split earlier. This turns out to be a perceptually important innovation for showing the sub-
divisions of several variables simultaneously, because the viewer can readily distinguish larger from smaller
groupings of the mosaic tiles. The un-spaced versions are sometimes called “Mondrian diagrams” (from
Theus (1997)) to distinguish them.
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Figure 9: Birch’s cartogram of land use in Australia. Source: Birch (1964, Fig. 94).

In earlier mosaics, the order of the categories of each variable is arbitrary, as is the scheme used in
coloring or shading the tiles. In contrast, the mosaics in Friendly (1994) introduced two graphical features
designed to facilitate the perception of patterns of relations among the variables: (a) each tile is shaded
according the residual from a particular model, using a bipolar color mapping to show both the sign and
magnitude of the residual. (b) the order of the categories of the variables is permuted to place cells with
similar residuals contiguously. These mosaics show both the frequencies in the cells of a contingency table
(area of the tiles), and the pattern of association between the variables (color and shading intensity).

Figure 2 illustrates these innovations. In the left, two-way display, the categories of hair color and eye
color were reordered according to best one-dimensional representations of the association between these
variables, which orders both from dark to light (suggesting an explanation for the association). The model of
independence has been fit to the table, and opposite-corner pattern of the shading shows how the frequencies
deviate from independence, i.e., the pattern of association between hair color and eye color.

In the right panel, the log-linear model [HairEye][Sex] has been fit to the three-way table, which asserts
that the combinations of hair color and eye color are independent of sex. Only one pair of cells have residuals
large enough to be shaded, the blue-eyed blondes, where there are more women and less men than would be
the case under this model of independence. Observe that we can still see the relative sizes of the hair-eye
combinations because of the spacing between the tiles.

3.2.1 Interactive, visual fitting

The interactive use of shading and coloring of the tiles to convey some additional information deserves
further comment. In some implementations (e.g., JMP, S-Plus), the tiles are colored nominally according to
the levels of one variable, merely to keep the categories of that variable visually distinct.

Others (e.g., Friendly (1994), VISTA), as just mentioned, use color and shading to display the residual
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Figure 10: Sieve diagram for hair-color, eye-color data. Observed frequencies are equal to the number
squares in each cell, so departure from independence appears as variations in shading density.

from a particular log-linear model. With a bipolar color mapping, ranging from deep blue (say) for large
positive residuals, through white, to deep red for large negative residuals, a good-fitting model will have
most tiles unfilled.

Hence, model search may be characterized as “cleaning the mosaic,” and interactive systems (VISTA,
MONDRIAN) provide a perceptual basis for “visual fitting.” (Valero et al., 2001) extend this idea considerably
in VISTA with a spreadplot (a collection of windows linked algebraically and through interaction) containing
the list of possible model terms, an influence plot and mosaic plots of observed and fitted frequencies for the
current model, and finally a deviance plot of �2=df for all models.

The interactive methods introduced in MANET are designed more for visual exploration than for model
fitting. Using linked mosaics, a tile selected in any one plot is highlighted (shaded) there and in all others.
When one variable in the contingency table is a binary response, selecting one level of that response then
shows the (conditional) proportion of that outcome in all other plots, and variations in the heights of the
highlighted portions reveals dependence on the categories of the other variables. For example, in the well-
known Titanic data (Friendly, 1999, 2000b, Hofmann, 1998), selecting the survivors can reveal how survival
on the Titanic depended on the factors Age, Gender, and Class. However, this strategy is less successful when
there is no natural response variable, or for a polytomous response. On the other hand, MANET (Hofmann,
2000) provides a rich variety of interactive methods for selection, queries, reordering variables and levels,
and grouping, as well as variations of the mosaic construction for special purposes.

3.3 Statistical innovations

Mosaic displays have also been extended both for teaching statistical concepts and for visualizing the rela-
tions in large, complex frequency tables.

3.3.1 Teaching

In “Seeing Statistics”, McClelland (1999) includes an interactive mosaic designed for teaching about cate-
gorical data analysis. The interactive design (using Java) allows students to change the value of any cell or
marginal frequency in the table, or the size of any tile in the mosaic, and see the change in the visual display
of frequencies and residuals, and associated numerical statistics.
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For example, increasing or decreasing the total frequency in the table changes all cells proportionally
(keeping the association the same), but changes the statistical strength of the association. This is immediately
reflected visually in the strength of shading of the tiles, and numerically in the �2 value and its’ significance
level, and provides a tangible appreciation of the concept of statistical power. On the other hand, changing
the marginal total in one category does not affect the �2 or shading of the tiles.

3.3.2 Links between quantitative and categorical data

As well, the links in statistical theory for quantitative and categorical data have been extended by recent
work on mosaic displays (Friendly, 1999). Mosaic matrices provide discrete analogs of scatterplot matrices,
and partial mosaic arrays stratified by the levels of one or more variables give analogs of Trellis displays.
Both of these are mosaics composed of tiles whose elements are themselves mosaics, taking the recursive
nature one step further.

For example, Figure 11 shows a mosaic matrix for the data on hair color, eye color and sex— a mosaic
of all two-way marginal tables of the three-way table. The panels in row, column (1,2) and (2,1) show the
same data (but with different order of splitting)— the relation between hair and eye color, displayed in the
left panel of Figure 2. The bottom row and the last column show the association between each of hair and
eye color with sex. Because all the tiles are unshaded, and are nearly aligned when split by sex, we see at a
glance that there are no overall associations with sex in this data.
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Figure 11: Mosaic matrix for hair color, eye color and sex. Each off-diagonal panel shows the two-way
mosaic for the corresponding row and column variables.
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Finally, we note that mosaic displays for n-way contingency tables provide a hierarchical decomposition
of association in a way analogous to sequential fitting in regression. Mosaic plots assume that the table
variables have been hierarchically ordered, v1; v2; : : : vn. By construction, the joint cell probabilities in the
full n-way table are recursively decomposed as

pijk`��� =

fv1v2g
z }| {

pi � pjji � pkjij
| {z }

fv1v2v3g

� p`jijk � � � � � pnjijk��� (1)

The braces in (1) indicate that the first two terms provide a mosaic for the marginal frequencies of variables
v1 and v2; the first three terms yield a mosaic for the fv1v2v3g marginal table, and so forth up to the display
of the full n-way table.

Moreover (Friendly, 1994, x3.5), when sequential models of joint independence, [v1][v2], [v1v2][v3],
[v1v2v3][v4], ... are fit by maximum likelihood, the likelihood ratio G2s for these models (and the corre-
sponding mosaics) provide an additive decomposition of the total association, G2

[v1][v2]:::[vp]
(mutual inde-

pendence), in any ordered subset of the first p variables:

G2
[v1][v2]:::[vp]

= G2
[v1][v2]

+G2
[v1v2][v3]

+G2
[v1v2v3][v4]

+ � � �G2
[v1:::vp�1][vp]

(2)

Thus, mosaic displays rely on two fundamental operations:

marginalization: The mosaic for variables v1 : : : vp presents the joint distribution of those variables, but
ignores (collapses over) variables vp+1 : : : vn.

conditionalization: The mosaic for variables v1 : : : vp provides a visualization of the conditional distribu-
tion of vp j v1; : : : ; vp�1.

3.4 TreeMaps

As it often turns out, a solution to one problem provides a solution to other, related problems. The mosaic
display relates most naturally to a cross-classification, but the same visual ideas apply to a nested classifica-
tion, or tree structure.

In 1991, Shneiderman (1991) developed the idea of representing a tree by recursive sub-division, rather
than by the traditional approach using a rooted, directed graph with the root node at the top or left of the
diagram. We describe this here simply to suggest the wider applicability of mosaic-like displays for future
work in statistical graphics. For example, clustering problems, and classification and regression trees may
benefit from this perspective.

The space-filling property of the mosaic allows much larger, and more complex trees to be usefully
displayed (and provides for greater interactive use, such as zooming in on a portion of the display to see
more detail) than the traditional rooted-tree. Figure 12 shows the treemap of file storage on the HCIL server
classified by year and subject.

Shneiderman describes the origin of the idea (http://www.cs.umd.edu/hcil/treemaps/):

During 1990, in response to the common problem of a filled hard disk, I became obsessed
with the idea of producing a compact visualization of directory tree structures. Since the 80
Megabyte hard disk in the HCIL was shared by 14 users it was difficult to determine how and
where space was used. Finding large files that could be deleted, or even determining which
users consumed the largest shares of disk space were difficult tasks.

Tree structured node-link diagrams grew too large to be useful, so I explored ways to show
a tree in a space-constrained layout. I rejected strategies that left blank spaces or those that
dealt with only fixed levels or fixed branching factors. Showing file size by area coding seemed
appealing, but various rectangular, triangular, and circular strategies all had problems. Then
while puzzling about this in the faculty lounge, I had the Aha! experience of splitting the screen
into rectangles in alternating horizontal and vertical directions as you traverse down the levels.
This recursive algorithm seemed attractive, but it took me a few days to convince myself that it
would always work and to write a six line algorithm.
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Figure 12: TreeViz display of a file storage system. Files are classified first by year, then by subject, with
area proportional to file size.

In the “TreeMap” software (Johnson and Shneiderman, 1991), this idea was implemented so that each
node is a rectangle whose area is proportional to some attribute such as node size (number of documents,
disk space, etc.). The cartograms by Raisz (1934) are actually treemaps, rather than true mosaics.

4 Conclusions

The history of statistical graphics has deep roots (Friendly and Denis, 2001), of which this paper charts a
slender tendril. This account of mosaic displays shows that this graphic form arose in Halley’s diagram to
depict the joint probabilities of mortality under independence, and was later used in other contexts to show
the product of two quantities represented by height and width of rectangles. The general ideas of showing
conditional proportions, and of recursive sub-division to show three or more factors were also introduced, at
least implicitly, before the 20th century.

The modern history of mosaic displays has progressed from simple plots of observed frequencies in
n-way tables, to mosaic plots showing the lack-of-fit of a given log-linear model, to interactive systems
providing visual fitting and exploration.

These graphic developments for categorical data, traditionally the poor cousin of quantitative graphics,
raise interesting questions for future research, e.g., scatterplot matrices for mixtures of categorical and quan-
titative variables, and (bivariate) marginal vs. conditional views (Friendly, 1999). As well, we may look
forward to the continued development of interactive and dynamic methods for exploration, model specifica-
tion, fitting, and diagnosis with categorical data.

The development of tree maps for nested (vs. cross-classified) data structures suggests that space-filling
graphic designs have wider applicability in data visualization, including clustering problems, classification
and regression trees, network visualization, and so forth.
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