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1 Introduction

For some time I have wondered why graphical methods for categorical data are so poorly
developed and little used compared with methods for quantitative data. For quantitative
data, graphical methods are commonplace adjuncts to all aspects of statistical analysis, from
the basic display of data in a scatterplot, to diagnostic methods for assessing assumptions and
finding transformations, to the final presentation of results. In contrast, graphical methods
for categorical data are still in infancy. There are not many methods, and those that are
available in the literature are not accessible in common statistical software; consequently,
they are not widely used.

What has made this contrast puzzling is the fact that the statistical methods for cate-
gorical data are in many respects discrete analogs of corresponding methods for quantitative
data: log-linear models and logistic regression, for example, are such close parallels of analy-
sis of variance and regression models that they can all be seen as special cases of generalized
linear models.

Several possible explanations for this apparent puzzle may be suggested. First, it may
just be that those who have worked with and developed methods for categorical data are
more comfortable with tabular data, or that frequency tables, representing sums over all
cases in a dataset, are more easily apprehended in tables than quantitative data. Second,
it may be argued that graphical methods for quantitative data are easily generalized so, for
example, the scatterplot for two variables provides the basis for visualizing any number of
variables in a scatterplot matrix; available graphical methods for categorical data tend to
be more specialized. However, a more fundamental reason may be, as I will try to show
here, that quantitative data display relies on e well-known natural visual mapping in which
a magnitude is depicted by length or position along a scale; for categorical data, it will be
seen that a count is more naturally displayed by an area or by the visual density of an area.
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2 Some graphical methods for contingency tables

Several schemes for representing contingency tables graphically are based on the fact that
when the row and column variables are independent, the estimated expected frequencies,
mij , are products of the row and column totals (divided by the grand total). Then each cell
can be represented by a rectangle whose area shows the cell frequency, nij , or deviation from
independence.

2.1 Sieve diagrams

Table 1 shows data on the relation between hair color and eye color among 592 subjects
(students in a statistics course) collected by Snee (1974). The Pearson χ2 for these data is
138.3 with nine degrees of freedom, indicating substantial departure from independence. The
question is how to understand the nature of the association between hair and eye color.

[Table 1 about here.]

For any two-way table, the expected frequencies under independence can be represented
by rectangles whose widths are proportional to the total frequency in each column, n+j , and
whose heights are proportional to the total frequency in each row, ni+; the area of each
rectangle is then proportional to mij . Figure 1 shows the expected frequencies for the hair
and eye color data.

[Figure 1 about here.]

Riedwyl and Schüpbach (1983, 1994) proposed a sieve diagram (later called a parquet

diagram) based on this principle. In this display the area of each rectangle is proportional
to the expected frequency and the observed frequency is shown by the number of squares in
each rectangle. Hence, the difference between observed and expected frequencies appears as
the density of shading, using color to indicate whether the deviation from independence is
positive or negative. (In monochrome versions, positive residuals are shown by solid lines,
negative by broken lines.) The sieve diagram for hair color and eye color is shown in Figure 2.

[Figure 2 about here.]

2.2 Mosaic displays for n-way tables

The mosaic display, proposed by Hartigan & Kleiner (1981) and extended by Friendly (1994a),
represents the counts in a contingency table directly by tiles whose area is proportional to
the cell frequency. This display generalizes readily to n-way tables and can be used to display
the residuals from various log-linear models.

One form of this plot, called the condensed mosaic display, is similar to a divided
bar chart. The width of each column of tiles in Figure 3 is proportional to the marginal
frequency of hair colors; the height of each tile is determined by the conditional probabilities
of eye color in each column. Again, the area of each box is proportional to the cell frequency,
and complete independence is shown when the tiles in each row all have the same height.
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[Figure 3 about here.]

Enhanced mosaics

The enhanced mosaic display (Friendly, 1992b, 1994a) achieves greater visual impact by using
color and shading to reflect the size of the residual from independence and by reordering
rows and columns to make the pattern more coherent. The resulting display shows both the
observed frequencies and the pattern of deviations from a specified model.

Figure 4 gives the extended the mosaic plot, showing the standardized (Pearson) residual
from independence, dij = (nij −mij)/

√
mij by the color and shading of each rectangle: cells

with positive residuals are outlined with solid lines and filled with slanted lines; negative
residuals are outlined with broken lines and filled with grayscale. The absolute value of the
residual is portrayed by shading density: cells with absolute values less than 2 are empty;
cells with |dij | ≥ 2 are filled; those with |dij | ≥ 4 are filled with a darker pattern.1 Under
the assumption of independence, these values roughly correspond to two-tailed probabilities
p < .05 and p < .0001 that a given value of |dij | exceeds 2 or 4. For exploratory purposes,
we do not usually make adjustments (e.g., Bonferroni) for multiple tests because the goal is
to display the pattern of residuals in the table as a whole. However, the number and values
of these cutoffs can be easily set by the user.

[Figure 4 about here.]

When the row or column variables are unordered, we are also free to rearrange the corre-
sponding categories in the plot to help show the nature of association. For example, in Figure
4, the eye color categories have been permuted so that the residuals from independence have
an opposite-corner pattern, with positive values running from bottom-left to top-right cor-
ners, negative values along the opposite diagonal. Coupled with size and shading of the tiles,
the excess in the black-brown and blond-blue cells, together with the underrepresentation of
brown-eyed blonds and people with black hair and blue eyes is now quite apparent. Alhough
the table was reordered on the basis of the dij values, both dimensions in Figure 4 are or-
dered from dark to light, suggesting an explanation for the association. (In this example the
eye-color categories could be reordered by inspection. A general method (Friendly, 1994a)
uses category scores on the largest correspondence analysis dimension.)

Multi-way tables

Like the scatterplot matrix for quantitative data, the mosaic plot generalizes readily to the
display of multi-dimensional contingency tables. Imagine that each cell of the two-way table
for hair and eye color is further classified by one or more additional variables–sex and level
of education, for example. Then each rectangle can be subdivided horizontally to show
the proportion of males and females in that cell, and each of those horizontal portions can
be subdivided vertically to show the proportions of people at each educational level in the
hair-eye-sex group.

1Color versions use blue and red at varying lightness to portray both sign and magnitude of residuals.
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Fitting models

When three or more variables are represented in the mosaic, we can fit several different
models of independence and display the residuals from each model. We treat these models
as null or baseline models, which may not fit the data particularly well. The deviations of
observed frequencies from expected ones, displayed by shading, will often suggest terms to
be added to to an explanatory model that achieves a better fit.

• Complete independence: The model of complete independence asserts that all joint
probabilities are products of the one-way marginal probabilities:

πijk = πi++ π+j+ π++k (1)

for all i, j, k in a three-way table. This corresponds to the log-linear model [A] [B] [C].
Fitting this model puts all higher terms, and hence all association among the variables,
into the residuals.

• Joint independence: Another possibility is to fit the model in which variable C is jointly
independent of variables A and B,

πijk = πij+ π++k. (2)

This corresponds to the log-linear model [AB] [C]. Residuals from this model show the
extent to which variable C is related to the combinations of variables A and B but they
do not show any association between A and B.

For example, with the data from Table 1 broken down by sex, fitting the model [Hair-
Eye][Sex] allows us to see the extent to which the joint distribution of hair-color and eye-color
is associated with sex. For this model, the likelihood-ratio G2 is 19.86 on 15 df (p = .178),
indicating an acceptable overall fit. The three-way mosaic, shown in Figure 5, highlights two
cells: among blue-eyed blonds, there are more females (and fewer males) than would be the
case if hair color and eye color were jointly independent of sex. Except for these cells hair
color and eye color appear unassociated with sex.

[Figure 5 about here.]

2.3 Fourfold Display

A third graphical method based on the use of area as the visual mapping of cell frequency is
the “fourfold display” (Friendly, 1994b, 1994c) designed for the display of 2×2 (or 2×2×k)
tables. In this display the frequency nij in each cell of a fourfold table is shown by a quarter
circle, whose radius is proportional to

√
nij , so the area is proportional to the cell count.

For a single 2 × 2 table the fourfold display described here also shows the frequencies by
area, but scaled in a way that depicts the sample odds ratio, θ̂ = (n11/n12)÷ (n21/n22). An
association between the variables (θ 6= 1) is shown by the tendency of diagonally opposite
cells in one direction to differ in size from those in the opposite direction, and the display
uses color or shading to show this direction. Confidence rings for the observed θ allow a
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visual test of the hypothesis H0 : θ = 1. They have the property that the rings for adjacent
quadrants overlap iff the observed counts are consistent with the null hypothesis.

As an example, Figure 6 shows aggregate data on applicants to graduate school at Berkeley
for the six largest departments in 1973 classified by admission and sex. At issue is whether
the data show evidence of sex bias in admission practices (Bickel et al., 1975). The figure
shows the cell frequencies numerically in the corners of the display. Thus there were 2691
male applicants, of whom 1193 (44.4%) were admitted, compared with 1855 female applicants
of whom 557 (30.0%) were admitted. Hence the sample odds ratio, Odds (Admit|Male) /
(Admit|Female) is 1.84 indicating that males were almost twice as likely to be admitted.

[Figure 6 about here.]

The frequencies displayed graphically by shaded quadrants in Figure 6 are not the raw
frequencies. Instead, the frequencies have been standardized (by iterative proportional fit-
ting) so that all table margins are equal, while preserving the odds ratio. Each quarter
circle is then drawn to have an area proportional to this standardized cell frequency. This
makes it easier to see the association between admission and sex without being influenced by
the overall admission rate or the differential tendency of males and females to apply. With
this standardization the four quadrants will align when the odds ratio is 1, regardless of the
marginal frequencies.

The shaded quadrants in Figure 6 do not align and the 99% confidence rings around each
quadrant do not overlap, indicating that the odds ratio differs significantly from 1. The width
of the confidence rings gives a visual indication of the precision of the data.

Multiple strata

In the case of a 2 × 2 × k table, the last dimension typically corresponds to “strata” or
populations, and it is typically of interest to see if the association between the first two
variables is homogeneous across strata. The fourfold display allows easy visual comparison of
the pattern of association between two dichotomous variables across two or more populations.

For example, the admissions data shown in Figure 6 were obtained from a sample of six
departments; Figure 7 displays the data for each department. The departments are labeled so
that the overall acceptance rate is highest for Department A and decreases steadily to Depart-
ment F. Again, each panel is standardized to equate the marginals for sex and admission.
This standardization also equates for the differential total applicants across departments,
facilitating visual comparison.

[Figure 7 about here.]

Figure 7 shows that, for five of the six departments, the odds of admission is approxi-
mately the same for both men and women applicants. Department A appears to differs from
the others, with women approximately 2.86 (= (313/19)/(512/89)) times as likely to gain
admission. This appearance is confirmed by the confidence rings, which in Figure 7 are joint
99% intervals for θc, c = 1, . . . , k.

This result, which contradicts the display for the aggregate data in Figure 6, is a nice
example of Simpson’s paradox. The resolution of this contradiction can be found in the
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large differences in admission rates among departments. Men and women apply to different
departments differentially, and in these data women apply in larger numbers to departments
that have a low acceptance rate. The aggregate results are misleading because they falsely
assume men and women are equally likely to apply in each field. (This explanation ignores the
possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.)

3 Conceptual Models for Visual Displays

Visual representation of data depends fundamentally on an appropriate visual scheme for
mapping numbers into graphic patterns (Bertin 1983). The widespread use of graphical
methods for quantitative data relies on the availability of a natural visual mapping: magni-
tude can be represented by length, as in a bar chart, or by position along a scale, as in dot
charts and scatterplots. One reason for the relative paucity of graphical methods for categor-
ical data may be that a natural visual mapping for frequency data is not so apparent. And,
as I have just shown, the mapping of frequency to area appears to work well for categorical
data.

Closely associated with the idea of a visual metaphor is a conceptual model that helps you
interpret what is shown in a graph. A good conceptual model for a graphical display will have
deeper connections with underlying statistical ideas as well. In this section I will describe
conceptual models for both quantitative and frequency data that have these properties and
help to elucidate the differences between their graphical displays. The discussion borrows
from Sall (1991a, 1991b), Farebrother (1987) and Friendly (1995).

3.1 Quantitative Data

The simplest conceptual model for quantitative data is the balance beam, often used in
introductory statistics texts to illustrate the sample mean as the point along an axis where
the positive and negative deviations balance.

Springs

A more powerful model (Sall, 1991a) likens observations to fixed points connected to a mov-
able junction by springs of equal spring constant, k ∼ 1/σ. By this model, each observation
exerts a force proportional to (X − µ)/σ on the junction, and the sample mean is seen as
the point which not only balances the forces, but also minimizes the total potential energy
in the system.

The spring model is more powerful because it provides a basis for understanding a wide
class of both graphical displays and statistical principles for quantitative data. For example,
least squares regression can be represented as shown in Figure 8, where the points are again
fixed and attached to a movable rod by unit length, equally stiff springs. If the springs are
constrained to be kept vertical, the rod, when released, moves to the position of balance and
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minimum potential energy, the least square solution. The normal equations,

∑

ei =

n
∑

i=1

(yi − a − bxi) = 0 (3)

∑

xi ei =
n
∑

i=1

(yi − a − bxi)xi = 0 (4)

are seen as conditions that the vertical forces balance (Eq. (3)), and the rotational moments
about the intercept (0, a) balance (Eq. (4)). Letting X = [1, x], the normal equations
provide the derivation X′ e = X′(y − Xb) = 0 ⇒ X′y = X′Xb ⇒ b = (X′X)−1X′y, but
springs get it right without inverting a matrix.

[Figure 8 about here.]

Neat explanations by springs

The appeal of the spring model lies in the intuitive explanations it provides for many statis-
tical phenomena and the understanding it can bring to our perception of graphical displays.
Without much explanation here (but see Sall, 1991a and Farebrother, 1987) I will simply list
some of these.

• least squares ↔ minimum energy

• orthogonality ↔ balancing of forces

• hypothesis testing: To test the hypothesis H0 : β = 0, simply force the rod to
the horizontal position, measuring the additional energy required to make it obey the
hypothesis. This is the regression sum of squares, SSR (X).

• sample size and power: Adding more points (more springs) causes the position of
the rod (and thus the coefficient estimates) to be held more tightly. It is therefore
easier to reject the null hypothesis.

• error variance: The spring constant is inversely proportional to σ, so smaller error
variance means stiffer springs, which require more force to impose the null hypothesis.

• outliers: Points far from the regression line pull the line towards themselves in pro-
portion to the square of their vertical distance from the line.

• leverage: Observations exert a force on the regression line proportional to the square
of their horizontal distance from x̄. Influence is the product of the force of leverage and
the vertical force from the residual.

• multiple regression: With two (or more) predictors, fit a plane (or hyperplane) to
points with vertical springs.

• partial F tests: With two predictors, fit a plane to (X1,X2). How much more energy
is required to make the plane flat in the x2 direction? This is the extra sum of squares,
SSR(X2 |X1)
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• robust estimation: Use springs which deform (so they exert little or no force) when
stretched past some limit.

• smoothing splines: Make the “regression line” from a material which is flexible but
stiff.

• principal components: If we relax the restriction that the springs are constrained to
remain vertical, the rod moves to the position of the first principal component.

3.2 Categorical Data

For categorical data, we need a visual analog for the sample frequency in k mutually exclusive
and exhaustive categories. Consider first the one-way marginal frequencies of hair color from
Table 1.

Urn model

The simplest physical model represents the hair color categories by urns containing marbles
representing the observations (Figure 9). This model is sometimes used in texts to describe
multinomial sampling, and provides a visual representation that equates the count ni with
the area filled in each urn, as in the familiar bar chart. (When the urns are of equal width,
count is also reflected by height, but in the general case, count is proportional to area.)
However, the urn model is a static one and provides no further insights. It does not relate
to the concept of likelihood or to the constraint that the probabilities sum to 1.

[Figure 9 about here.]

Pressure and Energy

A dynamic model gives each observation a force (Figure 10). Consider the observations in
a given category (red hair, say) as molecules of an ideal gas confined to a cylinder whose
volume can be varied with a movable piston (Sall, 1991b), set up so that a probability of 1.0
corresponds to ambient pressure, with no force exerted on the piston. An actual probability
of red hair equal to p means that the same number of observations are squeezed down to a
chamber of height p. By Boyle’s law (that pressure × volume is constant) the pressure is
proportional to 1/p. In the figure, pressure is shown by observation density, the number of
observations per unit area. Hence, the graphical metaphor is that a count can be represented
visually by observation density when the count is fixed and area is varied (or by area when
the observation density is fixed as in Figure 9.)

The work done on the gas (or potential energy imparted to it) by compressing a small
distance δy is the force on the piston times δy, which equals the pressure times the change

in volume. Hence, the potential energy of a gas at height=p is
∫ 1

p
(1/y) dy, which is − log(p),

so the energy in this model corresponds to negative log likelihood.

[Figure 10 about here.]
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Fitting probabilities: Minimum energy, balanced forces

Maximum likelihood estimation means literally finding the values, π̂i, of the parameters
under which the observed data would have the highest probability of occurrence. We take
derivatives of the (log-) likelihood function with respect to the parameters, set these to zero,
and solve:

∂ log L

∂πi

= 0 → n1

π1
=

n2

π2
= · · · =

nc

πc

→ π̂i =
ni

n
= pi

As with the spring model, setting derivatives to zero means minimizing the potential
energy; the maximum likelihood solution simply sets parameter values equal to corresponding
sample quantities, where the forces are also balanced.

In the mechanical model (Figure 11) this corresponds to stacking the gas containers with
movable partitions between them, with one end of the bottom and top containers fixed at
0 and 1. The observations exert pressure on the partitions, the likelihood equations are
precisely the conditions for the forces to balance, and the partitions move so that each
chamber is of size pi = ni/n. Each chamber has potential energy of − log pi, and the total
energy, −

∑c

i ni log pi is minimized. The constrained top and bottom force the probability
estimates to sum to 1, and the number of movable partitions is literally and statistically the
degrees of freedom of the system.

[Figure 11 about here.]

Testing a hypothesis

This mechanical model also explains how we test hypotheses about the true probabilities
(Figure 12). To test the hypothesis that the four hair color categories are equally probable,
H0 : π1 = π2 = π3 = π4 = 1

4 simply force the partitions to move to the hypothesized values
and measure how much energy is required to force the constraint. Some of the chambers will
then exert more pressure, some less than when the forces are allowed to balance without these
additional restraints. The change in energy in each compartment is then −(log pi− log πi) =
− log(pi/πi), the change in negative log-likelihood. Sum these up and multiply by 2 to get
the likelihood ratio G2.

[Figure 12 about here.]

The pressure model also provides simple explanations of other results. For example,
increased sample size increases power, because more observations means more pressure in
each compartment, so it takes more energy to move the partitions and the test is sensitive
to smaller differences between observed and hypothesized probabilities.

Multi-way Tables

The dynamic pressure model extends readily to multi-way tables. For a two-way table of hair
color and eye color, partition the sample space according to the marginal proportions of eye
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color, and then partition the observations for each eye color according to hair color as before
(Figure 13). Within each column the forces balance as before, so that the height of each
chamber is nij/ni+. Then the area of each cell is proportional to the maximum-likelihood
estimate (MLE) of the cell probabilities, (ni+/n) (nij/ni+) = nij/n = pij ,, which again is
the sample cell proportion.

[Figure 13 about here.]

For a three-way table, the physical model is a cube with its third dimension partitioned
according to conditional frequencies of the third variable, given the first two. If the third
dimension is represented instead by partitioning a two-dimensional graph, the result is the
mosaic display.

Testing Independence

For a two-way table of size I × J independence is formally the same as the hypothesis that
conditional probabilities (of hair color) are the same in all strata (eye colors). To test this
hypothesis, force the partitions to align and measure the total additional energy required to
effect the change (Figure 14). The degrees of freedom for the test is again the number of
movable partitions, (I − 1)(J − 1).

[Figure 14 about here.]

Each log-linear model for three-way tables can be interpreted analogously. For example,
the log-linear model [A] [B] [C] (complete independence), corresponds to the cube in which
all chambers are forced to conform to the one way marginals, πijk = πi++ π+j+ π++k for
all i, j, k. G2 is again the total additional energy required to move the partitions from their
positions in the saturated model in which the volume of each cell is pijk = nijk/n (so the
pressures balance), to the positions where each cell is a cube of size πi++ × π+j+ × π++k.
Other models have a similar representation in the pressure model.

Iterative Proportional Fitting

For three-way (and higher) tables some log-linear models have closed-form solutions for ex-
pected cell frequencies. The cases in which direct estimates exist are analogous to the two-
way case, where the estimates under the hypothesized model are products of the sufficient
marginals. Here we see that the partitions in the observation space can be moved directly in
planar slices to their positions under the hypothesis, so that iteration is unnecessary.

When direct estimates do not exist, the MLEs can be estimated by iterative proportional
fitting (IPF). This process simply matches the partitions corresponding to each of the suffi-
cient marginals of the fitted frequencies to the same marginals of the data. For example, for
the log-linear model [AB] [BC] [AC], the sufficient statistics are nij+, ni+k, and n+jk. The
conditions that the fitted margins must equal these observed margins are

nij+

m̂ij+
=

ni+k

m̂i+k

=
n+jk

m̂+jk

= 1, (5)
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which is equivalent to balancing the forces in each fitted marginal. The steps in IPF follow
directly from Equation (5). For example, the first step in cycle t + 1 of IPF matches the
frequencies in the [AB] marginal table,

m̂
(t+1)
ijk = m̂

(t)
ijk

(

nij+

m̂
(t)
ij+

)

, (6)

which makes the forces balance when Equation (6) is summed over variable C: m̂
(t+1)
ij+ = nij+.

The other steps in each cycle make the forces balance in the [BC], and [AC] margins.

The iterative process can be shown visually (Friendly, 1995), in a way that is graphically
exact, by drawing chambers whose area is proportional to the fitted frequencies, m̂ijk, and
which are filled with a number of points equal to the observed nijk. Such a figure will then
show equal densities of points in cells that are fit well, but relatively high or low densities
where nijk > m̂ijk or nijk < m̂ijk, respectively. The IPF algorithm can in fact be animated,
by drawing one such frame for each step in the iterative process. When this is done, it is
remarkable how quickly IPF converges, at least for small tables.

Likewise, numerical methods for minimizing the negative log likelihood directly can also be
interpreted in terms of the dynamic model (Farebrother, 1988; Friendly, 1995). For example,
in steepest descent and Newton-Raphson iteration, the update step changes the estimated
model parameters β(t+1) in proportion to the score vector f (t) of derivatives of the likelihood
function, f (t) = ∂ log L/∂β = X′ (n−m(t)) to give β(t+1) = β(t) + λ f (t). But f (t) is just the
vector of forces in the mechanical model attributed to the differences between n and m(t) as
a function of the model parameters.

4 Conclusion

I began this paper with the puzzling contrast in use and generality between graphical methods
for quantitative data and those for categorical data, despite strong formal similarities in their
underlying methods. The explanation I believe I have demonstrated is that categorical data
require a different graphic metaphor, and hence a different visual representation (count ∼
area) from that which has been useful for quantitative data (magnitude ∼ position along a
scale). The sieve diagram, mosaic, and the fourfold display all show frequencies in this way,
and are valuable tools for both the analysis and presentation of categorical data.

In the second part of this paper I have outlined concrete, physical models for both quan-
titative and categorical data and their graphic representation and have shown these to yield
a wide range of interpretation for statistical principles and phenomena. Although the spring
and pressure models differ fundamentally in their mechanics, both can be understood in
terms of balancing of forces and the minimization of energy. The recognition of these con-
ceptual models can make a graphical display a tool for thinking, as well as a tool for data
summarization and exposure.

Finally, as I look to the future development of graphical methods for categorical data,
I see two areas where our report card, perhaps reflected in this volume, may be marked
“needs improvement”: First, much of the power of graphical methods for quantitative data
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stems from the availability of tools that generalize readily to multivariable data and can
make important contributions to model building, model criticism, and model interpretation.
The mosaic display possesses some of these properties, and other papers here attest to the
widespread utility of biplots and correspondence analysis. However, I believe there is need
for further development of such methods, particularly as tools for constructing models and
communicating their import.

Second, I am reminded of the statement (Tukey, 1959, attributed to Churchill Eisenhart)
that the practical power of any statistical tool is the product of its statistical power times
its probability of use. It follows that statistical and graphical methods are of practical value
to the extent that they are implemented in standard software, available, and easy to use.
Statistical methods for categorical data analysis have nearly reached that point. Graphical
methods still have some way to go.
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Table 1: Hair-color eye-color data.

Hair Color
Eye
Color BLACK BROWN RED BLOND Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592
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Figure 1: Expected frequencies under independence. Each box has area equal to its expected
frequency, and is cross-ruled proportionally to the expected frequency.
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Figure 2: Sieve diagram for hair-color, eye-color data. Observed frequencies are equal to the
number squares in each cell, so departure from independence appears as variations in shading
density.
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Figure 3: Condensed mosaic for Hair-color, Eye-color data. Each column is divided according
to the conditional frequency of eye color given hair color. The area of each rectangle is
proportional to observed frequency in that cell.
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Figure 4: Condensed mosaic, reordered and shaded. Deviations from independence are
shown by color and shading. The two levels of shading density correspond to standardized
deviations greater than 2 and 4 in absolute value. This form of the display generalizes readily
to multi-way tables.
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Figure 5: Three-way mosaic display for hair color, eye color, and sex. Residuals from the
model of joint independence, [HE] [S] are shown by shading. G2 = 19.86 on 15 df. The only
lack of fit is an overabundance of females among blue-eyed blonds.
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Figure 6: Four-fold display for Berkeley admissions: Evidence for sex bias? The area of
each shaded quadrant shows the frequency, standardized to equate the margins for sex and
admission. Circular arcs show the limits of a 99% confidence interval for the odds ratio.
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Figure 7: Fourfold display of Berkeley admissions, by department. In each panel the confi-
dence rings for adjacent quadrants overlap if the odds ratio for admission and sex does not
differ significantly from 1. The data in each panel have been standardized as in Figure 6.
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Figure 8: Spring model for least squares regression. Fixed data points are connected to a
movable rod by springs constrained to remain vertical. The least squares line is the position
of balanced forces.
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Figure 9: Urn model for multinomial sampling. Each observation in Table 1 is represented
by a token classified by hair color into the appropriate urn. This model provides a basis for
the bar chart, but does not yield any further insights.
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Figure 10: Pressure model for categorical data. Frequency of observations corresponds to
pressure of gas in a chamber, shown visually as observation density; negative log likelihood
corresponds to the energy required to compress the gas to a height p.
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Figure 11: Fitting probabilities for a one-way table. The movable partitions naturally adjust
to positions of balanced forces, which is the minimum energy configuration.
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Figure 12: Testing a hypothesis. The likelihood ratio G2 measures how much energy is
required to move the partitions to constrain the data to the hypothesized probabilities. The
components of G2 indicate the degree to which each chamber has low or high pressure, relative
to the balanced state.
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Figure 13: Two-way tables. For multiple samples, the model represents each sample by a
stack of pressure chambers whose width is proportional to the marginal frequencies of one
variable.



FIGURES 30

.0

.2

.4

.6

.8

1.0

Brown
220

Blue 
215

Hazel
 93

Green
 64

Eye Colour

Black

Brown

Red  

Blond

Figure 14: Testing independence. The chambers are forced to align with both sets of marginal
frequencies, and the likelihood ratio G2 again measures the additional energy required.


