Galton's Greatest Graphical Discovery: A short story of visual thinking from the *Milestones Project*

Michael Friendly

Psychology In-house Conference April 30, 2007

(Slides at: www.math.yorku.ca/SCS/Papers/inhouse-2007-galton.pdf)

Milestones Project

www.math.yorku.ca/SCS/Gallery/milestone

Project goals:

- Comprehensive catalog of developments in history of data visualization
- Tool to study themes, antecedents, influences, patterns, trends, etc.

Milestones: Content Overview Every picture has a story – Rod Stewart c. 550 BC: The first world map? (Anaximander of Miletus) 1669: First graph of a continuous distribution function (Gaunt's life table)- Christiaan Huygens. 1801: Pie chart, circle graph -William Playfair 1701: First contour map-Edmund Halley 1924: Pictograms-1991-1996: Otto Neurath Interactive data visualization 1896: Bivariate mapsystems (Xgobi, Jacques Bertillon ViSta) 17th C 18th C 19th Century 20th Century BC AD 1000 1600 1700 1800 1900 2000

Background: Escaping flatland

3D maps & graphs from Halley to Galton

Early 3D maps & graphs

1701: Halley's contour maps showing curves of equal value (an isogonic map: lines of equal magnetic declination for the world) -- possibly the first thematic contour map of a data-based variable.

Visual ideas:

- curves showing equal value on a (lat, long) map.
- Interpolation from observed data
- Good use for oceans on maps

Early 3D maps & graphs

1782: Marcellin du Carla-Boniface, France First topographical map, showing contours of equal elevation.

Visual ideas:

- Contours: horizontal slices of a landscape
- Spacing indicates slope

3D maps → Graphs

1843: Léon Lalanne, France Contour diagram of a table: temperature ~ hour x month

Visual ideas:

- Ordered table like a map
- 3D level curves
- 2D marginal projections

hour

- multiple views: plan,
- elevation, section

month

1879: Luigi Perozzo, Italy Stereogram (3D population pyramid) modeled on actual data (Swedish census, 1750--1875)

Visual ideas: • isometric projection • 3D stereogram

Galton's discovery of the bivariate normal correlation surface (1886)

Table 9.1 One of Galton's correlation tables

Height of the mid- parent in inches	Height of the adult child													
	<61.7	62.2	63.2	64.2	65.2	66.2	67.2	68.2	69.2	70.2	71.2	72.2	73.2	>73.7
>73.0	-		_	_	_		-	_	_	_	_	1	3	_
72.5							_	1	2	1	2	7	2	4
71.5		_		_	1	3	4	3	5	10	4	9	2	2
70.5	1	_	1	_	1	1	3	12	18	14	7	4	3	3
69.5		_	1	16	4	17	27	20	33	25	20	11	4	5
68.5	1	_	7	11	16	25	31	34	48	21	18	4	3	
67.5	_	3	5	14	15	36	38	28	38	19	11	4	—	—
66.5	_	3	3	5	2	17	17	14	13	4			—	
65.5	1	-	9	5	7	11	11	7	7	5	2	1	—	—
64.5	1	1	4	4	1	5	5		2		—		—	—
<64.0	1	-	2	4	1	2	2	1	1		—	_	—	—
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14
Medians	_	_	66.3	67.8	67.9	67.7	67.9	68.3	68.5	69.0	69.0	70.0	_	_

Visual smoothing \rightarrow Insight

Visual insight \rightarrow Theory

evolved all this ... is to my mind one of the most noteworthy scientific discoveries arising from analysis of pure observation (Pearson 1920, p37)

Galton's discovery of weather patterns-The most notable *purely graphic* discovery ever!

METEOROGRAPHICA,

METHODS OF MAPPING THE WEATHER;

ILLUSTRATED BY UPWARDS OF 600 PRINTED AND LITHOGRAPHED DIAGRAMS

THE WEATHER OF A LARGE PART OF EUROPE,

During the Month of December 1861.

By FRANCIS GALTON, F.R.S.

(Galton, 1863)

Method: All weather stations across Europe asked to record data 3x/day for all of Dec., 1861

Data: recordings of barometric pressure, wind dir/speed, rain, temp., cloud: 3x/day, 50 weather stations in Europe.

Graphic analysis: 3x31=93 maps, each with multivariate glyphs showing all variables

Visual ideas:

- Iconic symbols
- Multivariate glyphs (stamps!)

Visual abstraction \rightarrow Patterns

How to see patterns of geographical variation over time?

- Iconic symbols on a geographical grid
- "Small multiples:" separate graphs laid out for direct comparison

hmittag.	Evening, Abend, De	c. 2.
00000000000000000000000000000000000000		

		8	symbols in Barometr	ical Charts.	
Black		Inches. Inches. 29,95 to 29,71	Iuches. Inches. 29.70 to 29.46	Inches. Inches. 29.45 to 29.21	Inches. 29,20 and below.
		0	0	*	0
Red	*	29,96 to 30,20	30.21 to 30.45	30.46 to 30.70	30.71 and above.

Visual abstraction \rightarrow Patterns

What varies with what, over time and space?

- mini, abstract maps: vars x TOD
- iso-contours, shading to show equivalence
- arrows to show wind direction

The large picture \rightarrow Insight

AM 12 PM AFTERNOON AND EVENING ON EACH DAY DURING DECEMBER 1861 Pattern: pressure Low pressure (black) in early Dec. \rightarrow CCW wind wind, rain High pressure (red) in late Dec. \rightarrow CW wind . temp. ELLA AREA Graphic: 3x3x31 grid, mapping {pressure, wind/ rain, temperature} x {AM, 12, PM} x day {1:31} (try this with your software!)

Visual insight \rightarrow Theory

Visual insight from 93 (3x31) high-D graphs: • Changes in wind dir w/ pressure over time • → Winds revolve inwardly (CCW) in low pressure areas– as in a cyclone; • → revolve outwardly (CW) in

high pressure areas– "anticyclone"

Theory:

• Explained by Dove's 'Law of Gyration'

• Prediction: reversed pattern (CW/CCW) in southern hemisphere – confirmed!

Theory → Practice

The first modern weather map, *London Times*, Apr. 1, 1875

Galton did for weathermen what Kepler did for Tycho Brahe. This is no small accomplishment. (Wainer 2005)

The dotted lines indicate the gradations of barometric pressure The variations of the temperature are marked by figures, the state of the sets and sty by descriptive words, and the direction of the wind by arrows-barbed and feathered according to its force. O denotes calm.

Conclusions

You do need a weatherman to know which way the wind is blowing - F. Galton

- When you look at your daily weather map, think of Francis Galton.
- His discoveries illustrate the value of:
 - Visual smoothing \rightarrow patterns \rightarrow insight \rightarrow theory
 - Visual abstraction \rightarrow patterns \rightarrow insight \rightarrow theory
- Modern data visualization has deep roots:
 - Cartography, statistics, data collection
 - Visual thinking, technology
- *Milestones Project* attempts to document them all comprehensively.