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Abstract

This paper outlines a general framework for ordering information in visual displays (tables and
graphs) according to the e#ects or trends which we desire to see. This idea, termed e%ect-ordered
data displays, applies principally to the arrangement of unordered factors for quantitative data
and frequency data, and to the arrangement of variables and observations in multivariate displays
(star plots, parallel coordinate plots, and so forth).

As examples of this principle, we present several techniques for ordering items, levels or
variables “optimally”, based on some desired criterion. All of these may be based on eigenvalue
or singular-value decompositions.

Along the way, we tell some stories about data display, illustrated by graphs—some surpris-
ingly bad, and some surprisingly good—for showing patterns, trends, and anomalies in data. We
hope to raise more questions than we can provide answers for.
c© 2002 Elsevier B.V. All rights reserved.

1. Introduction

The presentation of information, by necessity, is always ordered—in time (as in a
narrative), or by the dimensions of space (a table or image). In general, information
display is inevitably structured by some scheme that imposes sequential or spatial order
on the component parts. The constraints of space and time are so dominant—yet often
unconscious—that they sometimes conceal the important message, rather than reveal
it. Information may be available, yet sadly not accessible to understanding. To set the
stage, we begin with two contrasting examples.
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1.1. E%ect order failure: a cautionary tale

Few events in history have provided such detailed and compelling illustration of the
importance of appropriate arrangement and ordering of information as the decision by
NASA to launch the space shuttle Challenger on January 28, 1986.

The ‘go’ decision was made by NASA against the initial recommendations of the
rocket engineers at Morton Thiokol, who were concerned about the e#ect of cold
weather on the reliability of rubber O-ring seals connecting the rocket stages. In
hindsight, the engineers failed to provide an adequate evidentary context to allow
the correct decision to be self-evident.

Summarizing the detailed analyses both before the launch decision and in the
investigation afterwards, Tufte (1997) notes that the tables and charts presented
to NASA by the Thiokol engineers, and even those later used in the Presidential
Commission hearings, showed the available information from prior launches or-
dered by time, rather than by temperature at the launch—the crucial
factor.

In spite of the fact that the initial concern of the Thiokol engineers, and the
ultimate oGcial cause of the disaster had to do with the e#ect of extremely
cold weather on the O-ring seals, the information presented to NASA was or-
dered historically, concealing the link between temperature and potential O-ring
damage.

Tufte (1997, p. 48) notes, “the fatal Haw is in the ordering of the data”, and con-
cludes (p. 43), “the graphics: : : suggest there are right ways and wrong ways to display
data; there are displays that reveal the truth and displays that do not”.

Numerous ordering-biases a#ect how we think about information—and therefore how
we arrange this information in visual displays.

• The Thiokol engineers thought of the previous tests as ordered sequentially in time,
always an easy dimension.

• Tables of statistics for the US are traditionally ordered alphabetically by state, while
those in Canada almost always arrange the provinces from East to West: Newfound-
land to BC.

• Bibliographies are almost always sorted by author-year; at my local used CD store,
recordings are arranged Krst by category (rock, jazz, classical, etc.), then from Abba
to Zappa.

Such arrangements are designed to facilitate only one task: look-up—to Knd the
data for the SR-3 launch, Ohio, Ontario, or the recordings of Phish. But they generally
make it harder to see trends, unusual patterns, and so forth. The general question we
ask is this: when an information display is intended to help us see characteristics of
the data, what arrangement strategy can be used to make the display serve its purpose
best?
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Fig. 1. Langren’s 1644 graph of determinations of the distance, in longitude, from Toledo to Rome. The
correct distance is 16◦30′. Source: Tufte (1997, p. 15).

1.2. E%ect order success: van Langren’s graph

Even with what might seem like one-dimensional, quantitative data, a goal-based
analysis of purpose or task should lead to the immediate question, “which
dimension?”.

In 1644, in what might well be the Krst visual presentation of statistical data
(Tufte, 1997, p. 15), Michael Florent van Langren (van Langren, 1644), a Flem-
ish astronomer to the Spanish court, portrayed 12 estimates of the distance from
Toledo to Rome, in an attempt to contribute to the measurement of longitude, a
serious concern at the time. 1

The complete data are shown in a one-dimensional graph (Fig. 1) of the various
distances, measured in degrees longitude, on a scale with Toledo as the zero point
(0◦). Each of the 12 estimates are shown as points on a scale of 0◦–30◦, and
each point contains a label (written vertically) for the name of the person who
made that determination.

Van Langren’s graph is remarkable for three reasons, which range from historical
observations, to the questions here at hand:

Data

First, all of the estimates (which range from 17◦40′ to 30◦10′) are greater than
the actual distance of 16◦30′. Unfortunately, the “actual distance” was not known
for 100 years, so van Langren could not mark it on his graph. Doing so provides
the opportunity to tell a di#erent story about the measurement of longitude and
gives a compelling visual example of the concept of bias. The variability of the
estimates is also pronounced, as they take up nearly one-third of the axis, started
at 0◦. Indeed, van Langren’s major goal was to show the enormous range of errors
from the greatest known astronomers and geographers.

1 For navigation, latitude could be Kxed from star inclinations, but longitude required accurate measurement
of time at sea, an unsolved problem until 1765.
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Display

Second, van Langren recognized the diGculty of a too-crowded axis, when points
are to be labeled. The point symbols were drawn at their actual locations on the
distance scale, as precisely as the scale would allow, and were allowed to overlap.
The accompanying text labels for the names associated with each point are (a)
written vertically and (b) spaced for convenience. Both of these were designed to
avoid the overlap of the labels—always useful if you want them to be read.

Ironically, this design goal was easier to achieve when one did things in ink,
on a drawing board. Now that we have advanced to automating visual displays
in software, algorithms for avoiding collisions among text labels (Kuhfeld, 1991,
1994) are in hot-demand to replace what the hand–eye system would have done
naturally before.

Order

Third, van Langren might have, as was certainly the custom in his time, listed
this information in a tabular display (name, date, value), or, as we might do
now, in a database. The rows of this table might have been sorted by name
(as in a bibliography), or date (as in a timeline), or by value, of the previous
determinations of longitude. Any of these sorting options would have provided
a “reasonable” display of this information for presentation to the Spanish court:
Sorting the rows of such a table by name would have identiKed provenance;
sorting by date would have shown priority. Sorting by value would have revealed
the range—lack of precision—of the estimates.

Yet, van Langren chose none of these easy, tabular forms to show his Kndings.
Only his hand-drawn graph speaks directly to the eyes (hopefully, to the court of
Spain). It shows simultaneously: the individual estimates in substantively meaningful
numerical order (by value), the associated names, their central value (marked “ROMA”,
but note the gap!), the degree of variability, and the zero point for this quantitative
scale.

Whether or not this is the Krst display of quantitative information, it is certainly
admirable for its focus on the best visual ordering of the information conveyed. For
these reasons, it is clearly an important milestone in the history of data visualization
(Friendly and Denis, 2001), and the earliest-known exemplar of what we call “e#ect
ordering for data display”.

1.3. Some background

The concept of ordering information in data analysis and graphical displays has a
long, but somewhat spotty history, in several Kelds. In archaeology, techniques of seri-
ation have been used since Petrie (1899) Krst investigated the sequences of successive
stages of pottery over time; he used these sequences to date other fragments by ma-
terial and tool markings. Today, methods of cluster analysis, correspondence analysis,
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and matrix-sorting are widely used for arranging objects along dimensions of time and
space in archaeological research (Berg and Blieden, 2000).

In psychology, methods for uni-dimensional scaling of attitudes and preferences
(Thurstone, 1927, 1959; Bock and Jones, 1968) were developed to provide interval
scales, with measurable precision, to quantify the subjective assessment of human
judgment and choice. Today, these methods are widely applied in market research
and studies of the processes involved in making decisions.

Similarly, methods of factor analysis have long been used to form uni-dimensional
scales of items, and special “simplex” models (Guttman, 1955; JToreskog, 1974) for
variables ordered along a continuum have been widely used in testing psychological
theories of performance, development, and intelligence.

More generally, Bertin (1981, 1983) developed several important ideas about data
display: First, one can think of several ordered levels of information portrayed in
graphic displays—(a) an elementary level, comprised of individual graphic elements;
(b) an intermediate level, comprised of comparisons among subsets of graphic ele-
ments; and (c) an overall level, comprised of overall trends and relations.

Second, Bertin o#ers a detailed analysis of (a) data attributes, including equivalence
classes (≡), unordered categories ( �=), ordered categories (O) and quantitative vari-
ables (Q), and (b) visual attributes, including size, value, texture, color, orientation,
shape, etc., along with rules for mapping the data attributes to visual ones in graphic
constructions.

Finally, Bertin promoted the idea of the “re-orderable matrix” as a general technique
for data exploration and display to discern interesting patterns in data tables, by per-
mutations to bring similar observations and variables together, a special case of e#ect
ordering. Matrix reordering for this purpose has been implemented in, e.g., the Table
Lens (Rao and Card, 1994). Some empirical tests of the eGcacy of matrix reorder-
ing, for tasks involving Knding correlated variables, have been carried out by Siirtola
(1999).

1.4. Some goals of visual display

E#ective data display, like good writing, requires an understanding of its purpose—
what aspects of the data are to be communicated to the viewer. In expository writing
we communicate most e#ectively when we structure the information content with both
the communication goal and the audience Krmly in mind. So too, we can construct
a table or graph in di#erent ways for di#erent communication goals, or to facilitate
di#erent tasks.

Among other ways of classifying aspects of visual display (Cleveland, 1993a;
Cleveland and McGill, 1987; Friendly, 1999b), it is useful for our present purposes to
distinguish among the goals of

• information lookup,
• comparison, and
• detection (patterns, trends, anomalies).
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In this paper we consider the e#ects that the order of information displayed might
have on some aspects of these display goals, but particularly for comparison and for
detection (similar to Bertin’s intermediate and global levels).

1.5. Re-orderable factors

One reason why graphs of quantitative data (for example, a scatterplot of damage
index against ambient temperature for the pre-Challenger Hights) are e#ective is sim-
ply that graphing values on quantitative axes automatically orders and spaces those
values. Thus, questions of “which is less/more”, “how much less/more”, and “what is
the trend” are answered using visually ordered, and quantiKed, positions in the display.
However, when data values are classiKed by “factors”, the ordering of the levels of
the factor variables has considerable impact on graphical display.

Ordered factors (such as age group, level of education, etc.) are usually (though
not always) most sensibly arranged in their natural order for all presentation goals.
Unordered factors (disease classiKcation, occupation, geographic region) deserve more
careful thought. For a geographic classiKcation (states, provinces) it is common to
arrange the units alphabetically or (as is common in Canada) from east to west. When
the goal of presentation is detection or comparison (as opposed to table lookup), this
is almost always a bad idea.

1.6. E%ect-order sorting

Instead, we suggest a general rule for arranging the levels of unordered factors in
visual displays—tables as well as graphs: sort the data by the e%ects to be observed.
Sorting has both global and local e#ects: globally, a more coherent pattern appears,
making it easier to spot exceptions; locally, e#ect-ordering brings similar items together,
making them easier to compare (Carr and Olsen, 1996). See de Falguerolles et al.
(1997) for related ideas based on Bertin.

In the following section we illustrate various e#ect-order sorting solutions in re-
lation to various types of data and presentation goals. We Krst cover techniques for
quantitative response data cross-classiKed by two or more discrete factors (Section 2),
where several methods based on “main-e#ect ordering” are described. Methods for
multiway frequency data, based on “association ordering” are described in Section 3.
For multivariate data, several methods based on “correlation ordering” are illustrated in
Section 4. For displays dealing with multivariate mean di#erences among groups in a
MANOVA context, the analogous principle is “discriminant ordering” (Section 5). As
it turns out, all of these may be described as optimization problems with eigenvector
or singular-value decomposition solutions.

2. Multiway quantitative data: main e�ects ordering

For quantitative data, cross-classiKed by one or more factors, Carr and Olsen (1996),
Cleveland (1993b), Wainer (1992, 1993), and others have argued persuasively that
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Table 1
Average barley yields (rounded), means by site and variety

Variety Site Mean

Crookston Duluth Grand Rapids Morris University Farm Waseca

Glabron 32 28 22 32 40 46 33.3
Manchuria 36 26 28 31 27 41 31.5
No. 457 40 28 26 36 35 50 35.8
No. 462 40 25 22 39 31 55 35.4
No. 475 38 30 17 33 27 44 31.8
Peatland 33 32 31 37 30 42 34.2
Svansota 31 24 23 30 31 43 30.4
Trebi 44 32 25 45 33 57 39.4
Velvet 37 24 28 32 33 44 33.1
Wisconsin No. 38 43 30 28 38 39 58 39.4

Mean 37.4 28.0 24.9 35.4 32.7 48.1 34.4

trends, relationships and anomalies are most easily seen in tables and graphs when
unordered factors are ordered by means or medians of the response for those factors.
For two-way tables, Ehrenberg (1981) suggests to “order the rows or columns of
the table by the averages or by some other measure of size”. We operationalize this
prescription below.

2.1. Two-way tables

For example, Cleveland (1993b) used a variety of multi-panel dot plots to explore
data on barley yields (Immer et al., 1934) for ten varieties of barley grown at six
sites in Minnesota, in each of 2 years, a 10 × 6 × 2 table. He showed convincingly
that sorting the factors by their main e#ects allows the detection of several anomalies,
which were not disclosed in previous analyses. A three-way dot plot of these values
(Cleveland, 1993b, Kg. 1.1), for example, shows that all sites except one produced sig-
niKcantly higher yields in 1931 than in 1932, suggesting that the data for the anomalous
site (Morris) might have had the years mislabeled. This exceptional behavior is not
apparent, however, in displays where varieties and sites are ordered arbitrarily.

Tabular displays can also be enhanced to facilitate the perception of peculiarities.
To illustrate, Table 1 shows the average yield (over years), in bushels/acre, by variety
and site, with these factors ordered alphabetically. (We average over years here to see
if there are other, more subtle, indications to be found in these data.) It is hard to see
any patterns, trends, or anomalies in this table.

Table 2 is an enhanced version. Here, both site and variety have been sorted by
their main e#ect means over the other factor. Inspecting the values of the marginal
means, we see that both factors produce a considerable range in average yield, with
a greater range due to site than variety. But note that the large gaps among these
means (for varieties, separating Trebi and Wisconsin No. 38 from the rest; for sites,
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Table 2
Average barley yields, sorted by mean, italicised by residual from the model Yield = Variety+Site

Variety Site Mean

Grand Rapids Duluth University Farm Morris Crookston Waseca

Svansota 23 24 31 30 31 43 30.4
Manchuria 28 26 27 31 36 41 31.5
No. 475 17 30 27 33 38 44 31.8
Velvet 28 24 33 32 37 44 33.1
Glabron 22 28 40 32 32 46 33.3
Peatland 31 32 30 37 33 42 34.2
No. 462 22 25 31 39 40 55 35.4
No. 457 26 28 35 36 40 50 35.8
Wisconsin No. 38 28 30 39 38 43 58 39.4
Trebi 25 32 33 45 44 57 39.4

Mean 24.9 28.0 32.7 35.4 37.4 48.1 34.4

distinguishing Wanesca as the best producer) are not visually prominent in the row
and column means.

To see more, we might supplement this display with information showing the dis-
parity (residual) between the variety–site mean and the Ktted value under a simple
additive model, Yield =Variety +Site. In Table 2, each cell has been shaded according
to the residual from this additive model, showing (implicitly) the interaction residuals
in the two-way table. The shading scheme, as in a mosaic display (Friendly, 1994),
uses blue for positive interaction e#ects, red for negative one, and two levels of shading
intensity, corresponding to absolute residuals greater than 1 and 2 times the

√
MSPE

(the root mean square error) in a model (2) which allows for removable non-additivity.
In the table, a number of cells are shaded, but the largest absolute residual occurs

with Glabron, planted at University Farm, which had a substantially higher yield than
a simple additive model would allow. Whether we have found a truly anomalous
observation or not, Table 2 has highlighted a Knding worth further investigation—all
we can ask from a data display.

Sorting by e#ects and shading by value or residual from some model can be par-
ticularly e#ective in tabular presentation. Table 3 shows the di#erence in the barley
yields between 1931 and 1932 for each variety and site. Both varieties and sites have
been sorted by the mean di#erence; the cell entries are shaded corresponding to values
which exceed 2 and 3 times the standard deviation (3.17) of all the table entries. The
negative values at the Morris site immediately stand out, as all had recorded smaller
yields in 1931 than in 1932, whereas most other sites and varieties had larger yields
in 1931.

Sorting by row and column means (or medians) also has the e#ect of creating a
regular progression in the body of the table, against which deviations from this pattern
stand out. Except for the Morris column, the large positive values tend to lie in the
lower triangle. Against this background, one negative value, for Velvet at Grand Rapids
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Table 3
Yield di#erences, 1931–1932, sorted by mean di#erence, and italicised by value

Variety Site Mean

Morris Duluth University Farm Grand Rapids Waseca Crookston

No. 475 −22 6 −5 4 6 12 0.1
Wisconsin No. 38 −18 2 1 14 1 14 2.4
Velvet −13 4 13 −9 13 9 2.9
Peatland −13 1 5 8 13 16 4.8
Manchuria −7 6 0 11 15 7 5.5
Trebi −3 3 7 9 15 5 6.1
Svansota −9 3 8 13 9 20 7.3
No. 462 −17 6 11 5 21 18 7.4
Glabron −6 4 6 15 17 12 8.0
No. 457 −15 11 17 13 16 11 8.8

Mean −12:2 4.6 6.3 8.2 12.5 12.5 5.3

appears aberrant. In a dot plot of the di#erences in yield (with the 1931 and 1932 values
for Morris reversed), Cleveland (1993b, Kg. 6.22) also notes this unusual value. The
shaded tabular display is at least as e#ective in drawing attention to this observation.

For two-way tables, it is easy enough to sort the rows and columns by some statistic
(mean, median, etc). Tabular displays can be made more revealing by enhancements
such as those just shown, but it is hard to portray relative or absolute amounts. Sort-
ing the rows and columns in Table 2 by mean yield helped, but did not show the
exceptional sites or varieties. Shading the cells by residuals from an additive model
also helped, but we were forced to use a set of discrete thresholds for coloration. We
can learn more, and Knd ways to generalize, by examining graphical methods that
automatically arrange the factors in order.

2.2. Tukey’s two-way display

Tukey’s two-way display (Tukey, 1977) is designed to show predicted values and
residuals in a two-way table with one observation per cell. The Ktted model includes
row and column e#ects

Yij = � + 	i + 
j + �ij (1)

and possibly a 1-df term for non-additivity (or interaction) removable by transformation
of yij,

Yij = � + 	i + 
j + D	i
j + �ij; (2)

where D is one additional parameter to be Ktted. In the additive model (1), Ktted values,
Ŷ ij may be displayed as a set of rectangles with grid lines at coordinates (x; y), deKned
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Fig. 2. Barley data, Tukey two-way display of average yields.

as

xi = �̂ + 	̂i = row Kti

yj = 
̂j = col e#ectj:

Thus, the (x; y) coordinates are ordered by both the row and column e#ects. Tukey’s
two-way display is a 45◦ counter-clockwise rotation, plotting (xi + yj) = Ŷ ij on the
ordinate, vs. (xi−yj) on the abscissa. The residual, eij=Yij− Ŷ ij, may then be shown
as a directed vertical line from Ŷ ij to Yij. In this display, the row and column factors
are thus automatically sorted and spaced according to the Ktted values, facilitating
interpretation by providing a global context.

To illustrate, Fig. 2 shows the two-way display for the average barley yields from
Table 1. Residuals greater in magnitude than

√
MSPE are shown by directed arrows.

It is easy to see that the varieties Trebi and Wisconsin No. 36 produced the greatest
yields at all locations, while Svansota gave the lowest yields. The variation among sites,
however, was greater than that among varieties, the greatest yields occurring at Waseca
by a wide margin. The additive model (1) does not Kt the barley data particularly well.
However, as we can see from the number and pattern of residuals shown in Fig. 2 and
from the non-additivity term in the ANOVA associated with model (1) in Table 4.
There is a slight tendency for the interaction residuals to have an opposite-corner
pattern of signs: positive in the top and bottom corners, negative towards the left and
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Table 4
ANOVA table for barley data

Source SS df MS F

Variety 526.286 9 58.476 4.36
Site 3316.927 5 663.385 49.52
Error 602.881 45 13.397

Non-Add 129.447 1 129.447 12.03
Pure Error 473.434 44 10.760

right corners: some of the better varieties produce even more when grown at the better
sites, as do some poorer varieties grown at poorer sites, compared to a model of strictly
additive e#ects.

When the additive model (1) does not Kt, Tukey’s model (2) is motivated by the
observation that interaction might take the simple form of a product of row and column
e#ects, D	i
j, which accounts for the opposite-corner pattern of signs of residuals.
Fitted values under model (2) take the form of a set of converging or diverging
lines. 2 Nevertheless, the two way display still orders the row and column factors by
main e#ects, and shows their relative spacing.

For comparison with Table 3 of the yield di#erences, we show a comparable two-way
display in Fig. 3 (with threshold 2

√
MSPE for residuals). The negative values for Morris

stand out by spacing, rather than by coloration. The singularly large negative residual
(Velvet at Grand Rapids) commands attention. But only main-e#ect ordering makes
these stand out.

2.3. Biplot

When the additive model (1) holds exactly, Y = {Yij} will be a matrix of rank 2,
expressible as

Y = � + ABT = � +




	1 1

	2 1

...
...

	r 1



(

1 1 : : : 1


1 
2 : : : 
c

)
:

2 Instead of “squeezing” the model, an alternative is to “unsqueeze” the data by a power transformation,
Y → Yp, where p = 0 means log(Y ) and p¡ 0 means −1=(Yp), according to the Box–Cox (Box and
Cox, 1964) family or Tukey’s “ladder of powers”. Tukey (1977) shows if the interaction residuals from the
additive model, eij = Yij − �̂− 	̂i − 
̂j , are plotted against comparison values, cij = 	̂i 
̂j=�̂, and give a linear
relation with slope b, then a transformation, Y → Y 1−b will reduce the non-additivity. For the Barley data,
such a plot yields b= 2:3, suggesting a transformation to −1=Y (acres/bushel). However, Box–Cox analysis
of the full three-way data suggests a transformation to

√
Y , while the associated constructed variable score

test (Atkinson, 1987) nominates log(Y ). We do not explore these transformations further here.
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Fig. 3. Barley data, Tukey two-way display of yield di#erences.

Thus, a plot of the rows of A and the rows of B will appear as a vertical and horizontal
line, respectively.

More generally, Bradu and Gabriel (1978) proposed various diagnostic rules that
distinguish among data Ktting the additive model (1), Tukey’s non-additivity model
(2), and intermediate models suggested by Mandel (1961) (the rows regression model,
where the interaction residuals have the form Ri
j, with separate slope Ri for each
row, and an analogous columns regression model).

The diagnosis of model form comes from a biplot of the matrix Y − Y••, that is, a
low-rank approximation of the form

Y − Y•• ≈ ABT =
K∑
k=1

akbTk ; (3)

where K is usually two (or three), and the data element is approximated by the inner
product, aTi bj of the ith row of A and the jth column of B.

For least-squares approximation, the biplot vectors, ai and bj are most easily obtained
by the singular value decomposition,

Y − Y•• =U�VT =
p∑
k=1

�kukvTk ; (4)

where p = min(r; c); � is a diagonal matrix containing the ordered singular values,
�1¿ �2¿ · · ·¿ �p along its diagonal, and the left (U) and right (V) singular vectors
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are columnwise orthonormal, UUT = I ; VVT = I . The factoring of Y − Y•• in (3)
using the singular value decomposition (SVD) from (4) is not unique, however. We
use the symmetric principal components analysis (PCA) factorization:

A=U�1=2; (5)

BT = �1=2VT: (6)

Alternative factorizations di#er only in the relative scalings applied to A and B; these
are equivalent in the present context, where relative ordering is most important.

Linear combinations of the rows and of the columns may also be represented in the
biplot display. In particular, the average of the row points, a•, and the average of the
column points, b•, may be found. Then, the row and column means are approximated
in the display by the inner products:

Yi• ≈ aTi b•; (7)

Y•j ≈ aT• bj: (8)

That is, the row means are shown visually by the projections of the row points ai on
the vector joining the origin to the average column point, b•, and vice versa. Thus,
the biplot display of a two-way table orders the row and column categories according
to the main e#ect means.

We illustrate this method with a biplot of the average barley yields shown in
Fig. 4; this may be compared to the two-way display (Fig. 2) and to the e#ect-sorted
and highlighted tabular display (Table 2). The lines in the plot show the Krst principal
component of the variety points and of the site points (a ‘best’ 2D Kt to each set).
This 2D display accounts for 94.1% of the variation in Table 1.
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yield is plotted as a Klled circle, the 1932 value as an open circle. For the same site, years are connected
by dotted lines. Separate Ktted lines are shown for the 1931 and 1932 points (excluding Morris), and for
the variety points.

According to the diagnostic rules of Bradu and Gabriel (1978), the additive model
(1) provides a poor Kt, because the lines are not orthogonal. The sites, except for Morris
and University Farm, are close to colinear, while some of the varieties (Peatland, No.
462) stray further from colinearity.

The large black points in Fig. 4 show the locations of the means of the row and
column points. From (7) and (8), each set of means is ordered by their projections on
the vector from the origin to the other mean point. Hence, the order of the varieties
and of the sites along these vectors (similar to their ordering along Dimension 1) is
the same as that of the main e#ects shown in the two-way display (Fig. 2), so the
biplot of these data also provide a means to construct a meaningful order for unordered
factors in two-way tables.

2.4. n-way tables

Tukey’s two-way display, and the biplot are deKned for two-way tables, but they
may be extended to three- and higher-way tables by “stacking” one or more variables
along the rows and or columns of a two-way table, just as is done in printing n-way
tables. For example, a three-way, (I × J × K) table may be analyzed by combining
two of the variables along the columns, giving, say, a (I × J × K) table. In such
plots, the positions or markers for the variables combined represent the main e#ects
and interactions of those variables; their separate e#ects may often be disentangled by
inspection.

To illustrate, Fig. 5 shows a biplot of the three-way Barley data, stacked so that the
varieties form the rows and the site–year combinations form the columns. For each
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site, the points for years are connected by dotted lines; the other lines show the Krst
principal components for the varieties (blue) and for the sites in 1931 and in 1932,
excluding the Morris values. This 2D representation accounts only for 81% of the data,
or provides an 81% 2D smoothing, depending on one’s perspective.

Along the Krst dimension, the sites are ordered largely as in Fig. 4, but the values
for the Morris site are far from the trend for the remaining sites. There are more
aspects of these data which could be explored in this and other biplot displays of
the three-way table. Here we simply note that Fig. 5 singles out the points at Morris
as anomalies compared to the other sites. Once again these observations appear to be
deviant only in relation to a scaling which orders the sites in relation to their e#ects on
yield.

3. Multiway frequency data: association ordering

For cross-classiKed frequency data, where the generalization of ANOVA models
leads to loglinear models or Poisson regression, it might seem that the natural extension
of the ideas of Section 2 would lead to analogous displays of log frequency in a
two-way or n-way table. This turns out to be a very bad idea, and the reasons why it
fails are instructive.

For example, Fig. 6 shows a two-way display of the log frequency classifying fathers
and sons in Britain according to occupational groupings (Glass, 1954; Bishop et al.,
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1975, p. 100). The occupational categories are labeled: 1: ‘Professional & high ad-
ministrative’, 2: ‘Managerial, executive & high supervisory’, 3: ‘Low inspectional &
supervisory’, 4: ‘Routine nonmanual & skilled manual’, and 5: ‘Semi- & unskilled
manual’ (abbreviated in these displays).

In Fig. 6, the arrows show residuals from independence appropriately—the local
structure. However, the occupational categories are ordered by the marginal totals,
rather than by a meaningful dimension which might relate to, and help to understand,
the strong association, e.g., social class or occupational prestige—the global structure.
As we have shown for main-e#ects ordering, local structure can only be seen in the
context of an appropriate global structure.

In tables of occupational mobility, it is almost invariantly found that a large part of
the association is due to the tendency of sons to stay in their fathers’ occupation (large
diagonal entries), but this global structure—positive residuals for the same row/column
occupations—is concealed by the ordering in Fig. 6.

For categorical data, where the goal is to understand the pattern of association among
variables, two techniques serve the goals of pattern recognition and anomaly-detection,
using an association-based ordering of the levels of unordered factors: correspondence
analysis, and mosaic displays. Both of these employ a singular-value decomposition of
residuals from independence.

3.1. Correspondence analysis

Fig. 7 shows a symmetric correspondence analysis (CA) display of the occupational
mobility data. The two dimensional display provides an excellent representation of
the association, accounting for 95.4% of the �2 (1176.5 on 16df ). The dominant Krst
dimension orders the occupational groups in terms of occupational skill or prestige.
The Krst thing to notice is that, for each occupational category, the points for fathers
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and sons are quite close: the tendency of sons to remain in their fathers’ occupational
grouping is shown visually to account for most of the association. 3

The graph also provides information about the relative spacing along this dimension.
We see that the row and column proKles for the professional & high administrative
category are widely separated from the rest, which are approximately equally spaced
along the Krst dimension. CA provides an optimal quantiKcation of the categories
(maximizing the correlation between the quantiKed scores), so the category scale values
on this dimension have some utility.

Finally, note that in the professional and managerial categories, the points for sons
tend to be higher on Dimension 1 than those for the fathers, representing a small but
perhaps important tendency toward upward mobility.

3.2. Mosaic displays

The mosaic display (Hartigan and Kleiner, 1981) shows the frequencies in an n-way
table by tiles whose areas are proportional to cell frequencies. Friendly (1992, 1994,
1999a) extended mosaic displays to show the patterns of association (residuals from
a baseline model) by colored shading of these tiles, and by reordering the factors
according to their positions on the largest correspondence analysis dimension.

Thus, the mosaic display shows both the data (areas of tiles ∼ observed cell fre-
quencies) and the residuals from some Ktted model. Shading color shows the sign
of the standardized Pearson or likelihood ratio residual—blue for cells with observed
frequency greater than expected frequency, red for cells with less than the expected
frequency, while intensity shows the magnitude of the residual. When an indepen-
dence model has been Kt, the pattern of shading in the display then shows the nature
of the association between the variables, but the perception of this pattern depends
strongly on the ordering of the categories. For example, the residuals will have an
opposite-corner pattern when the association depends on the order of the categories.
Fitting less restrictive models allows more subtle patterns to be observed.

For example Fig. 8 shows two mosaic displays for the Mobility data, with the occu-
pational categories ordered as in Fig. 7. The left panel Kts the baseline independence
model. The blue tiles along the main diagonal reHect the standard result in mobility
tables that most sons remain in their fathers’ occupational classes.

However, the heights of the tiles also show the marginal distribution of fathers’
occupations, while the widths show the conditional distribution of sons for each cate-
gory of fathers. We see, for example, that the proportion of fathers in the professional
category was quite small, but most of their sons entered professional or managerial
occupations.

The right panel of Fig. 8 shows the residuals from a model of quasi-independence,
in which the dominant diagonal cells have been excluded from the analysis. It shows,
therefore, the association between sons and fathers, conditional on them being in dif-
ferent occupational categories. We now observe quite clearly a tendency for positive

3 In CA displays, interpretation of association is based on similarity of distance and direction from the
origin for a row and column point, rather than on distance from each other.
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Fig. 8. Mosaic displays of Mobility data. Left: Independence model; Right: Quasi-independence.

residuals in the cells just o# the main diagonal, showing mobility to adjacent categories,
and negative residuals far from the diagonal, showing very low mobility across large
steps. Friendly (1992, 1994, 2000) gives examples of the analysis of three-way and
larger tables where the relations among variables are clariKed when unordered factors
are arranged in association-based order.

4. Multivariate displays: correlation ordering

Graphs are inherently two-dimensional. Some ingenuity is therefore required to dis-
play the relationships of three or more variables on a Hat piece of paper. One general
class of con?gural methods for displaying multivariate data assigns the variables to be
portrayed to features of glyphs or axes in some coordinate system. We consider several
such methods where the eGcacy of the display may be inHuenced by the manner in
which the variables are assigned to features or axes.

4.1. Corrgrams

Application of the principal of e#ect ordering to multivariate data leads to the general
suggestion that variables be arranged so that “similar” variables are contiguous and
ordered in a way that helps reveal the pattern of relations among variables. To illustrate
our approach, consider the task of rearranging variables in a correlation matrix to show
the pattern of relations among variables.

When the structure of correlations is well-described by a single, dominant dimension
(as in a uni-dimensional scale or a simplex), ordering variables according
to their positions on the Krst eigenvector of the correlation matrix, R, will suGce.
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Fig. 9. Eigenvectors for Baseball data.

However, experience shows that this is not usually the case, in contrast to the situa-
tions described for main-e#ect ordering and association ordering. A more satisfactory
solution is obtained by ordering variables according to the angles formed by the Krst
two eigenvectors. (These are also the variable vectors for the biplots described in
Section 4.4).

For example, Fig. 9 plots the Krst two eigenvectors of the correlation matrix among
variables describing baseball players hitting and Kelding performance and salary (logSal)
in the 1986 year. Dimension 1 relates mostly to measures of batting performance, while
Dimension 2 relates to two measures of Kelding performance and to longevity in the
major leagues. However, the lengths of the projections on these dimensions are deter-
mined by the adequacy (percent of variance) of the two-dimensional representation. On
the other hand, the angles between vectors approximate the correlations between these
variables, and so an ordering based on the angular positions of these vectors naturally
places the most similar variables contiguously.

Fig. 10 shows a “corrgram” (Friendly, 2002), a color-coded mapping of the corre-
lation matrix, where the variables have been arranged in the order of the eigenvectors,
e1; e2, from Fig. 9. More precisely, the order of the variables is calculated from the
order of the angles, 	i,

	i =

{
tan−1(ei2=ei1); ei1¿ 0;

tan−1(ei2=ei1) + ! otherwise:
(9)
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Baseball data: PC2/1 order
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correlations shown by color and intensity of shading; upper: circle symbols.

Two representations of the sign and magnitude of the value of each correlation are
shown, to illustrate di#erent possibilities. In the lower triangle, each cell is shaded blue
or red depending on the sign of the correlation, and with the intensity of color scaled
0–100% in proportion to the magnitude of the correlation. White diagonal lines are
added so that the direction of the correlation may still be discerned in black and white.
The upper triangle uses circular “pacman” symbols, with the same scaled color shadings
as below, but with the angle of the shaded sector proportional to the magnitude of the
correlation (clockwise for positive values, anti-clockwise for negative values).

It may be seen that the solid shadings make it easier to discern patterns and groupings
in among the correlations, but harder to compare the precise magnitudes, while these
comparisons are reversed for the circle symbols. (Typically, we use just one encoding
in a Kgure, for ease of comparisons along rows or columns.) For the baseball data,
most of the variables are positively correlated, and the pattern of relations is quite
simple to interpret.

In contrast, consider the data on 74 automobile models from the 1979 model year
(Chambers et al., 1983, pp. 352–355) shown in Fig. 11. The display of the correlation
matrix in alphabetic order on the left reveals no coherent pattern. The display on the
right, with variables ordered by angles of the Krst two eigenvectors shows two major
groups of variables, with positive correlations within, and negative correlations between.
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variables in alphabetic order; right: variables ordered by angles of Krst two eigenvectors.

4.2. Parallel coordinate plots

Parallel coordinate plots (Inselberg, 1985; Inselberg and Dinsmore, 1988) display
the values of an arbitrary number of variables on a set of parallel coordinates; these
displays are also known as proKle plots. When the data is quite structured, parallel
coordinate plots can reveal aspects of high-dimensional data that is diGcult to perceive
with other displays.

With real data, however, parallel coordinate plots are often quite disappointing. When
the raw data are plotted as is on parallel coordinates, variables with the largest means
tend to dominate the display, as shown in the left panel of Fig. 12. (The data, from
Hartigan (1975, p. 28), gives the rates of various crimes in 16 US cities, per 100,000
population.) Standardizing the data to mean 0, standard deviation 1 removes that prob-
lem, but often results in an incoherent display in which no systematic trends or relations
can be seen, as shown in the right panel of Fig. 12.

As we will see below, an improved display may be obtained by ordering the variables
along the horizontal axis according to their weights on the Krst principal component
or Krst singular value.

4.3. Linear pro?les plots

A dramatic increase in coherence may be achieved by Ktting a model in which all
observations have a smooth relation to the variables on some scale. Imagine choosing
the position of the variables along the horizontal scale in an optimal way, so as to
make the proKles smoothest. The most stringent deKnition of smoothness requires that
each proKle be as nearly linear as possible, which is satisKed by the linear proKles
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Fig. 12. Crimes data: Parallel coordinate plots. (a) Unstandardized data; (b) Standardized data.

algorithm due to Hartigan (1975, Section 1.6) and implemented in Friendly (1991,
section 8.1), from which this example draws.

Let Y∗ be the data matrix transformed to standard scores ( \Y ∗
j = 0; Var(Y ∗

j ) = 1).
Suppose the variables are to be positioned along a horizontal scale at locations xj so
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that for each case,

y∗ij ≈ b0i + b1ixj; (10)

where b0i and b1i are the intercept and slope for case i. In matrix terms, we are Ktting
the model

Y∗ = (b0; b1)


 1T

xT


+ ” = BXT + ”: (11)

Minimizing trace(”T”) then gives a least squares Kt. But a rank-2 least squares Kt to
Y∗ may be obtained from the SVD as

Y∗ ≈ (f1; f2)


 eT1
eT2


= F ET: (12)

Hartigan (1975) shows that the solution can be expressed in terms of the Krst two
eigenvectors, e1; e2 corresponding to the largest latent roots of the correlation matrix
of the yij as

x= e2=e1;

b0 =De1=(eT1 e1);

b1 =De2=(eT2 e2);

where D is the matrix whose elements are y∗ij=e1j.
For example, Fig. 13 shows the linear proKles plot of the crimes data. The vertical

scale corresponds to increasing (standardized) crime rate. The variables are ordered
roughly along a dimension of property crimes (at the left) to personal and violent
crimes (right). Murder is widely separated from the other crimes, while robbery and
assault are nearly coincident. The cities are ordered roughly in overall crime rate by
their intercepts at x = 0, while the slopes show the preponderance of property vs.
personal crimes.

It is apparent that Hartford, Honolulu, Tuscon, and Denver were relatively low in
overall crime, while Los Angeles, New York, Detroit, Dallas and Washington DC were
relatively high. Cities with negative slopes, such as Honolulu, Portland, and Boston
have a greater tendency toward property crime; cities with positive slopes (Chicago,
Dallas, Atlanta) have a greater preponderance of personal or violent crimes.

This display is clearly a 2D approximation to the data, as is the biplot. Like the
biplot, it shows the 2D representation, but not the residuals (as in the two-way dis-
play). Nonetheless, the ordering of the variables, and the ordering of the observations
(by slopes or intercepts) is typically far more informative than analogous parallel co-
ordinates displays.

4.4. Biplots

For multivariate data, a biplot shows the variables, typically depicted as vectors
from the origin, and observations, shown by point markers. When the variables are
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not commensurate, the data matrix is usually standardized to mean 0, standard devi-
ation 1 for each variable (in contrast to Section 2.3, where only the grand mean is
removed).

The standardized matrix Y ∗ is then approximated as Y∗ =ABT using the SVD as in
(4). With this standardization, the origin represents the mean for each variable, and the
values y∗ij are shown by the projections of each observation point on the correspond-
ing variable vector. That is, we may “read” the approximate data values by dropping
perpendiculars from an observation point to the variable vector, extended through the
origin if necessary, and noting that the variable vectors give the direction of posi-
tive deviations from the means. The angles between the variable vectors approximately
represent the correlations between the corresponding variables.

To illustrate, Fig. 14 shows the multivariate biplot of the crime data. Only 68.3% of
the variation in these data is accounted for by this 2D display. Nonetheless, see that
the observation points are ordered along Dimension 1 in order of increasing overall
crime rate, corresponding to the intercepts in Fig. 13, while the variable vectors are
dispersed largely along Dimension 2, in an order corresponding to the slopes in Fig. 13,
which we interpreted as a contrast between personal or violent crimes vs. property
crimes.
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Fig. 14. Crimes data: Biplot. Angular order of variables provides ordering for multivariate displays.

With these interpretations, we could order the observations (and variables) along
either the Krst or second dimension in other displays—tables or graphs—designed to
focus on either overall crime rate, or on the relative prevalence of personal com-
pared with property crimes. For the variables, the angles between vectors, expressed
as tan−1(b2=b1), provide a useful correlation-based ordering for some displays.

4.5. Star plots

Star plots are essentially proKle plots in polar coordinates. The variables are typically
scaled to [0; 1] and arranged at equally spaced angles, with rays of length proportional
to each variable value. However, the confusion due to many criss-crossing lines in the
proKle plot is avoided by plotting a separate star-shaped Kgure for each observation.

For star plots, correlation-based ordering implies that the order of the variables
around the circle should correspond to the angles of variable vectors in a biplot display,
tan−1(b2=b1). This ordering places the most similar variables adjacently, simplifying the
display. The perception of important features of the data can again be facilitated by
arranging the separate stars in some coherent order, and by using color or shading to
highlight other aspects.

For example, Fig. 15 shows star plots of the crime data, with variables ordered by
the angles of vectors in the biplot; the predominantly property crimes are shown with
dashed lines within each star. The cities are ordered (top-left–bottom-right) by the total



534 M. Friendly, E. Kwan /Computational Statistics & Data Analysis 43 (2003) 509–539

Variable Assignment Key

Murder

AssaultRobbery

Rape

Auto theft

Burglary

Larceny

Hartford Tucson Honolulu Boston

Atlanta Chicago Portland Houston

New Orleans Denver Kansas City Dallas

Washington Detroit New York Los Angeles

Fig. 15. Crimes data: Star plots. (a) Variable key, ordered by biplot angles; (b) Stars, cities ordered by total
standardized crime rate. Personal crimes are indicated with solid lines, property crimes with dashed lines.
Cities with a greater total of personal crimes are shaded slightly darker.

standardized crime rate, and the stars are shaded slightly darker for cities where the
total of the standard scores for personal crimes is greater than that of property crimes.

The dominant perceptual properties of the star glyphs are size and shape. Size cor-
responds to total overall crime rate; the cities are ordered in the same way as their
positions along Dimension 1 in Fig. 14. With correlation-based ordering of the vari-
ables, it is easier to see irregularities in shape. For example, Boston stands out as
particularly high on auto theft, though its overall crime rate is relatively low; Port-
land stands out for its relatively high rates of burglary and larceny, compared to other
crimes. Among the high crime cities, most have a relatively uniform distribution across
the di#erent crimes.

4.6. Related work

Similar ideas for correlation ordering based on eigenvectors or singular vectors have
been suggested earlier (e.g., Hartung and Elpelt, 1986; Friendly, 1991). In addition,
Borg and Staufenbiel (1992) proposed “factorial suns”, where each observation is de-
picted by a collection of rays oriented by the Krst two eigenvectors as in Fig. 9,
and the length of each ray is proportional to the value of each variable for that
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observation. To test the eGcacy of correlation ordering on perception, two experiments
were conducted, using data on ratings of depressive, manic, schizophrenic and paranoid
patients by psychiatrists on a 17-item symptom scale. Each 17-variate observation was
portrayed as either a factorial sun, or by snow Hake (similar to stars) or ray plots with
the variables ordered nominally. The subjects were naive observers, whose task was
simply to sort the icons (all observations, depicted in each graphic form) into four
sets, so that each set contained icons that were most similar. The results showed that
the factorial suns, using correlation ordering, were most accurately classiKed, and that
classiKcation errors more closely mirrored the proKle distances between observations
than the other graphic forms.

5. MANOVA displays—discriminant ordering

Assume we have an n × p data matrix Y of p response variables for n subjects,
partitioned into g groups of sizes n1; n2; : : : ; ng. The mean vectors for each group may
be collected in a g× p matrix \Y .

To help understand how the groups di#er, we wish to construct a display of the
means in \Y . How should we arrange the variables for maximum impact?

As is well known, linear discriminant analysis Knds a p× 1 vector of weights, v, so
that the linear combination Yv maximally discriminates among groups, in the sense of
having the largest univariate F in a one-way ANOVA. Letting N=diag {n1; n2; : : : ; ng},
the usual between- and within-groups sum of squares and crossproducts matrices are
B= \YTN \Y and W=YTY−B. The desired weights v then maximize �= vTBv=vTWv.
But, maximizing � yields the generalized eigenvalue problem,

Bv= �Wv:

The solution gives s=min(p; g−1) eigenvalues, �1¿ �2¿ · · ·¿ �s, and the associated
eigenvectors, v1; v2; : : : ; vs.

A related characterization is that of canonical discriminant analysis, where v1 is
the set of weights for the variables giving the maximum canonical correlation with
g − 1 dummy or contrast variables for the groups, v2 gives the weights for a second,
orthogonal direction of maximal correlation, and so forth. The canonical discriminant
weights summarize between-group variation in much the same way that PCA and the
SVD summarize total variation, and CA summarizes association for frequency data.
Thus, the suggested ordering of variables in the MANOVA context should be that
of the weights v1, or the angles, tan−1(v2=v1) (when two discriminant dimensions are
large).

Similar in spirit to the biplot, (Friendly, 1991, section 9.5.2) describes a canonical
discriminant plot, a plot which shows the variables as vectors in the space of v1 and
v2, along with the observation points, (Yv1;Yv2), and canonical means, ( \Yv1; \Yv2).
Analogous displays, based on the biplot, have been proposed by Gabriel (1981).

To illustrate, Fig. 16 shows a canonical discriminant plot of the auto data (cf.
Fig. 11). The Krst canonical dimension shows the greatest separation between American
automobiles vs. the European and Japanese models. The second canonical dimension
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Fig. 17. Auto data: Star plots of means by region of origin. Left: Variables ordered by Can. Dim 1.; Right:
Variables ordered alphabetically.

has the largest contrast between the European and Japanese models. The variable
weights on Dimension 1 are largely related to size (length, weight, engine displacement,
etc), while those on Dimension 2 are more related to price and repair record.

Fig. 17 shows overlaid star plots of the means by region of origin. The radial error
bars for each variable show the least signiKcant di#erence for a pair of groups on that
variable. In the left panel, the variables have been arranged around the circle according
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to their values on the Krst canonical discriminant dimension (starting with Turn circle).
The right panel shows the same data, with the variables arranged alphabetically. 4

In the left panel, it is clear that the group means di#er largely in that the American
automobiles are larger, heavier, with more powerful engines, while the Japanese models
were more expensive, got better gas mileage, and had better repair records. European
models were more similar to Japanese on some variables, more like American on
others. While the same details are available in the right panel, the global structure
provided by discriminant ordering is absent, making interpretation less accessible.

6. Conclusions

We have outlined an approach which stems from the idea that e#ective visual com-
munication matches the structure of information in data displays to the viewer’s task.
Several of our examples illustrate an important psychological distinction (Tulving and
Pearlstone, 1966): information may be available in visual displays—both tables and
graphs—but not accessible to understanding because the right (or at least a satisfac-
tory) global context is missing.

We show that, in a wide variety of situations, we can facilitate visual communication
by ordering the data by the principal e#ects to be observed— main-e#ects for n-way
quantitative data, associations among factors for n-way frequency data, correlations
for multivariate data, and group mean di#erences for MANOVA data. These principles
provide a context in which similar factor levels, variables and observations are arranged
contiguously, facilitating comparison. They also provide a global context from which
patterns, trends and exceptions may be more easily discerned.

All of these ideas are subsumed under our title “e#ect ordering for data displays”.
We have shown that each case may be treated as an optimization problem whose
solutions are expressible in terms of eigenvectors or singular vectors. We believe that
this simple, but general, principle unites a number of disparate, sometimes ad hoc,
proposals. We Knd that direct comparisons between e#ect-ordered displays and others
are often compelling. However, our major goal was simply to introduce this principle,
and we also hope to have raised more questions for statistical graphics than we provide
answers for.

For one thing, details are often crucial in statistical graphics (Wilkinson, 1999):
Given that we have ordered factor levels or variables, how much can it help to space
them quantitatively? For another, the extension of these methods to other data displays
requires further work: How should variables be ordered in highly conKgural displays,
such as Fourier function plots (Andrews, 1972) and faces (Cherno#, 1973) for optimal
discrimination of similar patterns or detection of anomalies? Finally, although some of
these ideas may appear self-evident, there is a pressing need for empirical evaluation
(e.g., Section 4.6, Cherno# and Rizvi, 1975).

4 Other displays of multivariate means are certainly possible. The MANOVA star plot has certain advan-
tages, but our use here is purely to illustrate discriminant ordering.
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