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A dynamic conceptual model for categorical data is de- 
scribed that likens observations to gas molecules in a 
pressure chamber. In this physical model frequency cor- 
responds to pressure, and fitting a statistical model by 
maximum likelihood corresponds to minimizing energy 
or balancing of forces. The model provides neat explana- 
tions of many results for categorical data, extends readily 
to multiway tables, and provides a rationale for the graphic 
representation of counts by area or visual density. 
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1. 	 CONCEPTUAL MODELS AND VISUAL 
METAPHORS 

Visual representation of data depends fundamentally 
on an appropriate visual scheme for mapping numbers 
into graphic patterns (Bertin 1983). One reason for the 
widespread use of graphical methods for quantitative data 
is the availability of a natural visual mapping: magnitude 
can be represented by length, as in a bar chart, or by po- 
sition along a scale, as in dot charts and scatterplots. One 
reason for the relative paucity of graphi~al methods for 
categorical data may be that a natural visual mapping for 
frequency data is not so apparent. This article describes 
and extends a conceptual model for categorical data due 
to Sall (1991b). This model suggests that natural visual 
attributes for categorical data are to depict frequency by 
area or observation density. 

Closely associated with the ideaof a visual metaphor is a 
conceptual model that helps you interpret what is shown in 
a graph. A good conceptual model for a graphical display 
will have deeper connections with underlying statistical 
ideas as well. For quantitative data, position along a scale 
can be related to mechanical models in which fitting data 
by least squares or least absolute 'deviations correspond 
directly to balancing forces or minimizing potential en- 
ergy (Farebrother 1987). The mechanical model for least 
squares regression, for example, likens each observation to 
a unit mass connected vertically to a rod by springs of unit 
modulus. Sall(1991a) shows how this mechanical model 
neatly describes the effects of sample size on power of a 
test, the leverage of outlying observations in regression, 
principal components, and collinearity among others. 

2. CATEGORICAL DATA 
With categorical data each response is classified into 

a distinct category. Imagine we are observing the hair 
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color and eye color of students in a large class, as in the 
data [from Snee (1974)l shown in Table 1. What sort of 
conceptual model can we use to represent the frequencies 
of these categories? We first consider the one-way case, 
for the marginal frequencies of hair color. 

2.1 Urn Model for Multinomial Sampling 

If the total sample size, n ,  is fixed (multinomial sam- 
pling), maximum likelihood estimation of the category 
probabilities ri leads to maximizing the sum of logs of the 
probabilities attributed to the events that actually occurred, 
or equivalently, choosing the values Ei of ri which min- 
imize -C i n i  log ri. One model would be a set of four 
urns labeled with the hair colors and containing marbles 
representing each observation (Fig. 1). 

This model serves as a metaphor for the familiar bar 
chart display in which each count ni is portrayed by the area 
filled by observations. When the urns are of equal width, 
count is also reflected by height, but in the general case, 
count is proportional to area. However, the urn model is 
a static one and provides no further insights. It does not 
relate to the concept of likelihood or to the constraint that 
the probabilities sum to 1. 

2.2 Dynamic Model: Pressure and Energy 

We can change the conceptual model to a dynamic, 
physical one by giving each observation a force (Fig. 2). 
One way to do that is to consider the observations as 
molecules of an ideal gas confined to a cylinder whose 
volume can be varied with a movable piston (Sall 1991b). 
If everyone had red hair, observing someone with red hair 
would convey no information. So, this mechanical model 
is set up so that a probability of 1.0 corresponds to am- 
bient pressure, whence the force exerted on the piston is 
0. An actual probability of red hair equal t o p  means that 
the same number of observations is squeezed down to a 
chamber of height p. By Boyle's law (that pressure times 
volume is constant) the pressure is proportional to l/p.  In 
the figure, pressure is shown by observation density, the 
number of observations per unit area. Hence, the graph- 
ical analog of pressure is that a count can be represented 
visually by observation density when the count is fixed and 
area is varied (or by area when the observation density is 
fixed as in Figure 1). 

Now, the work done on the gas (or potential energy 
imparted to it) by compression of a small distance is 
the force on the piston times Sy, which equals the pres- 
sure times the change in volume. Hence, the potential en- 
ergy of a gas at heightp is ~ ~ ' ( l / ~ )  dy, which is -log (p), 
so the energy in this modelrcorresponds to negative log- 
likelihood. 

2.2.1 Fitting Probabilities: Minimum Energy, Bal- 
anced Forces. Maximum likelihood estimation means 
literally finding the values, iii, of the parameters under 
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Table I. Hair-Color Eye-Color Data 


Hair Color 

Eye 

Color Black Brown Red Blond Total 

Brown 68 119 26 7 220 
Blue 20 84 17 94 215 
Hazel 15 54 14 10 93 
Green 5 29 14 16 64 

Total 108 286 7 1 127 592 

which the observed data would have the highest probabil- 
ity of occurrence. We take derivatives of the (log-) likeli- 
hood function with respect to the parameters, set these to 
zero, and solve. For a multiparameter model for quan- 
titative data this often leads to simultaneous equations 
that must be solved by inverting a matrix, but it has al- 
ways struck me as curious that, in many cases, maxi- 
mum likelihood estimation for categorical data simply 
sets parameter values equal to corresponding sample 
quantities: 

d log L - 111 n2 nc n;
- - 0 * - = - =  . . . = -

d7r; T I  7r2 TC n 
I '  

In the mechanical model (Fig. 3) this corresponds to 
stacking the gas containers with movable partitions be- 
tween them, with one end of the bottom and top contain- 
ers fixed at 0 and 1. The observations exert pressure on 
the partitions, the likelihood equations are precisely the 
conditions for the forces to balance, and the partitions 
move so that each chamber is of size pi = ni/n. Each 
chamber has potential energy of -log pi, and the total en- 
ergy, -Ccn;log pi is minimized. The constrained top 
and bottom force the probability estimates to sum to 1, 
and the number of movable partitions is literally and sta- 
tistically the degrees of freedom of the system. (Figure 3, 
like all other figures in this paper, is graphically exact: the 
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BLACK BROWN RED BLOND 
108 286 71 127 

Figure 1. Urn Model for Multinomial Sampling. Each observation 
in Table 1 is represented by a token classified by hair color into the 
appropriate urn. This model provides a basis for the bar chart, but 
does not yield any further insights. 
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P 


Figure 2. Dynamic Conceptual Model for Categorical Data. Fre- 
quency of observations corresponds to pressure of gas in a chamber, 
shown visually as observation density; negative log-likelihood corre- 
sponds to the energy required to compress the gas to a height p. 

area of each chamber is proportional to the marginal fre- 
quencies of hair color, and is filled with the corresponding 
number of points.) 

The general principle is that fitting a statistical model by 
minimizing the negative likelihood corresponds to a state 
of minimum energy subject to a set of analogous con- 
straints; the first-order (derivatives = 0) conditions for the 
solution are reflected in a state of equilibrium or balancing 
of forces. These physical, and statistical properties are 
shown visually as equal observation densities across the 
cells in Figure 3. See Farebrother (1988) for another de- 
scription of this idea and its application to multidimen- 
sional scaling. A more formal statement is implicit in a 

BLOND 

127 


RED 

71 


df = # of movable 

partitionsBROWN 

286 


BLACK 

108 


Figure 3. Fitting Probabilities for a One- Way Table. The movable 
partitions naturally adjust to positions of balanced forces, which is the 
minimum energy configuration. 



G* components 

BLOND -38.9 
127 

BROWN 
286 

BLACK 
108 

Figure 4. Testing a Hypothesis. The likelihood ratio G2measures 
how much energy is required to move the partitions to constrain the 
data to hypothesized probabilities. The components of G2 indicate 
the degree to which each chamber has low or high pressure, relative 
to the balanced state. 

duality theorem of Good (1963) that gives a relationship 
between maximum likelihood estimation and maximum 
entropy. 

2.2.2 Testing a Hypothesis: How Much More En- 
ergy? This mechanical model also explains how we test 
hypotheses about the true probabilities (Fig. 4). To test the 
hypothesis that the four hair color categories are equally 
probable, 

simply force the partitions to move to the hypothesized 
values and measure how much energy is required to force 
the constraint. Some of the chambers will then exert more 
pressure, some less than when the forces are allowed to 
balance without these additional restraints. The change in 
energy in each compartment is then -(log pi - log 7ri) = 
- log (pl/7r,), the change in negative log-likelihood. Sum 
these up and multiply by 2 to get the likelihood ratio G2. 
This gives a concrete instantiation of the interpretation of 
G2 as a measure of the effort to maintain belief in the 
hypothesis in the face of the data. 

2.2.3 Other Neat Explanations. The pressure model 
provides simple explanations of other results and phenom- 
ena, some of which are paradoxical or difficult to appre- 
ciate when demonstrated formally. 

a 	For example, it may seem peculiar that components 
of the likelihood ratio G2 are both positive and nega- 
tive, whereas other X2 quantities are sums of squares. 
From the dynamic model shown in Figure 4, we see 
that negative contributions to G2 correspond to rela- 
tive low-pressure cells with fewer observations than hy- 
pothesized and positive contributions to relative high- 
pressure cells. 

a 	The effects of sample size on power of the test is also 
made apparent: More observations means more pres- 
sure in each compartment, so it takes more energy to 
move the partitions and the test is sensitive to smaller 
differences between observed and hypothesized proba- 
bilities. When thep, are fixed, the force in each cham- 
ber and the observed G2 increase linearly with total 
sample size. 

a 	Finally, the dynamic model explains the curious fact 
that although other sampling schemes such as Poisson 
sampling ascribe quite different probability distribu- 
tions to the observed counts, they usually lead to iden- 
tical maximum likelihood estimates: The sampling 
scheme describes how the observations enter the cham- 
bers; once they are there, the forces and energy deter- 
mine the outcome. 

3. MULTIWAY TABLES 

The dynamic pressure model extends readily to multi- 
way tables. For a two-way table of hair color and eye 
color, partition the sample space according to the marginal 
proportions of eye color, and then partition the observa- 
tions for each eye color according to hair color as before 
(Fig. 5). Within each column the forces balance as be- 
fore, so that the height of each chamber is ni,/nl+.Then 
the area of each cell is proportional to the MLE of the cell 
probabilities, 

which again is the sample cell proportion. 
For a three-way table, the natural physical model is 

a cube with its third dimension partitioned according to 
conditional frequencies of the third variable, given the 
first two. The volumes of each chamber balance when 
the pressures balance. Since graphic representations are 

Eye Color 
-

BLOND 

-

RED 

-

BROWN 

-

BLACK 

BROWN BLUE HAZELGREEN 
220 215 93 64 

Figure 5. Two- Way Tables. For multiple samples, the model rep- 
resents each sample by a stack of pressure chambers whose width 
is proportional to the marginal frequencies of one variable. 
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difficult in more than two dimensions, we can extend the 
model to higher dimensions (with some loss of fidelity 
between the physical and visual models) by partitioning a 
two-dimensional graph, alternating between vertical and 
horizontal divisions for each new variable. The graphic 
representation of this conceptual model is, in fact, the same 
as the mosaic display of Hartigan and Kleiner (1981) as 
extended by Friendly (1991, 1993). 

3.1 Testing Models of Independence 

For a two-way table of size I x J the hypothesis of 
independence is formally the same as the hypothesis that 
conditional probabilities (of hair color) are the same in all 
strata (eye colors). To test this hypothesis, simply force 
the partitions to align and measure the total additional 
energy required to effect the change (Fig. 6). The degrees 
of freedom for the test is again the number of movable 
partitions, (I- 1) (J- 1). Moreprecisely, it is the difference 
in the number of movable partitions between the case of 
the unconstrained model ((J - 1) + (I - 1) J = IJ - 1) 
and the hypothesis-constrained model ((I - 1) + ( J  - 1)). 
Alternatively, starting with the constrained configuration 
in Figure 6, the degrees of freedom is the number of cuts 
you must make in the horizontal partitions to let them float 
back to the unconstrained case in Figure 5. 

For a 2 x 2 table (or a 2 x 2 portion of a larger table) 
the row and column variables are independent when the 
ratio of pressures in one row (or column) equals the ratio 
of pressures in the other row (column). So we can also 
measure departure from independence by how far the ratio 
of these ratios, (rill /n12)/(n21 departs from 1. This 
is the familiar sample odds ratio. 

For three-way tables there are various models of inde- 
pendence. Complete independence, the log-linear model 
[A][B] [C] ,  corresponds to the cube in which all chambers 

Eye Color 
-

BLOND 

-

RED 

-

BROWN 

-

BLACK 

BROWN BLUE HAZEL GREEN 
220 215 93 64 

Figure 6. Testing Independence. The chambers are forced to 
align with both sets of marginal frequencies, and the likelihood ratio 
G* again measures the additional energy required. 

are forced to conform to the one-way marginals, 

for all i, j, k. G2 is again the total additional energy 
required to move the partitions from their positions in 
the saturated model in which the volume of each cell is 
pllk = nllk/n(SO the pressures balance) to the positions 
where each cell is a cube of size x,, x x+,+ x T + + ~ .Other 
hypotheses of independence have a similar representation 
in the pressure model. For example, in the model of joint 
independence, [AB] [C] ,  we have x,k = nu+T + + ~ ,SO the 
partitions are first moved to match the marginal propor- 
tions p,+ of the first two variables jointly. Then the parti- 
tions of the third dimension are moved so that in each i j  
plane they all align with the marginal proportions P + + ~of 
the third variable. 

In general, the marginals which are the minimal suffi- 
cient statistics for the model under test are those imposed 
on the data. This is exactly what happens in the max- 
imum likelihood solutions for log-linear models. Let n 
and m denote column vectors of observed and expected 
frequencies, {nYk ) and {mVk ). Casting the model in 
the form log m = XP, where X is the design matrix of the 
hypothesis, and P is  the vector of parameters, the solution, 

X'n = X'm (1) 

equates sufficient marginals of the data to their expected 
frequencies under the model. 

3.2 Iterative Proportional Fitting 

For three-way (and higher) tables some log-linear 
models have direct estimates of expected cell frequen- 
cies. The cases where direct estimates exist are analogous 
to the two-way case, where the estimates under the hy- 
pothesized model are products of the sufficient marginals. 
Here we see that the partitions in the observation space 
can be moved directly in planar slices to their positions 
under the hypothesis, so that iteration is unnecessary. 

When direct estimates do not exist, the MLE's can be 
estimated by iterative proportional fitting (IPF). This pro- 
cess simply matches the partitions corresponding to each 
of the sufficient marginals of the fitted frequencies to the 
same marginals of the data. For example, for the log-linear 
model [AB] [BC] [AC], the sufficient statistics are {nu+), 
{nl+k),and {n+lk).The conditions that the fitted margins 
must equal these observed margins from (1) are 

which is equivalent to balancing the forces in each fitted 
marginal. The steps in IPF follow directly from equation 
(2). For example, the first step in cycle t+1 of IPF matches 
the frequencies in the [AB]marginal table, 

which makes the forces balance when (3) is summed 
over variable C: i2f11)= Zij+. The other steps in each 
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cycle make the forces balance in the [BC] and [AC] 
margins. 

3.3 Visual Demonstration of IPF 

Figure 7 shows a format (suggested by Sall, personal 
communication) in which the data, fitted frequencies, and 
marginal frequencies can all be displayed for a three-way 
table (Table 2, contrived data). The three-way table is 
first restructured as a two-way table in which one variable 
forms the columns and the combinations of the remaining 
two variables form the rows. In Figure 7, for example, the 
data have been reshaped as an I x JK table. 

The fitted frequencies for this restructured table are used 
to partition the display. The width of each chamber is pro- 
portional to the marginal frequency %,++ of variable I, and 
the height is proportional to the conditional probabilities 
higk/%,++.Hence, the areas are proportional to the fitted 
cell frequencies, hiljk.The observed frequencies are shown 

Figure 7. Graphical Display for a Three- Way Table, Showing Ob- 
served Counts, and Fitted Cell and Marginal Frequencies. (a) Equal 
probabilities: I by JK, (b) Saturated model: I by JK. Each cell 
has an area proportional to fitted frequency and contains the 
observed n,,k points. The marginal bars at the right have areas 
proportional to the fitted JK margins, %+,k (shown numerically in 
parentheses) and contain cross-hatched boxes proportional to the 
observed n+,k. 

Table 2, A Three- Way Table (Contrived Data) 

J 1 J2 

I1 12 I1 12 

by the number of points in each chamber. Thus, when the 
fitted and observed frequencies are equal, all cells will 
appear to be equally densely filled. 

The marginal fitted frequencies, hi+lkfor the rows of 
the restructured table are shown by the heights of the 
bars to the right and the one-way fitted marginal, mHk 
is shown by the widths of the columns. (These fitted mar- 
gins are also shown numerically in parentheses.) These 
bars are then filled by lines spaced so that the number 
of boxes within each bar is proportional to the observed 
marginals, n+,k. Hence, when the observed and fitted 
marginals are balanced, the lines in each bar will be equally 
spaced and the bars will also appear to be equally densely 
filled. 

Thus, Figure 7a shows the data and fitted frequencies 
under the equiprobability model where all cells have the 
same expected frequency, Ggk= n+++/IJK.The low ob- 
served frequency in cell (1, 1, 1) and high frequency in 
cell (2,2,2) appear as chambers with low and high density 
(pres~u;e). Since the marginal fitted frequencies hi+lkare 
not equal to the corresponding observed n+lkmargins, the 
bars vary in density. Figure 7b, however, shows the data 
and fitted frequencies under the saturated model. Since 
A

mqk= n,]k,we observe that all the cells have the same den- 
sity of points; since hi+lk= n+]k,all the marginal bars have 
the same density of lines. 

3.3.I Balancing Forces. We will show how iterative 
proportional fitting works in terms of balancing forces in 
the fitted marginals for the model [AB] [AC] [BC], the 
only three-way model for which direct estimates do not 
exist. To do this we need to see all three sets of two- 
way marginals simultaneously, so Figure 8 shows in the 
first column the observed counts restructured in the three 
possible ways. Iterative proportional fitting is initialized 
(cycle 0)  by setting all &gA=1, which is equivalent to 
the equiprobability model m,jk = n+++/IJK.The actual 
counts are shown in cells of size proportional to these 
initial estimates in the second column of Figure 8. (The 
panels of Figure 7, b and a, are the same as the panels in 
the bottom row of Figure 8.) 

Now, observe that the log-linear model [AB] [AC] [BC] 
fits all three two-way margins exactly, so the fitting process 
must attempt to move the partitions to balance the forces in 
these margins; hence, the density of cross-hatching in the 
two-way marginals must be made equal in all three views, 
as they are in the left column of Figure 8. Badness-of-
fit will then be shown by the degree to which the density 
of points in the cells are unequal, as they are in the right 
column. 

Figure 9 shows the three steps in the first iteration (cy- 
cle 1) of IPF in the same three-view format. Step 1,shown 
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Actual data: K by IJ IJ IPF Initialized: K by IJ I I 

Actual data: J by IK IK IPF Initialized: J by IK IK 

Actual data: I by JK JI( IPF Initialized: I by JK 

Figure 8. Iterative Proportional Fitting: Data and Initial Estimates. The goal is to make the forces balance in the IJ, IK, and JK margins, as 
shown by equal cross-hatch density in the margins for all three views of the data. 

in the left column, fits the IJ margin. So the forces bal- 
ance, and cross-hatch density is the same for all IJ margins 
in the top panel; but the densities are unequal in the two 
remaining views in this column. Note also that the one- 
way I and J fitted margins are now equal to those of the 
data, but the K marginal is not. 

In step 2, shown in the middle column, the IK marginals 
are fitted, which makes the cross-hatch densities equal in 
the middle view in this column and makes the one-way K 
fitted marginal match the data. The fitted JK margins are 
still unequal to those in the data. Finally, the JK margin 
is fit in the third step (right column) and the cross-hatch 
densities are now equal in the bottom view. Note that 
the IJ and IK fitted margins are not preserved, although 
the differences of their values in step 2 are quite small. 
These steps are then repeated, reequating the IJ,  IK,  and 
JK margins in turn, until the maximum deviation from the 

observed margins is less than some prescribed amount. 
In concluding this section, note that the badness-of-fit G2 
(the energy required to enforce the constraints), as judged 
from the tendency of the cells to vary in point density, 
decreases dramatically from the initial IPF estimates (right 
column in Figure 8) to the values in step 3 of the first 
iteration. 

3.4 Numerical Minimization 

Methods for minimizing the negative log-likelihood nu- 
merically can also be interpreted in terms of our mechan- 
ical model (Farebrother 1988). Given an estimate, P(') 
of the model parameters, where G(')= exp(xlp(')), the 
method of steepest descent finds an improved estimate 
,B('+') by moving a small distance X in the direction of 
the score vector f(') = d log L/dP = X1(n - m(')) to give 
P('+') = P(')+ Xf('). But f(') is just the vector of forces in 
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IPF Step 1 :K by IJ L I  IPF Step 2: K by IJ 11 IPF Step 3: K by IJ  II 

IPF Step 1: J by IK IY IPF Step 2: J by IK IY IPF Step 3: J by  IK Y 

IPF Step 1: I by JK JK IPF Step 2: 1 by JK JK IPF Step 3: 1 by JK 

Figure 9. First IPF Iteration. Step 1 fits the IJ margin, making the forces balance in the top-left view; step 2 fits the IK margin, equating forces 
in the J x IK view; step 3 fits the JK margin in the bottom right view. 

the mechanical model attributed to the differences between 
n and m(') with respect to the parameters. The Newton- 
Raphson method is similar, but uses an update step P('+')= 
pc')+ H(')f('), where H(') = -(X' diag m(')X)-', based 
on a quadratic approximation to the surface of the en- 
ergy function (negative log-likelihood) applied to the force 
vector. 

3.5 Detecting Patterns of Association 

The mosaic display shows the observed counts in a fre- 
quency table by the area of each cell. To see the nature of 
association, we must imagine what the pressures would be 
under a null or baseline model as in Figure 6. This is dif- 
ficult to do unless the observed and expected frequencies 
can be compared visually. 

Friendly's (1991, 1993) enhanced mosaic does this by 
shading the cells with color and density in relation to the 

sign and magnitude of the (standardized) residual, dY = 
(nu - 6 i i j ) / f i ,  from the model (Fig. 10). The sizes of 
the cells show the data, which corresponds to the saturated 
model; the shading shows the pattern of residuals, the 
discrepancies between the data and the model which has 
been fit. Fitting a nonnull model then moves some of the 
association from the residuals to the fit, so the process of 
finding an acceptable model can be thought of as "cleaning 
the mosaic." 

This mixes the metaphor, since area and visual density 
are used to show different aspects of the data. The com- 
bination, however, gives a graphic display that helps the 
viewer see the data, detect patterns, and suggest hypothe- 
ses. Thus, Figure 10 shows that the association between 
hair color and eye color arises from the high frequencies 
in the cells for brown eyes and black hair, green eyes and 
red hair, and blue eyes and blond hair. 
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Black Brown Red Blond 
Hair Color 

Figure 10. Mosaic Display for Hair Color, Eye Color Data. The 
area of each tile is proportional to cell frequency as in Figure 5. The 
style and density of shading, however, is designed to depict the stan- 
dardized residual from independence, do. Cells with I do/ < 2 are 
empty; cells with (dtl 2 2 or 2 4 are shaded with two levels of den- 
sity Positive residuals are outlined with solid lines and filled with 
cross-hatching; negative residuals are outlined with broken lines. 
In addition, the eye colors have been permuted to put residuals of 
like sign in opposite corners in order to better display the pattern of 
association. 

For some time I have wondered why graphical meth- 
ods for categorical data are so poorly developed and little 
used compared with methods for quantitative data. What 
has made this contrast puzzling is the fact that the sta- 
tistical methods for categorical data, such as log-linear 
models and logistic regression, are in most respects dis- 
crete analogs of corresponding methods of analysis of vari- 
ance and regression for quantitative data. One explanation 
suggested by the conceptual model described here is that 
categorical data require a different graphic metaphor, and 
hence a different visual representation from that which 
has been useful for quantitative data. However, both find 
common ground in the physical balancing of forces and 
minimizing potential energy. 

A second explanation for this disparity is that graphi- 
cal methods for quantitative data have been generalized 

from two variables to three or more variables in several 
ways. The scatterplot matrix and partial regression resid- 
ual plots, for example, are natural generalizations of the 
simple scatterplot designed for multivariate quantitative 
data. In contrast, other graphical techniques for categor- 
ical data tend to be quite specialized. As shown here, 
the conceptual model for categorical data and the mosaic 
display generalize readily to multiway tables. 

However, it is of some interest to note that most 
other graphical methods for categorical data [see Friendly 
(1992)l also depict frequencies by area or visual density. 
It is hoped that the recognition of an underlying concep- 
tual model for these displays will spur the development 
and use of graphics for discrete data. 

More generally, graphs, like other forms of communi- 
cation, serve different purposes. The most common goals 
are summarization and exposure. We also need to think 
about conceptual models behind the picture. With a pow- 
erful conceptual model, a graph can also become a tool 
for thinking. 

[Received July 1992. Revised September 1994.1 
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