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Abstract

The cluster heat map is an ingenious display that simultaneously reveals row and column hierarchical

cluster structure in a data matrix. It consists of a rectangular tiling with each tile shaded on a color

scale to represent the value of the corresponding element of the data matrix. The rows (columns) of the

tiling are ordered such that similar rows (columns) are near each other. On the vertical and horizontal

margins of the tiling there are hierarchical cluster trees. This cluster heat map is a synthesis of several

different graphic displays developed by statisticians over more than a century. We locate the earliest

sources of this display in late 19th century publications. And we trace a diverse 20th century statistical

literature that provided a foundation for this most widely used of all bioinformatics displays.

1 Introduction

The cluster heat map is a rectangular tiling of a data matrix with cluster trees appended to its margins.

Within a relatively compact display area, it facilitates inspection of row, column, and joint cluster structure.

Moderately large data matrices (several thousand rows/columns) can be displayed effectively on a high-

resolution color monitor and even larger matrices can be handled in print or in megapixel displays.

The cluster heat map is well-known in the natural sciences and one of the most widely used graphs in

the biological sciences. As Weinstein (2008) mentions:

For visualization, by far the most popular graphical representation has been the clustered heat

map, which compacts large amounts of information into a small space to bring out coherent

patterns in the data. ... Since their debut over 10 years ago, clustered heat maps have appeared

in well over 4000 biological or biomedical publications.

Weinstein describes the heat map as follows:
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In the case of gene expression data, the color assigned to a point in the heat map grid indicates

how much of a particular RNA or protein is expressed in a given sample. The gene expression

level is generally indicated by red for high expression and either green or blue for low expression.

Coherent patterns (patches) of color are generated by hierarchical clustering on both horizontal

and vertical axes to bring like together with like. Cluster relationships are indicated by tree-like

structures adjacent to the heat map, and the patches of color may indicate functional relationships

among genes and samples.

Figure 1 shows a typical heat map as described by Weinstein. The most popular bioinformatics software

for producing this graphic is documented in Eisen et al. (1998). The Eisen paper, which describes a cluster

heat map program, was the third most cited article in PNAS as of July 1, 2008 (PNAS 2008).

The “debut” Weinstein refers to is possibly a debut in the biology literature, but it certainly is not a debut

in the statistical literature. The components of this display have a long history in statistical graphics. The

biological references give little indication of the background for the underlying ideas required to construct

a heat map. In this article, we trace the lineage of the heat map and show what elements were ultimately

integrated in the display that biologists finally adopted.

2 The Past

To elucidate the history of this display, we will present each of the components that underly the design of

the cluster heat map. Some are quite old, some relatively recent.

2.1 Shading Matrices

The heart of the heat map is a color-shaded matrix display. Shaded matrix displays are well over a century

old. Figure 2 shows an example from Loua (1873). This graphic summarizes various social statistics across

the arrondissements of Paris. Like the other graphics in the book, it was hand drawn and colored.

Shading a table or matrix is a longstanding device for highlighting entries, rows, or columns. Accountants,

graphics designers, computer engineers, and others have used this method for years. The most common recent

application involves the use of color to shade rows, columns, or cells of a spreadsheet.
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Figure 1: Cluster heat map from Andrade (2008), based on Eisen et al. (1998). The aspect ratio has been
adjusted to make the pixels square. The rows (or columns) of a microarray heat map represent genes and
the columns (or rows) represent samples. Each cell is colorized based on the level of expression of that gene
in that sample.
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Figure 2: Shaded matrix display from Loua (1873). This was designed as a summary of 40 separate maps of
Paris, showing the characteristics (national origin, professions, age, social classes, etc.) of 20 districts, using
a color scale that ranged from white (low) through yellow and blue to red (high). A monochrome version
can be found at http://www.math.yorku.ca/SCS/Gallery/images/loua1873-scalogram.jpg.

2.2 Permuting Matrices

The cluster heat map does more than shade. It permutes the rows and columns of a matrix to reveal

structure. Matrix permutation has a long history as well. Like the idea of shading, sorting a matrix or table

to reveal structure is over a century old. Figure 3 shows a sorted matrix of educational data from Brinton

(1914). Figure 4 shows an example from Bertin (1967). Jacques Bertin devoted a chapter to illustrating the

usefulness of what he called the reorderable matrix. His examples were sorted by hand.

2.2.1 Seriation

It was an anthropologist who developed one of the first models for ordering a data matrix. Petrie (1899)

sought to rearrange the rows and columns of a rectangular matrix of measurements on anthropological

artifacts so that the largest values would be near the main diagonal. His immediate goal was to use attributes

(columns) to serialize artifacts (rows) in order to recover a temporal ordering on the artifacts. His goal had

implications well beyond his subject matter. Petrie had identified the Toeplitz structure implicit in the

ordering of a data matrix based on time (or some other dimension). His article generated a large literature

over more than a century on a topic variously called seriation or matrix reordering (Robinson 1951; Kendall

1963; McCormick et al. 1972; Hubert 1974, 1976; Lenstra 1974; Friendly 2002; Friendly and Kwan 2003;

Climer and Zhang 2006).

Ten years after Petrie’s paper, Jan Czekanowski developed a seriation method and used a shaded dia-

4



Figure 3: Sorted shaded display from Brinton (1914). The data are ranks of US states on each of 10
educational features assessed in 1910. The matrix has been sorted by the row-marginal ranks.

Figure 4: Permuted matrix display from Bertin (1967). This figure was devised to illustrate the possibility
of sorting a matrix to reveal block-diagonal structure.
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Figure 5: Sorted shaded display from Czekanowski (1909), reproduced in Hage and Harary (1995)

gram to represent block-diagonal data structures. Figure 5 shows a sorted matrix of educational data from

Czekanowski (1909). Czekanowski’s display, except for the lack of coloring and appended cluster trees, is

similar to the output of contemporary computer matrix reordering programs (Liiv 2008).

2.2.2 The Guttman Scalogram

Fifty years after Petrie, Louis Guttman introduced a matrix permutation to reveal a different one-dimensional

structure. The Guttman Scalogram (Guttman 1950) was a direct method for fitting a deterministic model (a

total order that Guttman called a Simplex) to a binary matrix. In Guttman’s method, a rectangular binary

matrix was permuted by hand (using paper or a tabulating machine) to approximate a unidimensional scale:

below the quasi-diagonal were to be as many 1’s as possible and above the quasi-diagonal, as many 0’s as

possible. A matrix with this structure was said to be scalable, implying an ordering of the rows and columns.

The Scalogram found wide application in the following decades, particularly in the social sciences. Fig-

ure 6 shows an example from Rondinelli (1980). Computer programs eventually automated this scaling (Nie

et al. 1970; Wilkinson 1979). Others eventually developed interactive visual analytics programs to allow

users to explore their own permutations (Siirtola and Mäkinen 2005). And statisticians developed stochastic

generalizations of Guttman’s model that allowed this permutation to be applied more widely (Goodman

1975; Andrich 1978).

2.2.3 Hierarchical Clustering

Not long after Guttman’s Scalogram became popular, cluster analysts took an interest in representing clusters

by shading association (similarity/dissimilarity) matrices. Sneath (1957) was perhaps the earliest advocate

for this graphic.
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Figure 6: Scalogram display from Rondinelli (1980), based on Guttman (1950). This manually-sorted scalo-
gram summarizes facilities statistics (high school, rural bank, auto repair shop, drugstore...) for settlements
in the Bicol River Basin, Phillipines.

Ling (1973) introduced a computer program, called SHADE, for implementing Sneath’s idea. Ling’s

program used overstrikes on a character printer to represent different degrees of shading. Gower and Digby

(1981) implemented Ling’s display on a dot matrix printer. Figure 7 shows an example from their chapter.

2.2.4 Two-way Clustering

Shortly after Ling’s paper, Hartigan (1974) introduced a block clustering program with direct display of a

rectangular data matrix. The theory behind this program was discussed in Hartigan (1975). Motivated by

Hartigan’s work, Wilkinson (1984) implemented a two-way hierarchical clustering routine on a rectangular

data matrix, using Ling’s shading method for the display.

2.2.5 Seriating a Binary Tree

For a binary tree with n leaves, there are 2n−1 possible linear orderings of the leaves in a planar layout

of the tree. Hierarchical clustering algorithms do not determine a particular layout. Therefore, we need

an additional algorithm to seriate the rows/columns of a clustered matrix. Gruvaeus and Wainer (1972)

developed a greedy algorithm that Wilkinson used in the SYSTAT display. Gale et al. (1984) devised

an alternative algorithm for this purpose. More recent papers discuss this problem in detail and specify

optimization algorithms with objective functions designed for the task (Wishart 1997; Bar-joseph et al.
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Figure 7: Permuted cluster display from Gower and Digby (1981), following Ling (1973). This display was
designed to represent a symmetric similarity/dissimilarity matrix.

2003; Morris et al. 2003). A desirable aspect of these algorithms is that they yield a total order when it

exists (e.g., when the association matrix has Toeplitz form).

2.3 Appending Trees

There remains the issue of appending cluster trees to the rectangular data matrix. We have seen examples

that append a clustering tree to an association matrix. Gower and Digby (1981) took the next step and

appended cluster trees to both row and column association matrices. Figure 8 shows their template. Their

layout is in some ways superior to the modern microarray heat map, because it simultaneously displays the

row and column similarities/dissimilarities on which the clustering is based. Chen (2002) and others adopted

this design.

It is a short step from this design to the layout chosen by the biologists. The first published heat map

in this form appeared in Wilkinson (1994). Figure 9 shows a color version of that figure from the SYSTAT

manual. By the time Eisen et al. (1998) appeared, there were tens of thousands of copies of SYSTAT

circulating in the scientific community.

3 The Future

Weinstein (2008) finds constructing cluster heat maps a “surprisingly subtle process.” His description of
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Figure 8: Permuted cluster display framework from Gower and Digby (1981). This is a template for a
row/column clustering of a rectangular data matrix. By treating the data as a lower-corner matrix of a
square super-matrix, the display reveals both row and column structure.

these subtleties would not surprise a statistician. Those familiar with the cluster literature know that there

are issues regarding the choice of a distance measure (Euclidean, weighted Euclidean, City Block, etc.) and

the choice of linkage method (single, complete, average, centroid, Ward, etc.). Kettenring (2006) discusses

these issues in practice. In addition, Weinstein mentions the problem of ordering the leaves of the clustering

tree, suggesting that “some objective (but, to a degree, arbitrary) rule must be invoked to decide which way

each branch will, in fact, swing.” As we have mentioned, this is not an arbitrary objective; it is a well-defined

seriation problem.

Modern statistical packages implement the heat map display as part of a clustering package (e.g., JMP

and SYSTAT) or they make it easy to plot a heat map using any seriation algorithm (e.g., R and Stata).

By doing so, all the options available for clustering or other analytics are renderable in a heat map. This

flexible architecture underscores the fact that a heat map is a visual reflection of a statistical model. It is

not an arbitrary ordering of row and column cluster trees.

In general, a matrix heat map can be considered to be a display whose rows and columns have been

permuted through an algorithm. Many of the recent references cited in this article mention an explicit

objective function for evaluating the resulting permutation. A popular seriation loss function is the sum of

distances between adjacent rows and columns. We can minimize this function directly on a given dataset or

use it to evaluate the goodness of a particular heuristic seriation.

Alternatively, we can sample values from known bivariate distributions, randomize rows and columns

in the sampled data matrix, and compare the solutions from different seriation algorithms. Wilkinson
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Figure 9: Cluster heat map from Wilkinson (1994). The data are social statistics (urbanization, literacy, life
expectancy for females, GDP, health expenditures, educational expenditures, military expenditures, death
rate, infant mortality, birth rate, and ratio of birth to death rate) from a UN survey of world countries. The
variables were standardized before the hierarchical clustering was performed.

.
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(2005) generated rectangular matrices whose row and column covariances were determined by five different

covariance structures: Toeplitz, Band, Circular, Equicovariance, and Block diagonal. He then randomly

permuted rows and columns before applying several different seriation algorithms, including clustering,

MDS, and SVD. Overall, SVD recovered the original ordering better than any other method used on all five

types of matrices.

These findings suggest that a simple SVD may be the best general seriation method and that cluster

methods should be restricted to those datasets where a cluster model is appropriate. If SVD is chosen, then

one should consider recent robust methods for this decomposition (Liu et al. 2003). For microarray data, it

is still an open question whether hierarchical-clustering-based seriation is more useful than other approaches,

despite the popularity of this method.

4 Conclusion

The cluster heat map did not originate ex nihilo. It came out of a relatively long history of matrix displays,

before and after the computer era. As with many graphical methods, the cluster heat map involved a creative

synthesis of different graphical representations devised by a number of statisticians.
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