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Introduction

This is the supplemental appendix to “Visualizing Tests for Equality of Covariance Matrices,”
submitted to The American Statistician. It covers topics of interest that were considered
too long or not sufficiently essential to include in the paper. Section 1 gives a brief, capsule
summary of the HE plot framework for visualizing multivariate tests of means using Hypothesis-
Error plots and related canonical discriminant plots. An example is presented using the Wine
data. Section 2 presents a different approch to questions of multivariate homogeneity of
variance using analyses of distances from a centroid to measure multivariate dispersion.
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1 Visualizing mean differences: The HE plot frame-
work

For univariate response models, there is a variety of effective graphical methods for visualizing
differences among group means, ranging from simple dot charts (with error bars), to boxplots
that provide more details, to effect plots (Fox, 2003) for complex designs.

In the MANOVA setting, a collection of such univariate plots for each of the responses can
be useful, but they do not show how the responses vary jointly. In this section we introduce
some multivariate graphical methods (HE plots and canonical views) for the comparison of
means (for further details, see Fox, Friendly, & Monette, 2009; Friendly, 2007; and, Friendly
& Sigal, 2014) that can also be usefully applied to the comparison of covariance matrices.

The essence of these methods is the Hypothesis–Error (HE) plot, and we call the collection
of their applications the HE plot framework. The main ideas underlying this framework are:

(a) All hypothesis tests of model terms or linear hypotheses in the MLM correspond
to statistics based on the eigenvalues λi of the sum of squares and products (SSP)
matrix for the hypothesis (the H matrix) relative to the SSP matrix for error (the
E matrix), i.e., the s = min(p, dfh) non-zero values in the eigenvalue decomposition,
HE−1vi = λivi. They answer the question, “How big is H relative to E?” and are
analogous to univariate F statistics.

(b) The H matrix for any term t is essentially the p× p SSP matrix of the fitted values,
Ŷ T

t Ŷt, for that term.1 The E matrix is the SSP matrix of the residuals for the full
model.

(c) The H and E matrices can therefore be visualized as the data ellipsoids of the fitted
values and residuals. In the heplot() function, H and E can be scaled to show the
size of each effect; alternatively, the H matrix can be scaled to provide a visual test of
significance, in the sense that the H ellipsoid projects outside the E ellipsoid iff the
effect is significant by Roy’s maximum root test.

(d) For MANOVA designs, when there are more than a few response variables, all these
effects may be readily viewed in the orthonormalized canonical space corresponding
to the linear transformation Y T 7→ Y ? = Y E−1/2V . This is the view that shows the
maximal differences among means.

Overall, this framework is incredibly versatile and can be utilized to visualize and summarize
the important aspects from a plethora of designs.

1This uses so-called “Type II” sums of squares, calculated according to the principle of marginality, testing
each term after all others, except ignoring the term’s higher-order relatives.
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1.1 HE plot example: Wine data

This example illustrates the basic properties of Hypothesis-Error plots, using the Wine data
analyzed in Section 4 of the main paper. Recall that this data set consists of 13 chemical
properties of wine samples derived from three different cultivars of grapes grown in a region
of Italy. The question is how do the cultivars differ in their means on these properties.

The standard MANOVA of differences in means is conducted as follows and shows a highly
significant overall multivariate test of differences among regions on the response variables
jointly.

Wine.mod <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
Anova(Wine.mod, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

Cultivar 2 9.0817 114.57 13 164 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Follow-up univariate F tests for each of the responses show that the grape varieties differ
substantially on all of these measures. However, we want to understand the pattern of
these differences, individually and jointly. The boxplots of the data shown in Fig. 7 of the
paper show the univariate differences, but don’t help to understand the correlations of these
differences.

pairs(Wine.mod, variables=1:5, fill=TRUE, fill.alpha=.1)

An HE plot for the first five response variables is shown in Figure 1 here as a scatterplot
matrix for all pairs. In this plot, in each panel the co-variation of the means (the H matrix)
is shown by the blue ellipse. The eccentricity of the H ellipse indicates the correlation of the
means. For example, means on Alcohol are positively correlated with those on Ash and Mg.
The red ellipse for the E matrix shows the size and correlation of the residuals. As noted
above, this plot has the property that the overall multivariate test of Cultivar differences is
significant (by Roy’s test) if the H ellipse projects anywhere outside the E ellipse. It can
be seen that the group means are well-separated on all pairs of variables, but the pattern of
these is somewhat complex, even for just five of the responses.

1.2 Canonical views

There are too many response variables to see them all at once in variable space, but with
g = 3 groups, the MANOVA has a very simple 2D representation in the canonical space.
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Figure 1: Pairwise HE plot for the first five response variables in the Wine data. The group
means for each pair are labeled.

This is effectively a projection of the data into the space of the linear combinations of the
responses that accounts for the greatest differences among the group means.

Wine.can <- candisc(Wine.mod)
Wine.can

Canonical Discriminant Analysis for Cultivar:

CanRsq Eigenvalue Difference Percent Cumulative
1 0.90081 9.0817 4.9533 68.748 68.748
2 0.80501 4.1285 4.9533 31.252 100.000

Test of H0: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F numDF denDF Pr(> F)

4



1 0.019341 77.620 26 326 < 2.2e-16 ***
2 0.194990 56.422 12 164 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The two canonical correlations are both large and highly significant. A 2D canonical plot
(Figure 2) shows the canonical scores together with data ellipses for the scores and vectors
for the structure coefficients. The second canonical dimension separates Grinolino wines
from the other two regions. The first canonical dimension accounts for 69% of the group
mean differences, and the groups are very well separated on this dimension. Longer vectors
correspond to response variables that are better discriminated among the groups on this
dimension. A guess at the interpretation of this dimension is that it contrasts those wines
high in Malic acid and non-flavor phenols vs. those with high phenols and OD ratios.

plot(Wine.can, ellipse=TRUE, var.lwd=2)

We think of such canonical plots as a multivariate juicer for MANOVA problems: they show
the data in the low-D view that extracts the most flavor regarding group differences, and
also show the relations of the response variables to this space.

As well, note that in this canonical view, the data ellipses for the canonical scores for the
groups have apparently different shapes, which speaks to the question of heterogeneity
of covariance matrices. This is explored in the Section 5 of the paper in relation to our
multivariate generalization of Levene-type tests.

2 Distance based approaches

If we think of a covariance matrix as representing multivariate dispersion of points around
a multivariate centroid, then a reasonable alternative to methods based on the covariance
matrices themselves is an approach based on distances. A set of multivariate samples,
yij, i = 1, . . . , g; j = 1, . . . ni can be said to be equally dispersed if an “average” distance,
∆(yij, ỹi) around a group “centroid” ỹi does not differ substantially across the groups.

Equality of multivariate dispersion is not exactly the same as equality of covariance matrices
(it doesn’t account for orientation), but it has the advantage of transforming the p-dimensional
problem into one based on an ANOVA of distances, in a way similar to what Levene-type
tests do for variances.

This idea admits a variety of different forms:

• distances can be defined as standard Euclidean distances D(y) = [(y− ȳ)T (y− ȳ)]1/2

in an orthogonal Rp variable space, Mahalanobis distances, DM (y) = [(y− ȳ)T S−1 (y−
ȳ)]1/2, which take the variances and covariances in S into account, or a wide variety of
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Figure 2: 2D canonical discriminant plot for the Wine data. Variable vectors show the
structure coefficients (correlations) of the response variables with the canonical dimensions.

other distance measures (e.g., Manhattan, L1 or taxi-cab distance, based on the sum of
absolute differences).

• centroids can be defined as multivariate means, medians, trimmed means, “spatial
medians”, and so forth.

• average can be defined as the arithmetic average, a root-mean-square or robust mean.

• tests for differences in dispersion can be based on a standard ANOVA, or a non-
parametric permutation test.

Several versions of this distance based approach to multivariate dispersion were suggested by
Anderson (2006; extending Van Valen, 1978). Her methods (designed for biological/ecological
applications) take this idea a bit further, in that it starts with the N ×N pairwise distance
measures among all observations yij, carries out a metric multidimensional scaling (MDS,
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equivalent to a PCA of the doubly-centered distance matrix), and then applies the distance
to centroid calculations to the principal coordinates. This is largely to accommodate a variety
of non-Euclidean dissimilarity measures of interest in ecological studies.

These methods have been implemented in the betadisper() function in the vegan package
(Oksanen et al., 2016). The F -test provided by the anova() method is analogous to a
Levene-type test based on average distance from the group centroids. The package also
provides a permutation test, permutest() that assesses the p-value of the F -statistic relative
to the permutation distribution under random assignment to groups. The examples below
are merely illustrative of this approach and the graphical methods they provide.

2.1 Example: Iris data

It is easiest to illustrate this approach using the Iris data. Here, we calculate Euclidean
distances among all observations and use betadisper() to carry out analysis of these
distances by Species.

library(vegan)
dst <- dist(iris[,1:4])
iris.bd <- betadisper(dst, iris$Species)

Both the anova() and permutest() methods indicate that there are significant differences
in the dispersion by Species.

anova(iris.bd)

Analysis of Variance Table

Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)

Groups 2 2.9092 1.45458 10.748 4.4e-05 ***
Residuals 147 19.8941 0.13533
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is easy to see this in the principal coordinates plot of the first two MDS dimensions. The
plot method (Figure 3) highlights the distances of each observation to the group centroid
and also draws a 68% data ellipse. The configuration of the group means is similar to that of
the PCA (Fig. 3 of the paper, left panel), however the orientation of the within-group data
ellipses are in the opposite direction here. (The orientation of MDS axes is arbitrary.)

labs <- paste("Dimension", 1:4, "(",
round(100*iris.bd$eig / sum(iris.bd$eig), 2), "%)")
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plot(iris.bd, cex=1, pch=15:17,
main="Iris data: MDS coordinates", cex.lab=1.25,
xlab=labs[1], ylab=labs[2],
hull=FALSE, ellipse=TRUE, conf=0.68, lwd=2)

Figure 3: Principal coordinates plot of the MDS solution for the Iris data. Ellipses are 68%
data ellipses for the coordinate scores.

The boxplot method (Figure 4) applied to the distances confirms what we can see from the
ANOVA tests and the plot in principal coordinates space: There are substantial differences
in dispersion among the species, particularly for Setosa versus the other two species, which
do not differ from each other.

boxplot(iris.bd, xlab="Species", notch=TRUE, col=c("gray", "red", "green"))

2.2 Example: Skulls data

For the Skulls data, we saw earlier that there were no differences among covariance matrices
in any plots or analyses. Here, we calculate Euclidean distances among all observations and
use betadisper() to carry out analysis of these distances by Epoch.
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Figure 4: Boxplot of distances to the group centroid for the Iris data. Notches indicate 95%
confidence intervals for group medians.

dst <- dist(Skulls[, -1])
skulls.bd <- betadisper(dst, Skulls$epoch)

Both the anova() and permutest() method indicate that there are non-significant differences
in the dispersion by Epoch.

anova(skulls.bd)

Analysis of Variance Table

Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)

Groups 4 35.43 8.8565 0.8211 0.5137
Residuals 145 1563.96 10.7859

Then, a simple display of the differences among groups in their dispersion is a boxplot of the
distances to the centroid (Figure 5). The pattern of the medians seen here is similar to that
shown in the plot for Box’s M test in Fig. 8 (right).

boxplot(skulls.bd, notch=TRUE, col="lightblue", xlab="Epoch")
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Figure 5: Boxplot of distances to the group centroid for the Skulls data
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