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Abstract

This paper explores a variety of topics related to the question of testing the equality of
covariance matrices in multivariate linear models, particularly in the MANOVA setting.
The main focus is on graphical methods that can be used to address the evaluation of
this assumption. We introduce some extensions of data ellipsoids, hypothesis-error (HE)
plots and canonical discriminant plots and demonstrate how they can be applied to the
testing of equality of covariance matrices. Further, a simple plot of the components of
Box’s M test is proposed that shows how groups differ in covariance and also suggests
other visualizations and alternative test statistics. A multivariate extension of Levene’s
test of homogeneity of variance is also discussed, which leads to other novel visualizations
for equality of covariance matrices within the HE plot framework. These methods are
implemented and freely available in the heplots and candisc packages for R. Examples
from the paper are available in supplementary materials.
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1 Introduction

To make the preliminary test on variances is rather like putting to sea in a rowing
boat to find out whether conditions are sufficiently calm for an ocean liner to leave
port. — G. E. P. Box (1953)

This paper concerns the extension of tests of homogeneity of variance from the classical
univariate ANOVA setting to the analogous multivariate (MANOVA) setting. Such tests
are a routine but important aspect of data analysis, as particular violations can drastically
impact model estimates (Lix & Keselman, 1996). In the multivariate context, the following
questions and topics are of main interest here:

• Visualization: How can we visualize differences among group variances and covariance
matrices, perhaps in a way that is analogous to what is done to visualize differences
among group means? Multivariate linear models (MLMs) present additional challenges
for data visualization because we often want to see the effects for a collection of response
variables simultaneously, which pushes the boundaries of typical graphical displays. As
will be illustrated, differences among covariance matrices can be comprised of spread
in overall size (“scatter”) and shape (“orientation”). When there are more than a few
response variables, what low-dimensional views can show the most interesting properties
related to the equality of covariance matrices?

• Other test statistics: Test statistics for MANOVA and for equality of covariance
matrices are based on properties of eigenvalues of various matrices. Available tests
statistics for mean differences suggest alternatives for the question of equality of
covariance matrices.

The following subsections provide a capsule summary of the issues in this topic. Most of the
discussion is couched in terms of a one-way design for simplicity, but the same ideas can apply
to two-way (and higher) designs, where a “group” factor is defined as the product combination
(interaction) of two or more factor variables. When there are also numeric covariates, this
topic can also be extended to the multivariate analysis of covaraiance (MANCOVA) setting.
This can be accomplished by applying these techniques to the residuals from predictions by
the covariates alone.

1.1 Homogeneity of Variance in Univariate ANOVA

In classical (Gaussian) univariate ANOVA models, the main interest is typically on tests of
mean differences in a response y according to one or more factors. The validity of the typical
F test, however, relies on the assumption of homogeneity of variance: all groups have the
same (or similar) variance,

σ2
1 = σ2

2 = · · · = σ2
g .
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It turns out that the F test for differences in means is relatively robust to violation of this
assumption (Harwell, Rubinstein, Hayes, & Olds, 1992), as long as the group sizes are roughly
equal.1

A variety of classical test statistics for homogeneity of variance are available, including
Hartley’s Fmax (Hartley, 1950), Cochran’s C (Cochran, 1941),and Bartlett’s test (Bartlett,
1937), but these have been found to have terrible statistical properties (Rogan & Keselman,
1977), which prompted Box’s famous quote.

Levene (1960) introduced a different form of test, based on the simple idea that when variances
are equal across groups, the average absolute values of differences between the observations
and group means will also be equal, i.e., substituting an L1 norm for the L2 norm of variance.
In a one-way design, this is equivalent to a test of group differences in the means of the
auxilliary variable zij = |yij − ȳi|.

More robust versions of this test were proposed by Brown & Forsythe (1974). These tests
substitute the group mean by either the group median or a trimmed mean in the ANOVA of
the absolute deviations, and should be almost always preferred to Levene’s version (which
unfortunately was adopted as the default in some software such as SPSS). See Conover,
Johnson, & Johnson (1981) for an early review and Gastwirth, Gel, & Miao (2009) for a
general discussion of these tests. In what follows, we refer to this class of tests as “Levene-type”
tests and suggest a multivariate extension described below (Section 5).

1.2 Homogeneity of variance in MANOVA

In the MANOVA context, the main emphasis, of course, is on differences among mean vectors,
testing

H0 : µ1 = µ2 = · · · = µg .

However, the standard test statistics (Wilks’ Lambda, Hotelling-Lawley trace, Pillai-Bartlett
trace, Roy’s maximum root) rely upon the analogous assumption that the within-group
covariance matrices for all groups are equal,

Σ1 = Σ2 = · · · = Σg .

In the multivariate setting, there has been considerable attention to the sensitivity of these
tests to both non-normality and lack of equality of covariance matrices, largely through
simulation studies (e.g., Finch & French, 2013; Hakstian, Roed, & Lind, 1979). Most of these
have been conducted in the simple case of two-group designs (where Hotelling’s T 2 is the

1If group sizes are greatly unequal and homogeneity of variance is violated, then the F statistic is too
liberal (p values too large) when large sample variances are associated with small group sizes. Conversely, the
F statistic is too conservative if large variances are associated with large group sizes.
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equivalent of all the standard tests) or in one-way designs. A classic study in this area is
Olson (1974), that recommended:

for protection against nonnormality and heterogeneity of covariance matrices, the
largest-root test should be avoided, while the Pillai-Bartlett trace test may be
recommended as the most robust of the MANOVA tests, with adequate power to
detect true differences in a variety of situations (p. 894).

We mention in passing that, with a burgeoning interesting in robust methods over the last few
decades, there have been a variety of proposals for how to conduct robust tests of differences
on mean vectors, mostly in the one-way MANOVA setting (e.g., Aelst & Willems, 2011;
Todorov & Filzmoser, 2010). Generally speaking, these involve using more robust alternatives
for mean vectors (medians, trimmed means, rank-based methods) and for covariance matrices
(e.g., minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE)).

Yet, there has not been as much attention paid to the second-order problem of assessing
equality of covariance matrices. Box’s M test, described below, remains the main procedure
readily available in statistical software for this problem. The properties and alternatives to
Box’s test have not been widely studied (some exceptions are O’Brien, 1992, and @TikuBal-
akrishnan:1984).

However, beyond issues of robustness, the question of equality of covariance matrices is
often of general interest itself. For instance, variability is often an important issue in studies
of strict equivalence in laboratories comparing across multiple patient measurements and
in other applied contexts (see Gastwirth et al., 2009 for other exemplars). Moreover the
outcome of such tests often have important consequences for the details of a main method of
analysis. Just as the Welsh t-test (Welch, 1947) is now commonly used and reported for a
two-group test of differences in means under unequal variances, a preliminary test of equality
of covariance matrices is often used in discriminant analysis to decide whether linear (LDA)
or quadratic discriminant analysis (QDA) should be applied in a given problem. In such
cases, the data at hand should inform the choice of statistical analysis to utilize.

1.3 Assessing heterogeneity of covariance matrices: Box’s M test

Box (1949) proposed the following likelihood-ratio test (LRT) statistic for testing the hypoth-
esis of equal covariance matrices,

M = (N − g) ln |Sp| −
g∑

i=1
(ni − 1) ln |Si| , (1)

where N = ∑
ni is the total sample size and Sp = (N − g)−1∑g

i=1(ni − 1)Si is the pooled
covariance matrix. M can thus be thought of as a ratio of the determinant of the pooled Sp
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to the geometric mean of the determinants of the separate Si.

In practice, there are various transformations of the value of M to yield a test statistic with
an approximately known distribution (Timm, 1975). Roughly speaking, when each ni > 20, a
χ2 approximation is often used; otherwise an F approximation is known to be more accurate.

Asymptotically, −2 ln(M) has a χ2 distribution. The χ2 approximation due to Box (1949,
1950) is that

X2 = −2(1− c1) ln(M) ∼ χ2
df

with df = (g − 1)p(p+ 1)/2 degrees of freedom, and a bias correction constant:

c1 =
(∑

i

1
ni − 1 −

1
N − g

)
2p2 + 3p− 1

6(p+ 1)(g − 1) .

In this form, Bartlett’s test for equality of variances in the univariate case is the special case
when there is only one response variable, so Bartlett’s test is sometimes used as univariate
follow-up to determine which response variables show heterogeneity of variance.

Yet, like its univariate counterpart, Box’s test is well-known to be highly sensitive to violation
of (multivariate) normality and the presence of outliers. For example, Tiku & Balakrishnan
(1984) concluded from simulation studies that the normal-theory LRT provides poor control
of Type I error under even modest departures from normality. O’Brien (1992) proposed some
robust alternatives, and showed that Box’s normal theory approximation suffered both in
controlling the null size of the test and in power. Zhang & Boos (1992) also carried out
simulation studies with similar conclusions and used bootstrap methods to obtain corrected
critical values.

1.4 Visualizing heterogeneity

The goal of this article is to use the above background as a platform for discussing approaches
to visualizing and testing the heterogeneity of covariance matrices in multivariate designs.
While researchers often rely on a single number to determine if their data have met a particular
threshold, such compression will often obscure interesting information, particularly when a
test concludes that differences exist, and one is left to wonder “why?”. It is within this context
where, again, visualizations often reign supreme. In fact, we find it somewhat surprising that
this issue has not been addressed before graphically in any systematic way.

In this article, we propose three visualization-based approaches to questions of heterogeneity
of covariance in MANOVA designs: (a) direct visualization of the information in the Si

and Sp using data ellipsoids to show size and shape as minimal schematic summaries; (b) a
simple dotplot of the components of Box’s M test: the log determinants of the Si together
with that of the pooled Sp. Extensions of these simple plots raise the question of whether
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measures of heterogeneity other than that captured in Box’s test might also be useful; and, (c)
the connection between Levene-type tests and an ANOVA (of centered absolute differences)
suggests a parallel with a multivariate extension of Levene-type tests and a MANOVA. We
explore this with a version of Hypothesis-Error (HE) plots we have found useful for visualizing
mean differences in MANOVA designs.

Accordingly, the following sections introduce and apply our conceptual framework for general
graphical methods for visualizing data in relation to MLM-related questions and their
applications. This is based on the simple ideas that: (a) a data ellipsoid provides a visual
summary of location and scatter of a multivariate sample; (b) these can be combined in
various ways to give visual tests of group differences in means and covariance matrices;
and, (c) when there are more than just a few response variables, a reduced-rank (canonical)
transformation provides an appealing way to visualize these effects in an optimal low-
dimensional approximation.

Section 4 introduces some novel visualizations of the components related to Box’s test, which
in turn suggest other possible test statistics that deserve further study. Section 5 describes
a multivariate generalization of Levene’s test within the HE plot framework that yields
attractive and useful displays.

A different graphical approach to the main question is to consider multivariate dispersion in
terms of distances of the points from their centroids; this is illustrated in the Supplementary
Materials. These methods are all implemented in R (R Core Team, 2015), principally in the
heplots and candisc packages.2.

2 Visualizing covariance matrices

Before diving into details and statistical tests, it is useful to see how to visualize covariance
matrices themselves. We do this using the graphical analog of minimally sufficient statistics
(ȳi,Si) for the MANOVA problem— a minimally sufficient graphical display. This graphical
principle has been called visual thinning (Friendly, 2007): reducing a graphical display to the
essentials of what you want to see by relying upon statistics that most efficiently capture the
parameters of interest. In multivariate displays, this usually means replacing data points by
well-chosen visual summaries.

2The complete R code for our examples is provided in the Supplementary Materials, and are hosted online
at https://mattsigal.github.io/eqcov_supp/
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2.1 Data ellipsoids

The essential idea (Dempster, 1969; Friendly, Monette, & Fox, 2013) is that for a p-dimensional
sample, Yn×p, the p × p covariance matrix S can be represented by the p-dimensional
concentration or data ellipsoid, Ec of size (“radius”) c. This is defined as the set of all points
y satisfying

Ec(y,S) := {y : (y − ȳ)T S−1 (y − ȳ) ≤ c2} . (2)

It is readily seen that the quadratic form in Eqn. (2) corresponds to the set of points whose
squared Mahalanobis distances D2

M(y) = (y − ȳ)T S−1 (y − ȳ), from the centroid of the
sample, ȳ = (ȳ1, ȳ2, . . . , ȳp)T, are less than or equal to c2.

When the variables are multivariate normal, the data ellipsoid approximates a contour
of constant density in their joint distribution. In this case D2

M(y) has a large-sample χ2
p

distribution, or, in finite samples, approximately [p(n − 1)/(n − p)]Fp,n−p. Hence, in the
bivariate case, taking c2 = χ2

2(0.95) = 5.99 ≈ 6 encloses approximately 95% of the data points
under normal theory. A 68% coverage data ellipse with c2 = χ2

2(0.68) = 2.28 gives a bivariate
analog of the standard x̄± 1sx and ȳ± 1sy intervals. See Friendly et al. (2013) for properties
of data ellipsoids and their use to interpret a wide variety of problems and applications in
multivariate linear models.

In practice, p-dimensional data ellipsoids can be viewed in variable space via 2D or 3D projec-
tions, or for all p variables, in a pairwise scatterplot matrix of 2D projections. Alternatively,
they can be viewed in the space of any linear transformation Y T 7→ Y ?, where the principal
components transformation provides useful views in low-D projections accounting for maximal
total variance.

2.2 Simple example: Iris data

It is easiest to illustrate these ideas using the well-known Iris data set (Anderson, 1935),
which pertains to four measures (sepal width and height, and petal width and height) of three
species of iris flowers from the Gaspe Peninsula. One approach to visualizing within group
variability is to begin with an enhanced scatterplot that adds a standard (68%) data ellipse
for each group. Then imagine taking away the data points (and other enhancements) leaving
only the data ellipses, and add the corresponding data ellipse for the pooled sample variance
covariance matrix Sp. This gives a visual summary of group means and of the within-group
covariance, and is shown in the right panel of Figure 1. In this plot the variances and
covariances look similar for the Versicolor and Virginca groups, but the Setosa group differs
by exhibiting a higher correlation between sepal length and width and a smaller variance on
sepal length.
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Finally, we center all the ellipses at the origin in order to focus only on size and shape of
the within-group covariances, so that these can be directly compared visually.3 For these
two variables, we can now see that the covariance of Virginca is nearly identical to Sp, while
Versicolor has somewhat greater variance on sepal length.4

Figure 1: Covariance ellipses for the Iris data. Left: separate groups and the pooled
within-group covariance matrix; right: all covariance matrices centered at the origin.

This method becomes particularly useful when we look at the data ellipses for all pairs
of variables in scatterplot matrix format. As in the right panel of Figure 1, we center
these ellipsoids at the origin. The display in Figure 2 shows only size (variance) and shape
(correlation) differences, which speak directly to the question of homogeneity of covariance
matrices.

It can now be seen precisely how the covariance matrix for Setosa differs from those of the
other species. The within group correlations differ for all pairs of variables, and as well,
the variances are noticeably smaller for petal width and petal length. In addition, while
Versicolor and Virginca have similar shapes, close to that of the pooled covariance matrix, in
most panels (particularly for petal width), Virginca exhibits greater variance.

3This example seems at first glance to be a special case, because all variables are measured in the same
units. However, the units do not matter in most of our plots because the axis ranges are taken from the
data and scale units are not equated. The plots in Figure 1 would look identical except for tick labels if we
transformed sepal length from centimeters to inches.

4Such plots are produced by the covEllipses() function in the heplots package.
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Figure 2: Pairwise data ellipses for the Iris data, centered at the origin. This view makes it
easy to compare the variances and covariances for all pairs of variables.

2.2.1 More general models

In these plots, the centered views correspond to an analysis of the covariance matrices
among the residuals from the MLM predicting the four responses from the species variable.
Consequently, the same ideas apply in more general models. For example, in a MANCOVA
setting, the model may include one or more quantitative covariates.5 The analyses suggested
above could then be applied to the residuals from this model. Likewise, in a two-way
MANOVA design, with factors A and B, we could treat the combinations of these factors as
the “group” variable and view the pairwise data ellipses.6

2.3 Low-rank views

With p > 3 response variables, a simple alternative to the pairwise 2D projections shown
in Figure 2 is the projection into the principal component space accounting for the greatest

5For instance, in R notation, mod1 <- lm(cbind(y1, y2, y3) ~ Group + x1 + x2), where three re-
sponse variables are being predicted by the grouping factor and two covariates.

6For example, we could estimate such a model within R using mod2 <- lm(cbind(y1, y2, y3)
~ A:B) and then generate the pairwise covariance data ellipses with covEllipses(residuals(mod2),
variables=1:3).
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amounts of total variance in the data. For the Iris data, a simple PCA of the covariance
matrix shows that nearly 98% of total variance in the data is accounted for in the first two
dimensions.

Figure 3 shows the plots of the covariance ellipsoids for the first two principal component
scores, uncentered (left panel) and centered (right panel). The dominant PC1 (92% of total
variance) essentially orders the species by a measure of overall size of their sepals and petals.
In the centered view, it can again be seen how Setosa differs in covariance from the other
two species, and that while Virginca and Versicolor both have similar shapes to the pooled
covariance matrix, Versicolor has somewhat greater variance on PC1.

Figure 3: Covariance ellipsoids for the first two principal components of the iris data. Left:
Uncentered, showing group means on the principal components; right: centered at the origin.

We note that PCA is focused on a low-rank approximation to account for total variance of
the data. In the MANOVA context, the main question concerns between-group variance
(differences among means) relative to within-group variance. For this question, views in
canonical space provide the same advantages, as is described in the Supplemental Materials.

2.3.1 Small dimensions can matter

For the Iris data, the first two principal components account for 98% of total variance, so we
might think we are done here. Yet, it turns out that in a variety of multivariate contexts
small dimensions can matter. For example, Friendly & Kwan (2009) showed that problems
of multicollinearity in regression models could be readily viewed as near singularities that
exist in the space of the smallest principal component dimensions, but cannot be seen in the
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larger dimensions. Similarly, multivariate outliers often do not appear in bivariate views of
the data in variable space, but can stand out like sore thumbs in the space of the smallest
PCA dimensions.7

As we will see, Box’s M test, because it is a (linear) function of all the eigenvalues of the
between and within group covariance matrices, is also subject to the influence of the smaller
dimensions, where differences among Si and of Sp can lurk.

Figure 4: Covariance ellipsoids for the last two principal components.

Figure 4 shows the covariance ellipsoids in (PC3, PC4) space. Even though these dimensions
contribute little to total variance, there are more pronounced differences in the within-group
shapes (correlations) relative to the pooled covariance. The total sample covariance (ignoring
Species) is of course uncorrelated in all principal component dimensions.

3 Other examples

In what follows, it will be instructive to use two other empirical examples to illustrate our
graphical methods: (a) one where it turns out that there are important differences among
group means but little evidence for heterogeneity of covariances; (b) another where there are

7A simple yet powerful demonstration: Generate triples, (x1, x2, x3) as U [0, 1] and scale each set to unit
sum, so all points lie on the simplex x1 + x2 + x3 = 1. Then add a few outliers within a unit sphere of radius
r ≤ 0.05 centered at the origin. The outliers will not stand out in any univariate or bivariate plots along the
coordinate axes, but will be dramatic when viewed along the third principal component, which is orthogonal
to the plane of the simplex.
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both differences in means and heterogeneity, but the number of response variables is large,
which makes understanding these effects more difficult.

3.1 Skulls data

For comparison with what we have seen for the Iris data, the Skulls data set provides an
example where there are also substantial differences among the means of groups, but little
evidence for heterogeneity of their covariance matrices.

The data concern four physical measurements of size and shape made on 150 Egyptian skulls
from five epochs ranging from 4000 BC to 150 AD. The measures are: maximal breadth
(mb), basibregmatic height (bh), basialveolar length (bl), and nasal height (nh) of each skull.
See http://www.redwoods.edu/instruct/agarwin/anth_6_measurements.htm for the formal
definitions of these measures, and Figure 5 for a diagram of what they pertain to. The
question of interest in this analysis is whether and how these measurements changed over
time. Systematic changes over time in means and/or covariances is of interest because it
could indicate interbreeding among migrant populations (or the influence of other factors,
such as diet).

Figure 5: Diagram of the skull measurements for the Egyptian skulls data set. Maximal
breadth and basibregmatic height are the basic measures of “size” of a skull. Basialveolar
length and nasal height are important anthropometric measures of skull “shape”.

A MANOVA of this data set shows a highly significant effect of the epoch factor (Pillai trace
= 0.3533, approx. F (16, 434.45) = 3.512, p < 0.000001).8 Treating epoch as an ordered
factor yields an even strong test for linear trend in the means over time, and all non-linear
trends are effectively null. The conclusion so far is that for these measures of skull size and
shape, there are approximately systematic changes over time.

Figure 6 shows the centered covariance ellipsoids for all epochs and for the pooled data.9 For
8This can be conducted as a MLM in R as follows: lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls).
9Such figures can be generated using the covEllipses() function from the heplots package.
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the most part, these are all coincident, indicating equal covariance matrices. Only for the
variable basialveolar length does any epoch differ perceptibly, where it has slightly greater
variance in the earliest epoch (4000BC). It can also be seen that these four measures are
relatively uncorrelated within each epoch.

Figure 6: Pairwise data ellipses for the Skulls data, centered at the grand mean. Those for
the pooled data are shaded.

3.2 Wine data

The Wine data10 is a classic in the machine learning literature as a high-D classification
problem, but is also of interest for examples of MANOVA and discriminant analysis. These
data are the results of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars of grapes: Barolo, Grignolino, and Barbera. The analysis
determined the quantities of 13 constituents found in each of the three types of wines. The
total sample size is N = 178, but the data are unbalanced (ni = 59, 71, 48).

10This data set is contained in the candisc package, and is originally from the UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets/Wine).
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Figure 7: Boxplots of the distributions of the Wine variables, by Cultivar. How do the means
differ? How do the variances differ?

By way of introduction to this data set, the set of boxplots in Figure 7 for all of the response
variables by Cultivar gives a useful overview. It is easy to see that most of the variables
differ substantially among the cultivars, but the pattern of differences in means or medians is
complex across the variables. There is also a substantial number of outliers for some of the
variables, particularly MalicAcid and Proa. It is much harder to characterize how the wines
differ in variance, though differences on some variables appear pronounced (e.g., MalicAcid,
Flav, Color).

4 Visualizating Box’s M test

The covariance ellipse plots we have seen in earlier examples (e.g., Figure 1 and Figure 6) are
useful schematic summaries, but in some cases, a simpler visual summary might be more
useful. Eqn. (1) suggests that the simplest visualization might focus on the components of
Box’s M test, for example, a dot plot of the log determinants of the covariance matrices Si

together with that of the pooled Sp. To the extent that the covariance matrices are all equal,
so too should the values on which Box’s test are based.

An important virtue of these plots is that they can show how the groups differ from each other,
and from the pooled covariance matrix on the scalar measure ln |S|. In this way, they can
suggest more specific questions or hypotheses regarding the equality of covariance matrices,
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analogous to the use of contrasts and linear hypotheses for testing differences among group
mean vectors.

Such plots are far more useful with confidence intervals around the ln |Si| and ln |Sp|.
Recently, Cai, Liang, & Zhou (2016) have suggested an asymptotic, central-limit theorem
approximation to the distribution of log |S|.11

To illustrate, Box’s M test gives an approximate chi-square, χ2(20) = 140.94, p < 2.2× 10−16

for the Iris data, while the Skulls data gives χ2(40) = 45.67, p = 0.248. The correponding
plots for these tests are shown in Figure 8. For the Iris data (left), Setosa stands out having
a substantially smaller covariance matrix (by log |S|) than the other species. The intervals
for Versicolor and Virginica overlap with that for ln |Sp|, but seem to differ from each other.

Figure 8: Plots of log determinants of the components of Box’s M test with asymptotic 95%
confidence intervals. Left: The Iris data shows substantial heterogeneity; right: the Skulls
data shows some small differences, but no evidence for heterogeneity.

In contrast, for the Skulls data (Section 3.1), the plot of the log determinants in Figure 8
(right) shows that the 95% confidence intervals for the ln |Si| all overlap with each other and
with that for the pooled ln |Sp|.

Although these differences among covariance matrices are not significant by Box’s M test,
we can use this example to illustrate how such plots can suggest scientifically meaningful
hypotheses regarding the equality of covariance matrices, analogous to what we are accustomed
to doing with tests for mean differences. Assume that changes in variances and covariances
of such skull measurements is of interest, and that we were able to obtain a sample 10 times
as large from each epoch. We might then try to interpret the general decrease in ln |Si| from
the earliest epoch to 200BC. Were skulls becoming more homogeneous over time? But, what
happened in the 150 AD sample?

11Box’s M test is calculated by the function boxM() in heplots. These plots are produced by the plot()
method for "boxM" objects.
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For completeness, and use below, Figure 9 shows the same type of plot for the Wine data.
Box’s M test is overwhelmingly significant, χ2(182) = 684.2, p < 2.2× 10−16, and the figure
shows why: the ln |Si| for Barbera and Barolo differ substantially from that of the pooled
ln |Sp| and from that of Grignolino, which is closest to that of the pooled covariance matrix.
But the Wine data has 13 response variables; perhaps there is a way to understand this
further.

Figure 9: Plot of log determinants of the covariance matrices for the Wine data.

4.1 Eigenvalue plots

Having made some progress with visualizing the components of Box’s M test, it is natural to
ask if other plots or other test statistics can address these relationships in a more nuanced
manner. In the MLM, the various test statistics (Wilks’ Λ, Hotelling-Lawley and Pillai
Trace criteria, Roy’s maximum root test) are all functions of the eigenvalues of a hypothesis
matrix H relative to an error matrix E. So too, all reasonable test statistics for equality of
covariance matrices are functions of the eigenvalues of the Si and Sp.

Another sensible plot is therefore an analog of a scree plot of eigenvalue versus dimension
number, with separate curves for each matrix, similar to their use in exploratory factor
analysis.

Figure 10 shows such a plot for the Wine data. This dataset is comprised of 13 response
variables, so Box’s test is based on 13 eigenvalues. To preserve resolution, we show eigenvalues
on the log scale, and in two separate panels.

It can be seen that the eigenvalues on the largest dimensions do not differ very much across
the groups. However, they differ progressively more among the groups on the dimensions
with small eigenvalues. Again (as in Figure 9), Grignolino (indicated as group 2) is rather
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Figure 10: Scree plots of log eigenvalues of the covariance matrices for the Wine data. Those
for the pooled covariance matrix are marked ‘p’.

similar to the result for the pooled covariance matrix, while the Barolo (group 1) and Barbera
(group 3) wines differ. This demonstrates that Box’s M test is indeed sensitive to differences
among the smaller eigenvalues.

4.2 Other test statistics

As we saw above (Section 2), the question of equality of covariance matrices can be expressed
in terms of the similarity in size and shape of the data ellipses for the individual group Si

relative to that of Sp. Box’s M test uses just one possible function to describe this size: the
logs of their determinants.

When Σ is the covariance matrix of a multivariate vector y with eigenvalues λ1 ≥ λ2 ≥ . . . λp,
the properties shown in Table 1 represent methods of describing the size and shape of the
ellipsoid in Rp. More general theory and statistical applications of the geometry of ellispoids
is given by Friendly et al. (2013).

Hence, for a sample covariance matrix S, |S| is a measure of generalized variance and ln |S|
is a measure of average variance across the p dimensions.

The "boxM" methods in heplots can compute and plot all of the functions of the eigenvalues
in Table 1. The results are shown in Figure 11.
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Table 1: Statistical and geometrical properties of “size” of an ellipsoid
Size Conceptual formula Geometry Function
(a) Generalized variance: det(Σ) = ∏

i λi area, (hyper)volume geometric mean
(b) Average variance: tr(Σ) = ∑

i λi linear sum arithmetic mean
(c) Average precision: 1/tr(Σ−1) = 1/∑i(1/λi) harmonic mean
(d) Maximal variance: λ1 maximum dimension supremum

Figure 11: Plot of eigenvalue statistics of the covariance matrices for the Wine data.

Except for the absence of error bars, the plot for log product in Figure 11 (upper left panel)
is the same as that in Figure 9. In principle, it is possible to add such confidence intervals for
all these measures through the use of bootstrapping, but this has not yet been implemented.

For this data set, the pattern of points in the plot for Box’s M is also more or less the same
as that for the precision measure. The plots for the sum of and maximum eigenvalue are
also similar to each other, but differ from those of the two measures in the left column of
Figure 11. The main point is that these are not all the same, so different functions reflect
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different patterns of the eigenvalues.12

The sum of eigenvalues is similar in form to the Hotelling-Lawley trace criterion used in
MLM test and the maximum eigenvalue is similar to Roy’s test, and all these test statistics
have convenient F approximations. Plots such as Figure 11 and those we have tried for
other examples suggest that it would be useful to develop analogous tests for homogeneity
of covariance matrices, with possibly different properties of error rates and power against
specified alternatives. We do not pursue this topic here, but leave it open for further research.

5 Multivariate generalization of Levene-type tests

In the MANOVA setting, a multivariate version of Levene’s test (and robust Brown-Forsythe
extensions) for the standard model yij = µi + εij considers instead the multivariate analog
substituting zij for yij , where zij = |yij− ỹi| are the deviations from a “central” value (mean,
median, trimmed mean) ỹi for group i, i = 1, 2, . . . , g; j = 1, 2, . . . p. In matrix terms, this
can be expressed as the linear model,

ZN×p = X(N×g)B(g×p) +U(N×p)

whereX is design matrix for the groups, typically composed of an intercept and g−1 contrasts
or dummy variables, B is the matrix of parameters, and U is the matrix of residuals.

The same multivariate tests (Wilks’ Λ, Pillai trace, etc.) used to test differences in mean
vectors y can then be used to test for differences in the means of the centered deviations,
z. For example, this test applied to the Wine data gives Pillai trace = 0.7924, approx.
F (26, 328) = 8.278, p < 0.000001. The overall multivariate test is highly significant, leading
us to conclude that the covariance matrices differ, as we saw numerically in Box’s M test and
in Figure 9. But the question is, where and how do they differ in relation to the response
variables?

For multivariate tests of means, Hypothesis-Error (HE) plots and related canonical HE plots
provide an ideal method to visualize the patterns of group mean differences in multivariate
space. It would take us too far afield to describe these methods here; we give a brief summary
and examples using the Wine data in the Supplemental Appendix. The essential ideas are
that: (a) variation in means is captured by a matrix H of sum of squares and products of
the fitted values relative to an analogous matrix E for error; (b) these can be visualized as
suitably scaled data ellipsoids for H and E in variable space or in the canonical space of the
linear combinations accounting for greatest differences in group means.

The fact that this extension of the Levene tests can be treated as a MANOVA of the deviations
12In analogous examples for other data sets we also see different patterns over measures, but these are not

the same as in this example.
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in Z suggests that HE plots can also be used to visualize the differences in variances and
covariances across groups, as we ilustrate in the remainder of this section. Note that in this
formulation,

• The overall multivariate test by the General Linear Test of H0 : LB = 0 gives rise to an
H matrix against the hypothesis, here of equal absolute deviations from the centering
values, and an E matrix, expressing within group sum of squares and cross products of
these deviations.

• The diagonal elements of H are exactly the same as would be used in univariate
Levene-type tests. The off-diagonal entries reflect the covariances of the absolute
deviations.

• The corresponding E matrix expresses the within-group variations and their covariances
in the absolute deviations.

• The univariate versions of this test simply use the diagonal elements of the H and E
matrices, i.e., Fi = hii/dfh

eii/dfe
, with dfh = g − 1 and dfe = N − g.

• HE plots in variable space show how the means of group variabilities differ in relation
to their within-group variances and covariances.

• Comparable plots in canonical space show how means of (absolute) deviations differ in
a space that accounts for the maximal differences among groups.

A similar test was proposed by O’Brien (1992), but there is a subtle difference between our
proposal and his. O’Brien applied MANOVA to the matrix WN×p2 whose (i, j)-th row is
the vectorized version of the p× p outer product, [(yij − ỹi)(yij − ỹi)T]. This W directly
reflects the contributions of each yij to the variances and covariances of each group, but
it is not amenable to visual display. In our proposal, the covariances are reflected in the
cross-products of the the absolute deviations from the central values calculated in the H and
E matrices and enjoy the same visualizations for scatter as for means.

5.1 HE plots for multivariate Levene-type tests

To return to the Wine dataset, a pairwise HE plot of all 13 responses in variable space
is too complex to show here with any resolution. Instead, Figure 12 shows these for four
selected variables. The means for the groups in the H ellipses reflect the variances of the
two responses across the wine cultivars. A positive orientation of the ellipse in a given panel
means that the groups with larger variance on one variable also have larger variance on the
other, as is true for the variables Flav and OD. The overall nature of these relations for all
variables is more easily seen through a canonical HE plot, which is considered next.
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Figure 12: HE plot for selected variables in the multivariate extension of Levene’s test showing
significant differences in group scatter.

5.2 Canonical views

A canonical discriminant analysis of the MLM (winedev.mod) based on median-centered
deviations was carried out (candisc(winedev.mod)). Because there are g = 3 groups, only
two canonical dimensions are needed to account for all group differences in the means of
the absolute deviations; this provides a compact summary of heterogeneity in variances and
covariances among the wine cultivars.

The two squared canonical correlations are ρ2
1 = 0.528 and ρ2

2 = 0.265, accounting for
respectively 75.6% and 24.4% of the between-group differences in scatter. The standard step-
down likelihood ratio tests of these gave F (26, 326) = 8.74, p < 2.2× 10−16 and F (12, 164) =
4.92, p < 6.37× 10−7 respectively, both highly significant.

The 2D canonical plot is shown in Figure 13. The horizontal dimension (Can1) shows that
Barbera wines differ most in variability from the other two cultivars. The variable Color
stands out in this plot as the only variable on which Barbera wines are have greater variance
than the rest; this can also be seen in the boxplot for this variable (Figure 7). The second
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dimension mainly distinguishes Barolo wines from the other two cultivars. The variables
Proline, Malic Acid and Non-flavor phenols contribute most strongly to this dimension.

Figure 13: 2D canonical discriminant plot for differences in covariance matrices in the Wine
data. The canonical scores (points) for the samples are summarized by their data ellipses.
Variable vectors shown in this plot show the correlations of the responses with the two
dimensions.

We admit that HE plots themselves are somewhat novel. This extension to tests for differences
in variances takes a bit more thought to get used to. However, for this relatively complex
problem, the canonical plot in Figure 13 provides a relatively simple description.

6 Concluding Remarks

The idea for this paper arose from discussion in a graduate course on multivariate data analysis
in connection with the topic of the assumptions of MANOVA (independence, multivariate
normality of residuals, homogeneity of covariance matrices), diagnostic tests for these, and
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remedies when they are violated. The instructor (the first author) had presented Box’s M test,
with the caveat of the opening quotation by George Box that the test was not robust against
mild-to-moderate non-normality, while the Pillai-Bartlett trace test for mean differences does
possess this robustness.

One student commented that this was akin to recommending a screening test for lung cancer
that was more sensitive to influenza. Another student asked, “Well, if I run Box’s test and it
shows significance, how can I decide if my MANOVA results are valid? How can I determine
which groups differ in covariance matrices and on which variables?”

These seemed to be perfectly reasonable questions, and while we were aware of the modifica-
tions that might account for non-normality (O’Brien, 1992; Tiku & Balakrishnan, 1984), these
are not typically available in standard software and therefore their theory is cold comfort to
applied researchers. More importantly, we were struck with how little information is provided
by the result of such a significance test, regardless of its Type I error and power properties.
What was lacking in the null hypothesis p-value was any insight into the nature of group
differences in covariance matrices.

The approach we have outlined here stems from the mantras of exploratory data analysis
(EDA) in a multivariate setting:

The greatest value of a picture is when it forces us to notice what we never
expected to see (Tukey, 1977, p. vi).

The purpose of [data] display is comparison (recognition of phenomena), not
numbers (Tukey, 1990).

We began with the idea of displaying covariance matrices directly in terms of data ellipsoids
that serve as normal theory minimally sufficient visual summaries. We mentioned, but did
not illustrate, that classical estimates of S could be replaced by robust MVE and MCD
alternatives in the presence of multivariate outliers.

The simple dot plot (Figure 9) of the components of Box’s M test answers the first question:
How do the groups differ in covariance matrices? It does more than this, however, because it
suggests that other functions of the eigenvalues of the Si and Sp might provide alternative
measures of homogeneity of covariance matrices (Figure 11), and that their distribution
across the orthogonal dimensions of within-group variation provides valuable insight into the
properties of these measures and statistical tests.

The HE plot framework we have described provides some answers to the second question: If
the multivariate responses do differ among groups in their variances and covariances, which
responses contribute to this and how do they differ? We formulated an extension of the
univariate Levene–Brown-Forsythe test to the MANOVA setting, with the property that HE
plots and canonical discriminant HE plots for the question of mean differences apply directly
to the question of homogeneity of covariance matrices. Pairwise HE plots in variable space
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show which responses differ in scatter, and their projection into canonical space (Figure 13)
provides a convenient 2D representation, often with quite a simple interpretation.

Finally, we do not fear that this paper might attract the opprobrium that we “flung data onto
many canvases to see what stuck.” To the contrary, we were struck by the relative degree of
consistency of the resulting plots across these various visual approaches. When covariance
ellipsoids showed differences among groups in variable space or principal components space,
we could understand how these differences were reflected in the Box’s M plots and in our
HE plots for the extension of Levene-type tests. All of this is much more satisfying than a
p-value, robust or otherwise.

Supplementary Materials

A Supplemental Appendix describes the HE plot framework for tests of mean differences and
gives some further examples. The R packages candisc and heplots are freely available from the
Comprehensive R Archive Network, http://cran.us.r-project.org/. Complete R scripts for the
Iris, Wine, and Skulls examples are available at https://mattsigal.github.io/eqcov_supp/.
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