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Elliptical Insights: Geometric Travels
in Multivariate Data Visualization

Michael Friendly, York University
TORA-SABA Data Visualization Workshop
May 5, 2017

Service Slides: http://datavis.ca/papers/Ellipticalinsights-2x2.pdf

Introducing: me & co-conspiritors

Statistical graphics and data visualization

moi John Fox Georges Monette David Meyer Forrest Young

History of data visualization: Les Chevaliers & inspirators

Florence
Nightingale

lan Spence Howard Wainer Antoine de John W. Tukey Francis Galton
Falguerolles
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Books: Theory — Practice

Tukey’s maxim (Tukey, 1959):
The practical power of any statistical method =
Statistical power x Probability anyone will use it

o T TR, Visualizing : £ Discrete Data
Categorical . is wil
Data L é Mo

http://ddar.datavis.ca

Current project: Friendly & Wainer, The Origin of Graphical Species,
Harvard Univ. Press, 2017

Software: R packages on CRAN

® LM & GLM visualization

= car: extends graphical methods (John Fox)

= effects : visualize effects of terms in a complex model (John Fox)

= genridge : generalized ridge regression / shinkage methods

= matlib : teaching package for linear algebra and 2D, 3D visualization

= vcd & vedExtra: mosaic plots & others for loglinear/logistic regression
°* MLMs

= heplots : HE plots & related methods for MLMs

= candisc : Analyze/view MLMs in low-D space
= mvinfluence : measures and new plots for multivariate influence

® Largely data
= Lahman : Everything you ever wanted to know about baseball statistics

= HistData: Data sets from the history of statistics & data vis

Easy install: source(“http://friendly.apps01.yorku.ca/psy6140/R/install-hebb-pkgs.R”)




Software: SAS macros

* All use SAS/Graph; some use SAS/IML; some incorporated into SAS

= Fair warning: | no longer actively maintain or develop these

* Available at:

= http://datavis.ca/sasmac/ (with documentation)

= http://friendly.apps01.yorku.ca/psy6140/psy6140.zip (entire collection)

I3 Graphical methods

) Graphical methods

£ Graphical methods

Today'’s topic: Ellipses everywhere

“Once you tune into ellipses, you will begin to see them everywhere ...”
-- James McMullan, https://opinionator.blogs.nytimes.com/2010/09/23/the-frisbee-of-art/

Marcel Duchamp, Bicycle Wheel, 1913

“In 1913 | had the happy idea to fasten a

B univariate displays DLinear models EhLinear models
85y ariate displays - ChANOVA 5 Categorical data bicycle wheel to a kitchen stool and watch
&l contour B~ Regression @ Chbiscrete distributions . ” “ ”
L [Relipses EI‘GW ETwo-way tables it turn.” (apropos of the “readymade” art
-[Hlowess i-#lhecan
---@mip\ot HEhemat -[®]genscat mOVement)
-[#resline ;-%hemreg - Emosaic
---@,Sparklme heplot ---@musalcs . . .
Bounplot - Bheplots - Emosmat Rotation transforms the circle to an ellipse
- [&surface - Emvinfluence &) Generalized linear models to a line and back again:
B~ Multivariate displays E-DTransformations ChsEMs
B2 Cluster analysis E3-ChPower Eutility macros
Smaps & Categorical data * Hey, aline is just a degenerate ellipse!
DiLinear models SEMs ) . . )
Sicategorical data Butiity macros ¢ In 3D, it sweeps out a special ellipsoid,
Drsems called a “sphere”

Eutility macros

5 Animation: https://www.youtube.com/watch?v=L7t3sUTCtZQ 6

® Introduction: A whirlwind tour of History of DataVis

Today'’s topic: Ellipses everywhere

“The ellipse is the Frisbee of art, the circle freed from its flatness that sails out into
imagined space tilting this way and that and ending up on the top of the soup bow!
and silver cup in Jean-Baptiste Chardin’s still life...” -- James McMullan

* Data ellipsoids
® The HE plot framework

More to the point:
The ellipse is the happy intersection

* Understanding ridge regression & shrinkage methods
of statistics, data vis & geometry

“Whatever relates to extent and
quantity may be represented by
geometrical figures.

Statistical projections which speak
to the senses without fatiguing
the mind, posses the advantage
of fixing attention on a great
number of important facts”

-- Alexander von Humboldt (1811)




® Prelude: the birth of data ﬁ

* Moral statistics: the birth of modern social science

* William Farr on cholera /

* JFW Herschel & the 15t scatterplot O
® @Galton: the birth of modern statistical methods

Introduction: A whirlwind tour of
the history of Data Visualization

Images: RJ Andrews, http://infowetrust.com/history/

Prelude to data visualization: The birth of data

* Mrs. Isabella Beeton's (~ 1860) recipe for rabbit stew:
“First catch a rabbit”

® Data vis: First get some data; now make sense of it.
®* When was the idea of “data” invented?
* Alonger story, but I'll start in the early 1800s

® Social problems, demanding policy solutions:

® France: Upheaval following Napoleon’s defeat: migration, crime,
suicide, prostitution, ...

® England: Outbreaks of cholera, poverty, “poor laws”, debtor
prisons, ...

® Suddenly, an avalanche of data crying for explanation!
® But where was data vis?
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France: Guerry, La Statistique Morale

® In France, widespread, national data collection on social
issues began ~ 1810—1825
= literacy: % of army conscripts who could read and write

® crime: Ministry of Justice launches the Compte Générale

* every criminal charge recorded, with all details: age, sex, occupation,
date, court outcome

* mandated quarterly reports to Paris
® Suddenly, one could attempt to answer important
questions using data rather than philosophy
= |s greater literacy related to less crime?
® Do more priests lead to less crime, suicide or prostitution?
® Moral statistics: the beginning of modern social science
® Social data could lead to “social laws” a la “physical laws”

See: Friendly (2007) A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis Statistical Science, 22, 368-399
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The discovery of “social facts”
Stability and Variation
Guerry’s results were both compelling and startling:

» Rates of crime and suicide remained remarkably invariant over time, yet
varied sytematically by region, sex of accused, type of crime, etc.

» In any given French city or department, almost the same number
committed suicide, stole, gave birth out of wedlock, etc.

| Year 1826 1827 1828 1829 1830 Avg |
Sex All accused (%)
Male 79 79 78 77 78 78
Female 21 21 22 23 22 22
Age Accused of Theft (%)
16-25 37 35 38 37 37 37
25-25 31 32 30 31 32 31
Crime Committed in summer (%)
Indecent assault : 36 36 35 38 36
Assault & battery i 28 27 27 27 28

“We are forced to conclude that the facts of the moral order are subject, like those
of the physical order to invariable laws.” (Guerry, 1833, p14)




Guerry & Balbi (1829): Comparative statistics of crime & education

IATISTIQUE Courpanks
UITAT DR LINSTRYCTION 77 18" S0MBRE DES CRINK
ettt il e e

» First shaded thematic
maps of crime data

) ) Personal crime
» First comparative maps of =~ ==
social data

» — crime against persons
seemed inversely related
to crime against property!

» Instruction: — France
obscure and France
éclairée (Dupin, 1826)

» North of France highest in
education, but also in
property crime!

What is missing: (a) idea of plotting Y vs. X; (b) measures of co-relation

13

Guerry (1864): General causes of crime

Plate XVII: Guerry’s magnum opus

English counties (ranked on each)

EAFSES GANERALES

Goal:

e Show multivariate factors
associated with distribution of
crimes of various type

* Before invention of correlation

£

9 Curve of neg.

Entries: Codes for factors S association

—
* Pop: (% Irish, domestics, ...) o
AT 4]
e Criminality: (male, young, ...) c
. . . =

* Religion (Anglicans, dissenters, ...) S Curve of pos.

z association
¢ |2 olv & & A8

B el oy 1 I

@ le J haeplpb ik

” Y dfant hv nom

kel &40 Bob i of 0

Guerry, A.-M. (1864). Statistique morale de
I'Angleterre comparée avec la statistique morale de

la France 14

England: William Farr on cholera

* General Register Office (GRO), 1836 o=
= Record every birth, death in England & Wales
= A universal data base of the entire population

* William Farr [1807—1883]: 15t official UK statistician

= |nstitutes recording of causes of mortality & circumstances
" |dea of identifying “risk factors” by tabulating deaths in relation to
potential causes (poverty, environmental, ...)
® Cholera outbreaks

® |ndia 1820s — UK 1831—1832; by 1837, greatest worldwide pandemic
of 19t C; returns in 1848, 1852

= Miasmatic hypothesis: bad air (“the big stink”)
= Test: Mortality ~ temperature, season, elevation, ...
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Radial diagram of temperature and mortality in London, by week, for 1840—
1850. From: Farr (1852), Report on the mortality from cholera ... Plate IV

TEHPERATURE AN MOKTALITY OF LUXIKGY Vo evrr. weak o 1§ v | 00 b5 |
asine (e i

Seasonal effects

:-Bal on mortality?
/ 30 = $
! % \'Q‘:IV i Relation to
~ 4 temperature?

Still no idea of Y
vs. X

Avg. over
11 years
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JFW Herschel: The 15t scatterplot

Jprep—

Hershel plots data on

_ . _ _ 1o position angle (Y) over
®* Problem: determine the orbits of twin stars from observations L | time (X)
of measured angles and apparent distances i | =L | '
® Qbservations (n=14) only recorded over long periods of time b ' -
. _( ), y aoveriong p : 9 adds an eye-fit smoothed
= Theory: elliptical orbit — 7 equations in 7 unknowns, easy since Gauss b curve that respects the
= But: data subject to “extravagant errors” £ . p
L} relative error in the 14
_. :p::m The process by which | propose to accomplish g observations
N ’ this is one essentially graphical; by which term Y :
 posion angle (6) r.,.n"e;,m, I understand not a mere substitution of . | | uses the fitted curve to
™. §= geometrical construction and measurement for lculat | locit
Y 9@ numerical calculation, but one which has for its » Calculate angular velocily
el object to perform that which no system of P wowmom o omomowow o om - the slopes of tangents
‘,,—""w*"'} calculation can possibly do, by bringing in the ’ _ _ to the curve
brighter star 6 &° aid Of the eye and hand to guide thejudgment Herschgl s‘(%833) graphical meth_od, applied Fo the data on the double
] A ’ star y Virginis. Image from: Hankins (2006), Fig. 2
’ in a case where judgment only, and not
calculation, can be of any avail. (Herschel,
1833, p. 178)
17 18
: Thus was born: Galton: Heredity — Regression
] ) ® Francis Galton, in work on heritability of traits, introduces the
* Theidea that plotting Y vs. X idea of “reversion” (later: “regression”) toward the mean
could be used for something
e more INHERITANCE o SiZE » SwreT PEaA Sreps.
g » Smoothing is often crucial to S EE— T
¥ii see a pattern or calculate a An early crowd-sourced
i o experiment:
ey / 0 trend g  packets of 10 seeds of 7
i = 2 i gt ] given sizes sent to 7 friends
%E 17 i A * “Please grow these & return
/ & i the offspring”
: ? R AR o
q ¥ . Graph:
i, z * plot the means,
Herschel’s geometric construction of the apparent elliptical orbit of y ¥ 35 * drawaline, -
Virginis from the calculations based on his smoothed scatterplot. ¢ calculate the slope ( R )
Image from: Hankins (2006), Fig. 3. Wi - T . % 3 = ° ~—a theoretical conclusion!
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Image: K. Pearson, The Life, Letters and Labours of Francis Galton, v. 3A, Ch 14, Fig. 1 20




i 1 Galton’ i | di :
Galton: Heredity — Regression alton’s visual discovery

Bivariate normal correlation surface (1886)

* Galton’s argument made explicit:

* slope <1 — regression toward the mean Table 9.1 One of Galton’s correlation tables )
Height of
- “.. offspring did not tend to the mid- Height of the adult child
: resemble their parent seeds in size, parent
R o but to be always more mediocre ininches <617 622 632 642 652 662 672 682 692 702 712 722 731 >737
£ T than they—to be smaller than the
& - - . >73.0 = _  —_- - = - = = = = =1 3 —
= e - parents, if the parents were large; to 725 - 1 2 1 2 7 2 4
z - = - P o _— - - - - S
1. - - ehild ~0.34 * parent be larger than the parents, if the 715 _ o 1 3 4 3 5 10 4 9 2 2
§ | parents were very small ...” (Galton 70.5 1 — 1 — 1 1 3 12 18 14 7 4 3 3
g 1886) 69.5 — — 1 16 4 17 27 20 33 25 20 11 4 5
% | 68.5 1 — 7 11 16 25 31 34 48 21 18 4 3 —
I 67.5 — 3 5 14 15 36 38 28 38 19 11 4 — —
66.5 —_ 3 3 5 2 17 17 14 13 4 — —_ — —
¥ 65.5 i — ¢ 5 7 un on 7 7 S5 2 1 — -
T T = = = 64.5 1 1 4 4 1 5 5 - 2 - - = — =
12 14 18 :s. 2 2 24 <64.0 1 — 2 4 1 2 2 1 1 ~— o o e —
Parent seed diameter (0.01in.) Totals 5 7 32 59 48 117 138 120 167 99 64 41 17 14
Medians - — 663 678 679 67.7 679 683 68.5 690 69.0 700 — —

Source: Galton (1886), p. 68.
21 22

Visual smoothing = Insight Visual insight = Theory (the OMG! moment)

Table 9.1 One of Galton’s correlation tables ' e Level curves are ellipses DIAGRAM BASED ON TABLE 1.
e Regression lines are loci of (&1 fiansls heights are multiplied by r08)
Height of conjugate tangents
. . ;] s ADULT CHILDREN

the mid- Height of the adult child e L their Heights , and Deviations from 68%inches.
p:n.':nl rnty Heights| Deviates nl"‘ l“b I".B ? 613 0|B -"P 7? ?F xl‘
ininches <617 62.2 632 642 652 662 672 682 €92 702 712 722 732 >737 3 e e o e =
- 72—
>73 ey

;2 71—

. :

70 £ 70 —

63 ::

68

2 = 60—

67 s

66 .

65 ; . = 4

Py ... that Galton should have
<64 . evolved all this ... is to my mind 71
Tot: o & - 38 120, 18 g 7 one of the most note-worthy
Medians —_ — 663 67.8 679 67.7 679 683 68.5 69.0 69.0 700 — — scientific discoveries arising %

from analysis of pure
Source: Galton (1886), p. 68. s observation (Pearson 1920, Galton (1886, PI X): Smoothed contours of heights of parents and children 24

p37)




How did Galton reach this conclusion?

Ie

Literal application of
Galton’s smoothing
method only vaguely
suggests “concentric
ellipses” or lines of
means as conjugate axes

Mid—parent height

65 67
Child height

75

How did Galton reach this conclusion?

75
Modern smoothing
methods (kernel density
estimate) suggests that 737
Galton:
e smoothed by ‘eye & 1
brain’ o
e was probably looking for =
ellipses ?:f 691
z o
5
o 67
=
51
631
61 :
61 63

65 67 69 7
Child height

Ie

* The LM family & friends
* Geometrical ellipsoids
* The data ellipse

Data Ellipsoids
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The LM family & friends

Models, graphical methods & opportunities

Classical linear models

Generalized linear models

1 LM family: E(y)=XB, V(y|X)=0?l
ANOVA, regression, ...

}?I Many graphical methods: effect
LI plots, spread-leverage, influence, ...

GLM: E(y)=g"'(XB), V=V[g'(XB)]
poisson, logistic, loglinear, ...

Some graphical methods: mosaic plots,
4fold plots, diagnostic plots, ...

2+ MLM: E(Y)=XB, V(Y|X)=I®Z
MANOVA, MMReg, ...
FF] Graphical methods: 77?7

# of response variables

MGLM: 777

Graphical methods: 7?7

1

preytige
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The LM family & friends

Models, graphical methods & opportunities

# of response variables

Classical linear models

Generalized linear models

1 LM family: E(y)=XB, V(y|X)=02l GLM: E(y)=g™(XB), V=V[g(XB)]
ANOVA, regression, ... poisson, logistic, loglinear, ...
1 Many graphical methods: effect Some graphical methods: mosaic plots,
T plots, spread-leverage, influence, ...  4fold plots, diagnostic plots, ...
2+ MLM: E(Y)=XB, V(YX)=I®Z MGLM: 777

MANOVA, MMReg, ...
Graphical methods: ?7?

Graphical methods: 7?7

Eye
Brown Har@roenBlun

Effects of skin colour and age on relsave by Toronio polics

colour
Black —
White = =

Frobabity{released)

Gender. Femaie M @ @ om s 29

The LM family & friends

Models, graphical methods & opportunities

Classical linear models

Generalized linear models

1 LM family: E(y)=XB, V(y|X)=02l
ANOVA, regression, ...

GLM: E(y)=g"(XB), V=V[g"(XB)]
poisson, logistic, loglinear, ...

[ Many graphical methods: effect
LI plots, spread-leverage, influence, ...

2+ MLM: E(Y)=XB, V(Y|X)=I®Z
i MANOVA, MMReg, ...
?] Graphical methods: 777

Some graphical methods: mosaic plots,
4fold plots, diagnostic plots, ...

MGLM: 777

Graphical methods: 7?7

# of response variables

Today: HE plots & related
methods

i

The LM family & friends

Models, graphical methods & opportunities

# of response variables

Classical linear models

Generalized linear models

1 LM family: E(y)=XB, V(y|X)=02l  GLM: E(y)=g'(XB), V=V[g"(XB)]
ANOVA, regression, ... poisson, logistic, loglinear, ...
1 Many graphical methods: effect Some graphical methods: mosaic plots,
T plots, spread-leverage, influence, ...  4fold plots, diagnostic plots, ...
2+ MLM: E(Y)=XB, V(YX)=I®L MGLM: some beginnings...

MANOVA, MMReg, ...
Graphical methods: ?7?

multivariate count data
Graphical methods: 7?7

i

Tomorrow: Someone’s
PhD thesis (better
models)

Applications: big data,
genomics, ... beg for
better graphical methods

Geometric ellipsoids

® Ellipsoids in p dimensional space
= proper (“fat”) ]
* improper (“thin”) —rank(C) < p x Cx <L
® unbounded —infinite eigenvalue(s)

6 0
- C|—[2 ]
[ 0

C, (blue): proper & fat; C, is also fat, but in
orthogonal directions

E:={x, suchthat

2 a2
(S S
| I
]
[
Il
(=T S =
D L 2
(=]

C, (red): improper & thin; C,tis an
unbounded cylinder of elliptical x-section
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Geometric ellipsoids

* In 2D, ellipses are easily seen as
determined by their principal axes—
o eigenvectors of C
= Eigenvalues, A, determine the sizes

' Ny

= |n applications, this is often called “data
space”, using C = X'™X or a multiple
* There is also a dual space, that of C*
= Same axes, but sizes ~ 1/\,

= |n applications, this is often called “B
space” or parameter space, using

C1=(X™X) or a multiple
* This is a powerful idea that can be
exploited in data visualization

o - ® Galton recognized the first point; Hotelling
(1933) made it precise

" The idea of the dual space comes from
Dempster (1969); Monette (1990)
explained why it mattered.
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Data ellipsoids

* For a p-dimensional multivariate sample, Yy, , the sample mean
vector, y, and sample covariance matrix, S, are minimally sufficient
statistics under classical (gaussian) assumptions.

®* These can be represented visually by the p-dimensional data
ellipsoid, & of size (“radius”) c,

E(y,S)={y:(y-y) S (y-y)<c?}

®* — an ellipsoid centered at the means whose size & shape
reflects variances & covariances

® We consider this a minimally sufficient visual summary of
multivariate location and scatter.
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Data ellipsoids: properties

* Ellipsoid boundary: Mahalanobis Dy,? (y;) ~ x>
= p=2:shadows generalize univariate confidence intervals
® eccentricity: precision; visual estimate of correlation

7549

Mid Parent height

(0.40) Univaridte: méan + 1s

634

(0.68) Bivariate: mean t 1s

614

61 63 65 a7 69 al 73 75

Chid height
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Robust methods: robust=TRUE

* Qutliers and high-leverage points challenge routine use of

classical, gaussian methods: so yesterday! you say...
® Robust estimation of center () and scatter (Z) is now well established
® High breakdown bound methods: MCD, MVE, ...
® These are increasingly available in standard software

dataEllipse(logtemp, loglight, ...) dataEllipse(logtemp, loglight,
robust=TRUE, ...)
e Herzsprung-Russell diagram . Herzsprung-Russell diagram

3 of star cluster CYG " of star cluster CYG

- | -

. = = . . — .
= e “‘“:‘ o 5 P RmGé‘['t'w_Ky ]
2 F. B % /! L) 1
= — LA Y = —
] \ PR IS ] e |
= \ i = i
E§ « O ? ‘ ]

= “""t‘-‘- B>
« § Aljdata

a0 az a a

log Surface Temperalure log Surface Temperatura
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Insight: Outlier detection

Multivariate outliers might be invisible in univariate views, but
become readily apparent on the smallest principal component

= 100 observations on two correlated normal variables with two
bivariate outliers near (2,2), (-2, -2)

original data Outliers stand out on PCAZ

PCAZ
0
L

Animation: http://www.datavis.ca/gallery/animation/outlier-demo/
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Insight: Measurement error

* |n classical linear models, predictors (X) are usually assumed
to be fixed (non-random), or measured w/o error
= Rarely true in social science and medicine
= Structural equation models often used to account for this
= What effects do errors in predictors have on typical regression
models?
®* Main ideas:
= Ellipses in data space show effects on bias and precision
" The same effects can be seen in parameter (B) space

38

0 4 8 8 00

Imagine a small study investigating
the relation between a measure of
heart disease (y), and coffee

ls consumption (x1) and stress (x2)

l, Results: Im(Heart ~ Coffee + Stress)

Coefficients and tests for the joint model predicting heart disease
from coffee and stress

Estimate (§) Std. error £ value Pr(= [¢t])

Intercept —7.7943 5.7927 -1.35 0.1961

Coffee —0.4091 0.2918 —1.40 0.1789

B Stress 1.1993 0.2244 534 0.0001

Wow! That means | can drink all the
coffee | want as long as | avoid stress.
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x
v

Adding measurement error

* Measurement error in Heart (y) decreases precision, but does not add bias

® Measurement error in Stress (x,) biases its effect B,,... — 0 & decreases
precision

| Data space Beta space

Heart

Stress coefficient

Stress (Intercept) coefficient

40




Measurement error: even worse!

® Aserror in Stress increases,

—>0.
| Beta space: BStress
(B1. Pa) ® QOK, understand that now.

a * But, at the same time, the
\ effect of coffee, Byfree
1 seems to become larger!

* Elliptical insight:
® Increasing error in x, drives

coefficient for x, toward the
marginal model, ignoring x,

Stress coefficient

00

@ = You can also see that in this
10 05 00 05 10 15 case the std. errors of Brsree
Coflen costficient decrease with error in Stress!
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Kissing ellipsoids

* Imagine 2 magic stones

15 —03 . .
). Az:(_o'3 1.0) which generate elliptical

Aq

= -
o O
- o
ot

I
—

waves when dropped into a
pond at locations m; & m,

® Their locus of osculation is
the set of points where the
tangents to the ellipses are
parallel— where the ellipses
kiss!

* The solution has a lovely
bilinear (bisexual?) form

0 1
oc-moy a O]Aux-ml):o
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This is exactly the situation in two group discriminant analysis:

* Under the assumption of equal covariance matrices, 2, = 2,, the locus of osculation
is linear--- the discriminant axis, and we have LDA, with b=S_, ., (m;-m,)

e IfZ, #3,, the classification axis is quadratic, and we have QDA

* This is why you need to test for 2, = 2,!

The HE plot framework

Hypothesis-Error (HE) plots

= Visualize multivariate tests in the MLM

= Linear hypotheses--- lower-dimensional ellipsoids

® Extension: HE plot matrices
Canonical displays

® |ow-dimensional multivariate juicers

® shows data in the space of maximal effects
Covariance ellipsoids

= visualize tests of homogeneity of covariance matrices

For all: robust methods are available or good
research projects!
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HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using different
methods, and then tested on:

e BM: basic math problems (7 *23-2%*9=7?)

e WP: word problems (“a train travels at 23 mph for 7 hours, but for 2 hours ...”)

Do the groups differ on (BM, WP) by a multivariate test?
If so, how ???

> mod <- 1lm(cbind(BM, WP) ~ group, data=mathscore)
> Anova(mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
group 1 0.86518 28.878 2 9 0.0001213 **=*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ° ’ 1
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HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate
location & scatter, just as (y,S) are sufficient for (W.Z)

Data Data ellipses
= Group1 o *
=4 * Group2 s
L ] [ ]
W W
= ] m
EJ £ [ ] [ ] EJ &
2 | g
8 . g g
o ¥ he)
g ] ] g -
H ] ]
L 2
-1 [ ]
140 150 160 170 160 160 2'_;U 140 160 180 200
Basic math Basic math
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Data ellipses Visual
Ky Hemd overview
| L

cgroup

Basic math Basic math

Canonical space

‘Canonécal scores Structure
— a

Discriminant
scores

Word problems
Can1{100%)

group

Basic math
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HE plots: Details

* Hypothesis - Error (HE) plots provide a simple framework for
visualizing MLMs
* All hypothesis tests correspond to statistics based on the
eigenvalues, A, of HE (H “relative to” E):
® H: the sum of squares & products (SSP) matrix for the hypothesis
= E:the SSP matrix for error

* Foranyterm,t, H, = \A(T Y. SSP of fitted values

E = SSP of residuals in full model

* They answer the question:
= “How big is the H ellipsoid relative to the E ellipsoid?”
= Equivalent Q: How big is the data ellipsoid of fitted values relative to
data ellipsoid of residuals?
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Ex: Neuro- & Social-Cognitive measures in psychiatric groups

® A study by Leah Hartman @York examined whether patients
classified as ‘schizophrenic’ or ‘schizoaffective’ (on DSM-IV)
could be distinguished from a normal, control sample on
standardized tests in the following domains:

= Neuro-Cognitive: processing speed, attention, verbal learning, visual
learning, problem solving

= Social-cognitive: managing emotions, theory of mind, externalizing
bias, personalizing bias
® Research questions — MANOVA contrasts
= Do the two psychiatric groups differ from the controls?
® Do the two psychiatric groups differ from each other?

See: Friendly & Sigal (2017), Graphical Methods for Multivariate Linear Models in Psychological Research: An R Tutorial
The Quantitative Methods for Psychology, 13, 20-45, http://dx.doi.org/10.20982/tgmp.13.1.p020

Neuro-cognitive measures

library(heplots)
library(candisc)
data(NeuroCog, package="heplots")

# fit the MANOVA model, test hypotheses

NC.mlm <- 1lm(cbind(Speed, Attention, Memory, Verbal, Visual,ProbSolv) ~ Dx,
data=NeuroCog)

Anova(NC.mlm)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
Dx 2 0.2992 6.8902 12 470 1.562e-11 **=*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

> contrasts(NeuroCog$Dx)

So, the groups differ. But how? [,1] [,2]

What about the research hypotheses? Schizophrenia -0.5 1
Schizoaffective -0.5 -1
Control 1.0 0
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Visualize me: in data space

# Bivariate view for any 2 responses:
heplot(NC.mlm, var=1:2, ...)

# HE plot matrix: for all responses
pairs(NC.mlm, ...)
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Visualize me: in canonical space

@ As with biplot, we can visualize MLM hypothesis variation for all
responses by projecting H and E into low-rank space.

@ Canonical projection: Y, .p — Zpxs = YE "2V, where V = eigenvectors
of HE™".

@ This is the view that maximally discriminates among groups, ie max. H
wrt E |

ProbSolv

Canonical dimension 2 (1.5%)

-3

-4 -2 o 2 4

Canonical dimension 1 (98.5%) .




Visualize me: canonical HE plots

@ Canonical HE plot is just the HE plot of canonical scores, (z1,22) in 2D,

@ or, Z1.2>.23.in 3D.

@ As in biplot, we add vectors to show relations of the y; response variables
to the canonical variates.

@ variable vectors here are structure coefficients = correlations of variables
with canonical scores.

o ProbSolv
—_

=

o

u‘? o~
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5 o &5

=

B Visual Speed
g "

§ o Memory

8 Attention~ Verbal

-‘6 -4 -‘2 1] 2 4 ]
Canonical dimension1 (98.5%)
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Social cognitive measures

> data(SocialCog, package="heplots")

> SC.mlm <- 1m(cbind(MgeEmotions,ToM, ExtBias, PersBias) ~ Dx,
data=SocialCog)

> Anova(SC.mlm)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
Dx 2 0.212 3.97 8 268 0.00018 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * > 1

Test contrasts: Dx1 = Normal vs. Patient; Dx2 = Schizo vs. Schizoaffective

> print(linearHypothesis(SC.mlm, "Dx1"), SSP=FALSE)
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.1355 5.212 4 133 0.000624 ***

> print(linearHypothesis(SC.mlm, "Dx2"), SSP=FALSE)
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.0697 2.493 4 133 0.0461 *
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heplot(SC.mlm,
hypotheses=1list("Dx1", "Dx2"),...)

pairs(SC.mlm,
hypotheses=1ist("Dx1", "Dx2"),...)

MygeEmuolions

ToM

Fxtfias

PersBias

20 30 40 50 &0

MgeEmotions

Visualize me: canonical space

MgeEmotion

PersBias

Canonical dimension 2 (16.1%)
0
|

Canonical dimension 1 (83.9%)

56




Robust MLMs

® Robust methods for univariate LMs are now well-developed
and implemented
= - proper SEs, Cls and hypothesis tests
® Analogous methods for multivariate LMs are a current hot
research topic
* The heplots package now provides robmlm( ) for the fully
general MLM (MANOVA, MMReg)
= Uses simple M-estimator via IRLS

= Weights: calculated from Mahalanobis D% a robust covariance
estimator and weight function, (D?)
2 v\l -1 Vs 2
D* = (Y - Y) Srobust(Y - Y) - Zp

= Downside: SEs, p-values only approximate
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Observation weight

Robust MLMs: Example

> pottery.mod <- 1m(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
> pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)

Observation weights overlaid HE plots
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Ridge regression: Visualizing bias & precision

* In the classical linear model, collinearity -- high R2(X,| other Xs)
-- causes problems:

= Std errors of coefficients B are inflated
® QLS estimates tend to be too large on average

® Ridge regression & shrinkage methods
= Desire: increase precision (decrease Var([3))
OLS estimates are constrained, shrinking B"—0
All methods use some tuning parameter (k) to quantify tradeoff

How to choose?
* Numerical criteria, generalized cross-validation, bootstrap, etc.
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Bias vs. Precision tradeoff

® Particularly important when the goal is predictive accuracy
= Complex models, many predictors, e.g., demand for medical care
® |n-sample prediction error decreases with model complexity
® But, in new samples prediction error suffers from high
variance of complex models

High Bias Low Bias

Low Variance

High Variance

How to visualize the
tradeoff?

l'est Sample

Prediction Error

+1 if you guessed an
ellipse !

Low Iigh

Model Complexity
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Univariate ridge trace plots

@ Typical: univariate line plot of

Bk vs. shrinkage, k . ]
y:]
- H
@ What can you see here regarding § e
bias vs. precision? ° e
. L P -
o This is the wrong graphic form, oo $pgte— - { Pouten
o P ST & amec Forces
for a multivariate problem! el . o Unemsioped
e Goal: visualize B vs. Var(Bk) [ )

0.00 0.02 0.04 0.06 o.oe 010

Ridge constant (k)
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Example: Longley data

Longley (1965) data: economic time series (n = 16) of yearly data from
1947 — 1962, often used as an example of extreme collinearity.

> names (longley)

[1] "GNP.deflator" "GNP" "Unemployed" "Armed.Forces"

[51 "Population" "Year" "Employed"

We take number of people Employed as the response:

> lmod <- Im(Employed ~ GNP + Unemployed + Armed.Forces +
Population + Year + GNP.deflator, data = longley)
> vif(lmod)

GNP Unemployed Armed.Forces Population Year GNP.deflator
1788.513 33.619 3.589 399.161 758.981 13b.b32

As suspected, almost all VIFs are very large.
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Ridge regression: Properties

@ OLS estimates:

EOLS _ (XTx)fley )
Var(3°%) = #2(xTx)™
@ Ridge regression: replaces XTX with XTX + kI
o drives |[XTX 4 kl| away from zero even if |XTX| ~ 0.

o drives ||3|| = (878)Y2 toward zero— increasing "bias”
o decreases the “size” of Var(3)— increasing precision— in that

Var(B°"%)| > |Var(BFR)|  decreases with k
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Ridge regression: Properties

@ Ridge estimates:

BEE = (XTX+k)xTy (1)
- G, BOLS.
Var(BRR) = 732G, (XTX)!G] . (2)

where G, = [1+ k(XTX]_l}_l, the (p x p) “shrinkage” matrix.

@ Equivalent to penalized LS criterion,
RSS(k)=(y—XB) (y—XB)+kB'3 (k>0). (3)
@ Or, to a constrained LS minimization problem,

BRE = argmin(y — X3)"(y — XB) subjectto 373 < t(k) (4)
IE}
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Ridge regression: Geometry

Ridge regression solution has a /’
simple geometric interpretation based /// '\ ]

on ellipsoids of the RSS(k) function, |
T T / 72/
RSS(k) = (y—XB) (y—XB)+kB B

o o AR ,/
OLS coefficients are shrunk toward 0 °Bj--""
along the locus of osculation of
@ Covariance ellipsoid of 3°L°
0 +t

o Unit sphere 373 < t(k) (i

The matrix G, = [I + i(()(T)()_lr1 shrinks the covariance matrix of 3y
in a similar way
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Generalized ridge trace plots

Rather than plotting just the univariate trajectories of 3y vs. k, plot the
covariance ellipsoids of Ek = Var[,@k) over same range of k
@ Centers of the ellipsoids are (3, — same info as in univariate plot
@ Can see how change in one coefficient is related to changes in others
@ Relative size & shape of ellipsoids shows directly effect on precision

0 08

g 5
2 E
E o | 2
A g
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Scatterplot matrix of ridge trace plots

> pairs(lridge, radius=0.5, diag.cex=1.75, col=clr, fill=TRUE)

=
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plot3d() method

> plot3d(lridge, radius=0.5)

vedr |
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> plridge <- pca.ridge(lridge)

i i = i = = ix="Di i L
> pairs(plridge, col=clr, radius=0.5, diag.cex=3) > biplot(plridge, col=clr, radius=.5, cex.lab=1.25, prefix="Dimension ")

@ The ellipsoids are rotated to the ] o View the variance ellipsoids in
principal axes of XTX ;he space of the smallest

e SVD of X = UDVT implies: g IMENsions
E(B.2) — E(VB.VTEV) g o This is where the greatest

g i !

@ Transformed ellipsoids have their % 1 shrinkage takes placel
major/minor axes aligned with E @ Variable vectors show how these
coordinate axes. v | dimensions relate to the original

e It is easy to see that shrinkage variables [*biplot’] _
occurs only in the space of the . . o GNP, Year.& Pop contribute
smallest eigenvalues o most to Dim 6

Dimension 5 (0.043%)
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Summary & conclusions

* This presentation has been brought to you by the letter S\mathcal{E}S,

E

® |t stands for all | have come to appreciate about the deep relationships
among:
= geometry,
= statistics, and
= data visualization
® The history of data vis progressed from 1D — 2D — nD [1—2—many]

® The visual discovery of the data ellipse by Galton is the inception of modern statistical
methods

= |t was then only a small step from 2D — nD for multivariate data vis methods.

® The connections among these are still tools for thought & continue to give
new insights
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