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Correlation and covariance matrices provide the basis for all
classical multivariate techniques.Many statistical tools exist for
analyzing their structure but, surprisingly, there are few tech-
niques for exploratory visual display, and for depicting the pat-
terns of relations among variables in such matrices directly, par-
ticularly when the number of variables is moderately large. This
article describes a set of techniqueswe subsume under the name
“corrgram,” basedon two main schemes: (a) Renderingthe value
of a correlation to depict its sign and magnitude. We consider
some of the properties of several iconic representations, in re-
lation to the kind of task to be performed. (b) Reordering the
variables in a correlation matrix so that “similar” variables are
positioned adjacently, facilitating perception. In addition, the
extension of this visualization to matrices for conditional inde-
pendence and partial independence is described and illustrated,
and we provide an easily used SAS implementation of these
methods.

KEY WORDS: Conditional independence; Effect ordering;
Independence; Partial correlation; SAS; Value rendering; Vari-
able sorting; Visual thinning; Visualization.

1. INTRODUCTION

Correlation and covariance matrices provide the basis for all
classical multivariate techniques, because (together with mean
vectors) they provide suf� cient statistics under multivariate nor-
mal linearmodels.Many statistical toolsexist for analyzingmul-
tivariate structure: principal component analysis, factor analy-
sis, canonicalcorrelationanalysis, and so forth. All of these have
the goal of reducing high-dimensional multivariate structure to
a smaller number of dimensions, so that the relationshipsamong
the variables may be more readily apprehended.

Some visualization techniques for these dimension-reduction
methods have also been developed to help reveal or explain the
patternof relationsamong variables:biplots (Gabriel 1971); fac-
tor pattern plots, canonical structure plots (Friendly 1991), and
so forth. Dynamic graphics, including techniques such as ex-
ploratory projection-pursuit (Friedman 1987) and grand tours

Michael Friendly is Professor, Psychology Department, York University,
Toronto,Ontario, M3J 1P3, Canada (E-mail: friendly@yorku.ca).This research
was supported by the National Sciences and Engineering Research Council of
Canada, Grant OGP-0138748. We thank Forrest Young for the initial stimulus
to this work, John Fox for insightful comments and suggestions, and the referees
and Associate Editor for helpful critical reviews.

(Asimov 1985) can also lead to simpli� ed views of relations
among variables, in terms of linear combinations and projec-
tions. Surprisingly, there are few techniques for exploratory vi-
sual display, and for depicting the patterns of relations among
variables directly from correlation matrices.

For a relatively small number of variables, p, (p µ 10, say),
the scatterplotmatrix providesan excellentvisual representation
of the relations among variables. It shows all the data and may be
considerably enhancedby the additionof linear regression lines,
(loess) smoothed curves, data ellipses, and so forth. Particularly
with the additionof nonparametric smoothedcurves, the scatter-
plot matrix display can help determine if relationshipsare linear,
or if transformations are useful for some of the variables. From
here on, we assume that all such problems have been dealt with,
and that all variables may be reasonably assumed to be linearly
related on some possibly transformed scales.

When we go beyond a relatively small number of variables,
it becomes progressively more dif� cult to show all the data di-
rectly. The main approach, as indicated earlier, has been the
application of dimension-reduction techniques.

Here, we consider techniques to display the pattern of rela-
tions among a possibly large set of variables directly, in terms of
their correlations. To do so in a comprehensible way, even for a
moderately large number of variables requires some schematic
visual summary—an effective visual thinning, as in the boxplot
(Tukey 1977), which sacri� ces detail in the middle to provide
more essential information on univariate shape, center, spread,
and outliers.

This article focuses on techniques to display the pattern of
correlations in terms of their signs and magnitudes using visual
thinning and correlation-based variable ordering. Some of the
speci� c ideas and techniques we illustrate have been suggested
before, and some are novel. The main contributions of this arti-
cle are to integrate these methods within a coherent framework
based on the principles of correlation rendering and correlation
ordering, with details, comparisons, and software.

In particular, we compare a variety of visual encodings for
schematic rendering of bivariate relations among quantitative
variables and illustrate the perceptual differences among them
for various data-analytic tasks. We also introduce a new method
for arranging the variables in such displays so that the pattern
of relations among variables may be more easily discerned. Fi-
nally, extensions of this framework lead directly to useful new
displays for exploring conditional independence and partial in-
dependence.

For simplicity, we consider the case for p variables,
Y1; Y2; : : : ; Yp, assumed to be at least approximately multivari-
ate normal, so that a correlation is a reasonable numerical sum-
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Figure 1. Some renderings for correlation values.

mary, and expressed in standardized form ( · i = 0; ¼ i = 1), so
that we may focus on a correlation matrix rather than a covari-
ance matrix.

Section 2 describes several methods for visually encoding a
correlation value to show both its sign and magnitude, with the
goal of depicting the pattern of relations among variables in a
potentially large matrix of correlations. Section 3 describes and
illustrates a method for reordering the variables in a correlation
matrix so that “similar”variablesare positionedadjacently,inor-
der to make such patternsmore apparent.Section4 extends these
ideas to displays designed to show conditional and partial inde-
pendence relations among variables. Section 5 describes some
related methods, and Section 6 describes software implement-
ing our procedures and some others. Section 7 presents some
conclusions and questions for further work on this topic.

2. CORRELATION RENDERING

A matrix of correlations can be displayed schematically in

Figure 2. Corrgram for baseball data. Variables ordered by vector
angles from Figure 3. Lower triangle: correlations shown by color and
intensity of shading; upper: circle symbols.

a variety of forms: as numbers, shaded squares, bars, ellipses,
or as circular “pac-man” symbols, as shown in Figure 1. These
schemes all attempt to show both the sign and magnitude of the
correlation value, using a color mapping of two hues in vary-
ing lightness (Cleveland 1993), where the intensity of color in-
creases uniformly as the correlation value moves away from 0.
Color (blue for positive values, red for negative values) is used
to encode the sign of the correlation, but the renderings are de-
signed so that the sign may still be discerned when reproduced
in black and white.

In the shaded row, each cell is shaded blue or red depending
on the sign of the correlation, and with the intensity of color
scaled 0–100% in proportion to the magnitude of the correla-
tion. (Such scaled colors are easily computed using RGB cod-
ing from red, (1; 0; 0), through white (1; 1; 1), to blue (0; 0; 1).
For simplicity, we ignore the nonlinearities of color reproduc-
tion and perception,but note that these are easily accommodated
in the color mapping function.) White diagonal lines are added
so that the direction of the correlation may still be discerned in
black and white. This bipolar scale of color was chosen to leave
correlationsnear 0 empty (white), and to make positiveand neg-
ative valuesof equal magnitudeapproximatelyequally intensely
shaded. Gray scale and other color schemes are implemented in
our software (Section 6), but not illustrated here.

The bar and circular symbols also use the same scaled colors,
but � ll an area proportional to the absolute value of the corre-
lation. For the bars, negative values are � lled from the bottom,
positive values from the top. The circles are � lled clockwise for
positive values, anti-clockwise for negative values. The ellipses
have their eccentricity parametrically scaled to the correlation
value (Murdoch and Chow 1996). Perceptually, they have the
property of becoming visually less prominent as the magnitude
of the correlation increases, in contrast to the other glyphs.

We use these iconic encodings to display the pattern of cor-
relations among variables in the entire matrix, as shown in
Figure 2, which depicts the matrix of correlations among 11
measures of performance and salary for 263 baseball players
in the 1986 season [from the 1988 Data Expo at the ASA
meetings, as corrected by Hoaglin and Velleman (1994); see
http://lib.stat.cmu.edu/data-expo/1988.html]. To illustrate the
differences among these encodings, we have used shading for
the lower triangle, and circles for the upper triangle. The diago-
nal cells, which have values of 1.0 are intentionally left empty.
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The interpretationfor this example, and the method used to order
the variables are described in Section 3.

The choice of visual representation for graphics always de-
pends on the task to be carried out by the viewer. From Figure 1
and Figure 2 we note that it appears easiest to “read” the numeri-
cal value from the number itself, next from the circular symbols,
then from the ellipsesand the bars, and last for the pure shadings.
(Note: The order of the pies and bars may be up for grabs, but
we put our money on the much-maligned Camembert, when the
purpose is to be able to say “which is more,” or estimate the cor-
relation value.) For exploratory visualization, where the task is
to detect patterns of relations, and anomalies, this ordering may
well be reversed—from shaded boxes as the best to numerical
values as the worst.

Other forms of encoding may also be useful, or those shown
here may be enhanced for certain purposes. For example, it
is straightforward to add visual indications of the signi� cance
level, or of the value of a correlation required for signi� cance.
We do not consider these extensions here, because our emphasis
is on exploratory display.

3. CORRELATION ORDERING

For exploratory visualization, the task of detecting patterns
of relations, trends, and anomalies is made considerably easier
when “similar” variables are arranged contiguouslyand ordered
in a way that simpli� es the pattern of relations among variables.
This is an instance of a simple general principle, called “effect-
ordered data display” (Friendly and Kwan in press) which says
simply that in any data display (table or graph), unordered fac-
tors or variables shouldbe ordered according to what we wish to
show or see. This principle extends the idea of “main effect or-
dering” (e.g., Cleveland1993)—sort quantitative,multiwaydata

Figure 3. Eigenvector plot for baseball data. Each variable is rep-
resented by a vector whose endpoint is the coordinates of the �rst two
eigenvectors.

by means or medians—and is grounded in the perceptual ideas
of similarity and grouping which stem from Gestalt psychology.

Of course, for correlations, there are many ways of specifying
what we mean by “similar.” Several variations have interpreted
this criterion in terms of a clustering, typically hierarchical, of
the variableswhose correlationsare displayed.These procedures
induce only a partial-ordering on the variables: variables within
clustersare contiguous,but thosewithinclustersat any levelmay
be permuted in any order with the same visual interpretation.
[Gruvaeus and Wainer (1972) provided a method to make the
ordering of variables unique, but this method is ad hoc and not
necessarily optimal.]

Here, we take a different tack and opt for a slightly stronger
criterion: doing a reasonable job of placing the variables in
a well-de� ned optimal unidimensional order. We con� ne our-
selves here to methods based on the eigenvalues and eigenvec-
tors of the correlation matrix, R, or some function of it; we con-
sider only methods based on the eigenvectors associated with
the largest k eigenvalues, k = 1; 2; 3. Friendly and Kwan (in
press) showed that this approach provides solutions for a wide
range of visualizationmethods.Second, we do this with the hope
that this approach may be more useful in some cases, and give
results which should not be substantively different from those
obtained by the weaker clustering interpretation.

When the structure of correlations is well described by a sin-
gle, dominant dimension (as in a unidimensionalscale or a sim-
plex), ordering variables according to their positions on the � rst
eigenvector, e1, of the correlation matrix, R, will suf� ce. Ge-
ometrically, this implies that all variable-vectors are contained
within a 90¯ segment of p-space, and all (or most) correlations
are positive or near zero. This is not usually the case, and in
general, more satisfactory solutions are obtained by ordering
variables according to the angles formed by the � rst two (or
three) eigenvectors (principal components).

For example, Figure 3 plots the � rst two eigenvectors of the
correlation matrix among variables in the baseball data. Dimen-
sion 1 relates mostly to measures of batting performance, while
Dimension2 relates to two measuresof � eldingperformance and
to longevitity in the major leagues. However, the lengths of the
projections on these dimensions is determined by the adequacy
(percent of variance) of the two-dimensional representation.On
the other hand, the (cosines of) angles between vectors approxi-
mate the correlationsbetween these variables, and so an ordering
based on the angular positions of these vectors naturally places
the most similar variables contiguously.Friendly and Kwan (in
press) referred to this as “correlationordering,”a generalmethod
for arranging variables in multivariate data displays.

In Figure 2 the variables have been arranged in the angular
order of the eigenvectors from Figure 3. More precisely, the
order of the variables is calculated from the order of the angles,
¬ i,

¬ i =

½
tan¡1(ei2=ei1) ei1 > 0
tan¡1(ei2=ei1) + º otherwise

; (1)

where e1 and e2 are the p £ 1 eigenvectors associated with
the largest two eigenvalues. This circular order is unfolded to
a linear order by splitting at the largest gap between adjacent
vectors. Falissard (1996) described a method for representing
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Figure 4. Corrgrams for baseball data. Each correlation is shown by color and intensity of shading. Left: variables in alphabetic order; right:
variables ordered by angles of �rst two eigenvectors.

the variables in a correlation matrix on a unit sphere, using the
� rst three principal components (PCs).

3.1 Examples

We continue the analysis of the baseball data and illustrate
these methods with additional data on characteristics of auto-
mobile models. Both examples are illustrated in other forms in
the corrgram extensions in Section 4.

Figure 5. Corrgram for baseball data, using season and career vari-
ables.

3.1.1 Baseball Data
Figure 4 compares an arbitrary, alphabetic ordering of vari-

ables with ordering based on the angles of the � rst two PCs for
the baseball data using the shaded encoding. In the left panel
(ordered alphabetically), it is dif� cult to see any overall pattern
of relations among these variables, despite the fact that most
correlations are positive, and the relations here are fairly simple.
The right panel shows clearly that (a) Assists and Errors stand
out as a separate cluster; (b) RBIs, Walks, Runs, Hits and At-
bats form a relatively homogeneousgrouping with high positive
correlations; (c) Putouts has weaker positive correlations with
these; and (d) there are a few correlations which stand out as
higher or lower than their neighbors. (The variable Years ac-
tually has a nonlinear relation with (log) Salary, and is better
represented in a linear model as a piecewise linear function,
yµ7 = min(Years; 7), which is linear up to seven years and � at
thereafter. Similarly, a number of the counted variables, such as
Hits, Runs, Homer, etc., are better represented on a square-root
scale. These transformations do not affect the general nature of
the interpretations drawn here.)

In this case, these observations could arguably be made more
easily from the eigenvector display in Figure 3. For larger or
more complex datasets, the corrgram may have some advantage
for exploratory purposes, because it shows all the correlations,
rather than just a low-dimensional summary.

The baseball dataset actually contains performance statistics
for the 1986 season, and similar measures for the player’s career
(whose names have a `c’ suf� x). Figure 5 shows the corrgram for
all 19 variables (including season and career batting averages,
calculated from Hits and Atbats).

Here we see, among other things, that: (a) the career hitting
statistics are all nearly uniformly highly positively correlated
and, not surprisingly, highly correlated with Years; (b) Salary
(logSal) is most highly related to the career totals (but it turns
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Figure 6. Corrgram for auto data, variables ordered according to
Equation (1).

out that Years is an ef� cient proxy for most of these); (c) the
season and career batting average statistics have a moderately
strong correlation, but are weakly associated with most other
variables; and (d) the � elding variables, Putouts, Assists, and
Errors (all seasonal) form a separate group, with weak correla-
tions to most other variables (perhaps the correlation between
Assists and Errors stands out).

3.1.2 Auto Data
Figure 6 shows a corrgram of data on 74 automobile models

from the 1979 model year (Chambers, Cleveland, Kleiner, and
Tukey 1983, pp. 352–355) . The variables are various physical
measures (gear ratio, head-room, trunk space, rear-seat, length,
weight, engine displacement (Displa), turning circle diameter
(Turn)) as well as Price, gas mileage (MPG), and repair-records
for each of 1978 and 1979.

It is immediately clear that there are two separate groups of
variables: those related to overall size and weight (which have
a positive correlation with Price), and the others, which include
Gratio, MPG, and the two repair record variables. Within the
� rst group,Length,Weight,Displa, and Turn are most positively
correlated; within the second group, MPG and Gratio are highly
correlated, as are the two repair record variables. We also see
strong negative correlations between Gratio and MPG on the
one hand, and the size variables on the other.

4. EXTENSIONS

The corrgram is designed to display patterns of (linear) de-
pendence among variables, as well as patterns of independence.
This display is easily adapted to conditional or partial depen-
dence and independence. See Friendly (1999) and Whittaker
(1990) for some relations among these forms of independence
for both quantitative and qualitative variables.

4.1 Conditional Independence

From Dempster (1969) and from the theory of graphicalmod-
els (e.g., Whittaker 1990) it is well known that the elements of
the inverse of the correlationmatrix, R¡1, expresses conditional
dependenceand independencerelationsin the same way that cor-
responding elements of R express ordinary (linear) dependence
and independence. More precisely,

rij = 0 () Yi ? Yj

rij = 0 () Yi ? Yj j others; (2)

where rij is the (i; j)th element of R, rij is the (i; j)th element
of R¡1, ? means “is independent of,” and “others” refers to
the complementary set excluding variables i and j. Thus, near 0
elements in R signify (bivariate, marginal) independencewhile
near 0 elements in R¡1 signify conditionalindependence,given
all other variables in the set.

When the negative of R¡1 is appropriately rescaled to have
unit diagonals, the off-diagonal elements are all pairwise par-
tial correlations, each of the form rijjoth ers . Thus, a corrgram of
¡ R¡1 providesa visualizationof conditionalindependenceand
dependence, just as the corrgram of R does for marginal inde-
pendence and dependence. In a corrgram of ¡ R¡1, we should
therefore pay particular attention to empty off-diagonal cells, as
well as those which are strongly shaded.

Figure 7 gives an example, for the baseball data seasonal vari-
ables. For ease of comparison, the variableshave been ordered in
the same way as in Figure 4. We see that most of the partial cor-
relations de� ned from ¡ R¡1 are small in magnitude, but there
are a few notable exceptions: controlling for all other variables,
there are still sizeable correlations between Years and logSal,
Homers and RBIs, Hits and Atbats, and Errors and Assists.

All of these have sensible interpretations. For example, com-
paring Figure 7 with Figure 4, the positive relations between

Figure 7. Conditional independence corrgram for baseball data, a
visualization of pairwise partial correlations, rijjothers.
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Figure 8. Partial independence corrgram for auto data, MPG and
Price partialed out.

Years and logSal, and between Homers and RBIs remain when
all other variables are controlled. On the other hand, although
logSal was positively related (marginally) to all of the hitting
performance statistics in Figure 4, we see in Figure 7 that these
(conditional) relations are negligible when the other variables
are taken into account. Figure 7 may therefore be interpreted to
say that the relation between logSal and the hitting performance
measures is largely a re� ection of Years in the major leagues.

4.2 Partial Independence

Partial correlations,R(Y jX), give the correlationsamongone

Figure 9. Partial independence corrgram for baseball data.

set of variables (Y ), when another set (X) have been statistically
controlled (“held constant”), adjusted for, or “partialled out.”
Conceptually, they differ from the conditional correlations just
discussed only in that the set of X variables is � xed, rather
than all the others, for each pair (Yi; Yj). Computationally, they
may be viewed as the correlations among the residuals in the
regressions of each of the Y s on all of the Xs.

Several interpretations of partial correlations are useful for
visual display by corrgrams.

° If ordinary (zero-order) correlations between two Y s are
large in magnitude, but the partial correlations, given one or
more are near zero, then the Xs may be said “to account” for
the correlation between the corresponding Y s.

° Interchanging the typical roles of X and Y , if the one or
more Xs are considered responses, and the Y s explanatory, then
the partial correlations R(Y jX) may be interpreted as correla-
tions among the explanatory variables “focused on” (or par-
tialling out) their relations to the response variables (Falissard
1999).

In both cases, suppose that X is a subset of the variables to
be partialled out. Then, we show a corrgram of the partitioned
matrix,

·
RY jX 0

0 RXX

¸
; (3)

where RY jX = RY Y ¡ RY XR¡1
XXRXY is the matrix of partial

correlations. If there is only one X , that row and column will
be the representation of zeros; otherwise, the RXX portion will
portray the correlations among the Xs.

To illustrate, using the auto data, we might wish to explore
the partial correlations among the remaining variables when
Price and MPG are partialled out; for example, to determine
whether the dependencies among the remaining variables can
be accounted for by Price and gas mileage. Figure 8 shows the
corrgram display, using circular encodings to better depict the
numerical values of the partial correlations. Here, the RXX por-
tion (bottom right) shows the moderately strong negative zero-
order correlation between Price and gas mileage (MPG).

The RY jX portion shows that, controlling for both of these,
the size variables are all positively correlated, but particularly
so for Length, Weight, Displacement and Turn. The remaining
variables (Gratio, Rep77, and Rep78) are generally positively
correlated with each other, although the two repair-record vari-
ables stand out most strongly. Between these two subsets, there
is a consistent pattern for Gratio vs. the others, but somewhat
weaker for the two repair-record variables.

Figure 9 illustrates the second case of a partial correlation dis-
play, showing the correlations among the (seasonal) predictors
of logSal in the baseball data, focused on the salary response
variable. Controlling for salary, years in the major leagues has
(weak) negative correlations with all other variables. Errors and
Assists are still highly correlated with each other, but weakly
correlated with the batting variables. Even taking salary into ac-
count, the battingvariablesare still highlypositivelyrelated, and
again the relation between Homers and RBIs stands out against
the relations of the other variables in the upper left corner.
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Figure 10. Conditional independencenetwork graph for the baseball
data. The locations of variables were determined by an MDS analysis of
the partial correlationmatrix derived from ¡R ¡ 1. Line style and thickness
are proportional to the partial correlation.

5. RELATED METHODS

Several graphic methods,often ad hoc, for depictingthe struc-
ture of matrices and rendering their values have been proposed
in a variety of contexts. The following brief review attempts to
relate the present methods to this other work.

5.1 Ordering

For example, Paolini and Santangelo (1991) used similar dis-
plays for visual analysis of the pattern of sparsity in the p£p co-
ef� cient matrix, A, in large linear systems of the form Ax = b,
where p may be of size 104 or more. Permutation of the matrix
rows and columns is used to search for block structure in the
nonzero elements, enabling specialized solvers to � nd solutions
for these systems far more ef� ciently.

In earlier work, (Hills 1969) proposed two techniques for
graphical analysis of large correlation matrices: a half-normal
plot of Fisher’s z-transforms to identify correlation values too
large to have come from zero populationvalues, and an applica-
tion of metric multidimensionalscaling (MDS) to identify clus-
ters of variables “such that members of the same group are all
fairly positivelycorrelated with each other, and behave similarly
in their relations with other variables.”

In the metric MDS analysis, the variables are represented as
points in k-dimensional Euclidean space determined from the
� rst k eigenvectors of the double-centeredmatrix with elements
(rij ¡ ·ri¢ ¡ ·r¢j + ·r¢¢). Distances between pairs of points ap-
proximate 2(1 ¡ rij) (to the extent that the � rst k eigenvalues
are large), so close points represent variables with high positive
correlations.

For comparison with the present methods, Figure 10 shows a
network graph representation of the conditional independence
relations in the baseball data depicted in Figure 7. In the network
graph, the positions of the variables were derived from a non-
metric MDS analysis of the partial correlation matrix, rijjoth ers

derived from ¡ R¡1, which allows a monotonic, but not neces-

sarily linear relation between the partial correlation value and
distance in the 2D spatial representation. Note that the spacing
of the points, by themselves, does not lead to identi� cation of
similar clusters of variables, nor does it provide any coherent
interpretation.

To show a graph representation of the conditional indepen-
dencies in these data, we follow Friendly (1999) to extend the
simple 0/1 graph diagrams of Whittaker (1990). In Figure 10 we
have added lines between pairs of variables, for all cases where
rijjoth ers > 0:18, the smallest value required to make the graph
connected. In this graph, line-style and thickness encode the
magnitude, and color encodes the sign of the conditional corre-
lation. Comparing Figure 10 with Figure 7, we can see the same
conditional relations identi� ed earlier: Strong positive relations
between 5 and logSal, Homers and RBIs, Hits and Atbats, and
Errors and Assists, when all other variablesare controlled.In ad-
dition several negativeconditional relations attract attention; for
example, RBIs and Runs, Hits and Homers, Putouts and Assists.
In this network graph, it is perhaps somewhat easier to see these
relations than in the corresponding corrgram. We have found,
however, that the usefulness of such graphs depends critically
on the use of a (somewhat arbitrary) threshold for drawing lines,
and the encoding of correlation value by line-style and thickness
is often less effective than in the corrgram.

Other related techniques stem from the method of Mc-
Quitty (1968), which involves iteratively recalculating corre-
lations among the columns of the correlation matrix itself. If
R(0) = corr (Y) is the originalcorrelationmatrix, thesequence,
R(1); R(2); : : : is calculated as R(i) = corr (R(i¡1)). McQuitty
showed that this sequence often converges to a matrix whose
elements are all +1 or ¡ 1, which allows the variables to be par-
titioned into two groups. Recursive applicationof this method to
each group may then be used to generate a hierarchical cluster-
ing of the variables. This method was apparently rediscovered
by Breiger, Boorman, and Arabie (1975) as the CONCOR algo-
rithm, who applied it to proximity matrices and social network
analysis.

Most recently, Chen (1996, 1999) used these ideas to develop
a “generalized association plot” in which (a) the iterative proce-
dure is continued until R(i) becomes (nearly) rank two, (b) the
eigenvectors of R(i) have an elliptical structure, whose order is
used to seriate the variables, and (c) shadings of the reordered
matrix are used to display its structure.

5.2 Rendering

Finally, it is of some interest to compare the techniques pre-
sented here with other methods for schematic rendering of cor-
relation values.Murdoch and Chow (1996) adopteda minimalist
approach by using elliptical glyphs whose eccentricity is scaled
to the signed correlation value, an approach which is suitable
for large (p > 25, say) matrices. However, they eschewed the
use of color and shading, and presented no general scheme for
variable ordering.

The current techniques may also be compared with methods
basedon the scatterplotmatrix and its’ enhancementscited in the
introduction. Fox (personal communication, 2001) suggested
the combination of concentration ellipses and loess smooths as
schematic visual summaries of linear and possibly nonlinear
association.
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Figure 11. Schematic scatterplot matrix for baseball data. Each panel shows the bivariate 68% concentration ellipse (truncated at the data
bounding box) and a loess smoothed curve.

For the baseball data, our version of such a plot is shown in
Figure 11, with a “1 standard deviation”ellipse of 68% coverage
centered at the means, and the variables ordered as in Figure 4
(right). To highlight the patterns of association, all extraneous
ink has been suppressed—points,plot frames, tick marks, and so
on. For p = 11 variables, this display shows far more detail than
the corrgrams presented here, but it also suggests that some of
the relation we have assumed to be linear are actually nonlinear.
While this form of rendering may be better for some tasks, it
would be dif� cult to accommodate many more variables, and
it is clearly more dif� cult to see the overall pattern of relations
among variables in Figure 11 than in the correspondingcorrgram
in Figure 4.

6. SOFTWARE

The corrgrams shown here are all drawn by a general
SAS macro program, corrgram.sas , described in http:
//www.math.yorku.ca/SCS/sasmac/corrgram.html, from which
the source codemay be downloaded.The program has a large va-
riety of options and is easily used. For example, Figure 2, using
shaded encodings below the diagonal, and circular encodings
above, is produced by the macro call,

title Â Baseball data: PC2/1 orderÂ ;

%corrgram(data=baseball,

var=logSal 5 Homer Runs Hits RBI

Atbat Walks Putouts Assists Errors,

fill=S E C);

The analogous partial independence corrgram in Figure 9 is
obtained by adding the keyword option partial=logSal

and removing the fill=S E C option. The program requires
SAS/IML and SAS/GRAPH in addition to the basic SAS Sys-
tem.

A program for MATLAB, corrmap.m was developed by
Barry Wise, and is available at http://www.eigenvector.com/
MATLAB/corrmap.html. This program uses a version of the
k-nearest neighbor algorithm to reorder the variables. It appears
to encode correlation values by a “pseudo-color map” which
ranges from white for r = +1 through yellow and red, to black
for r = ¡ 1. This is not a good choice, but other color mappings
may be readily used, and the source code is available.

Finally, SYSTAT provides a variety of matrix clustering al-
gorithms, clustering both rows and columns. When applied to
a correlation matrix, the rows and columns are permuted ac-
cording to the cluster structure, and the correlation values are
depicted by colored squares, but using an apparently arbitrary
and � xed color scheme.

7. CONCLUSIONS

In a wide sense there is not much that is absolutely novel
here—various methods for visually depicting correlation matri-
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ces have been proposed (or just used, e.g., Dobkins, Gunther,
and Peterzell 2000, � g. 2), and various schemes for reordering
variablesin such matrices have also been suggested.Yet, surpris-
ingly, there has been no published work we have found treating
these methods in any coherent way.

We can claim to have presented a more general and compre-
hensiveaccountof thepossibilitiesthanhas appearedpreviously.
We have also (a) suggested a new scheme for ordering variables
in such displays, (b) extended the idea of correlation mapping to
more general concepts of dependenceand independence,and (c)
illustrated (we hopeconvincingly)why they might be useful. We
also provide a � exible implementation of these ideas (Section
6) with which others can work, and perhaps extend.

In particular, the details of the various rendering techniques
suggested here bear further study: continuously scaled versus
classed colors, accounting for the nonlinearity of color repro-
duction and perception, circles or bars versus shaded boxes, and
so forth. It was not until we had tried several alternatives that
the differences among them became apparent.

For large matrices, these techniques scale relatively well, but
the results are most often successful when the level of detail in
the rendering is minimized (e.g., usingshading,ellipticalglyphs,
etc.). Labeling of the variables, important for interpretation,also
becomes more dif� cult, but this is easily solved by � exible font
orientation and scaling.

Finally,we note that these graphical techniquesare applicable
to the wider class of symmetric matrices, including distance
and proximity matrices. In addition, the method of correlation-
basedvariableorderingdescribedhere has been shown (Friendly
and Kwan in press) to facilitate perception of relations in other
multivariate data displays (e.g., parallel coordinate plots, star
plots).

[Received February 2001. Revised August 2002.]
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