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Introduction General ideas

General ideas

Topic: analysis and interpretation of multi-way frequency tables
How to visualize and understand associations?
How to test or compare competing explanations?
How to allow for special circumstances: ordinal variables, square tables, that
provide simplified descriptions?

Loglinear models provide one, very general approach
loglm() and Poisson glm() frameworks
Special models for ordinal variables, square tables, non-linear terms (RC
models), etc.
A wide range of associated visualization methods: mosaic plots and family
Full-data plots: maybe these plot too much?
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Introduction General ideas

General ideas

CA and MCA
Two-way tables: CA; n-way tables: MCA, JCA, etc. (but only bivariate
associations)
Simple visualizations: 2D (3D?) plots of category points
Principally descriptive: Hard to specify or test specific hypotheses
Model plots: maybe these plot too little?

Odds and odds ratios
Odds and odds ratios are natural summaries for quantities of interest
Some familiar models can be recast as models for odds or odds ratios
Model-based plots can provide simpler interpretation
Data + Model plots: maybe these are just right!
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Introduction Plots: Data, Model, Data + Model

Plots: Data, Model, Data + Model

Data plots: well-known. They help answer different kinds of questions:
What do the data look like?
Are there unusual features?
What kinds of summaries would be useful?

Model plots: less well-known, but also help answer important questions:
What does the model look like? (plot predicted values)
How does the model change when its parameters change? (plot competing
models)
How does the model change when the data is changed? (e.g., influence
plots)

Data + Model plots combine these features, and lead to other questions:

How well does a model fit the data?
Does a model fit uniformly good or bad, or just good/bad in some regions?
How can a model be improved?
(Model uncertainty: show confidence/prediction intervals or regions)
(Data support: where is data too “thin” to make a difference?)
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Introduction Plots: Data, Model, Data + Model

Plots: Data, Model, Data + Model

Example: Linear model— Prestige ∼ Income + Education + Type
Data plot: marginal relation of Income on Prestige
Model (effect) plot: conditional fitted values, controlling for other variables
Data + Model plot: Effect of Income (model) + partial residuals (data)

Data plot: prestige ~ income
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Model plot: Effect plot for income
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Data + Model plot: Effect of income + partial residuals
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Introduction Main ideas

Talk plan: Main ideas

Familiar case— Binary responses:
Every loglinear model for a binary response has an equivalent form in terms
of log odds [“logit” models]
Log odds models have simple interpretations
Data + model plots give simple descriptions of data and models

Extend to two-way (I × J) and three-way + (I × J × K1 . . . ) tables:
Log odds as contrasts in log(n)
Variety of simple models for log odds (ANOVA-like)
Easily incorporate ordinal variables
Data + model plots give simple descriptions of data and models

Generalized log odds ratios capture associations between two focal
variables

Simple linear models for LOR
Direct visualization (Data + model plots) =⇒ more sensitive comparisons
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Binary responses

Simple example: UCB Admissions
Data on admission to graduate programs at UC Berkeley, by Dept, Gender
and Admission

structable(Dept ˜ Gender+Admit, UCBAdmissions)

## Dept A B C D E F
## Gender Admit
## Male Admitted 512 353 120 138 53 22
## Rejected 313 207 205 279 138 351
## Female Admitted 89 17 202 131 94 24
## Rejected 19 8 391 244 299 317

or, as a two-way table (collapsed over Dept),

structable(˜ Gender + Admit, UCBAdmissions)

## Admit Admitted Rejected
## Gender
## Male 1198 1493
## Female 557 1278

9 / 68

Binary responses Visualizing data, fitting models

Fourfold displays for 2 × 2 tables
General ideas:

Model-based graphs can show both data and model tests (or other
statistical features)
Visual attributes tuned to support perception of relevant statistical
comparisons
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Quarter circles: radius ∼ √nij ⇒ area ∼
frequency
Independence: Adjoining quadrants ≈
align
Odds ratio: ratio of areas of diagonally
opposite cells
Confidence rings: Visual test of
H0 : θ = 1↔ adjoining rings overlap
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Binary responses Visualizing data, fitting models

Fourfold displays for 2 × 2 ×k tables
Stratified analysis: one fourfold display for each department
Each 2× 2 table standardized to equate marginal frequencies
Shading: highlight departments for which Ha : θi 6= 1
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Binary responses Visualizing data, fitting models

Mosaic displays
Tiles: Area ∼ observed frequencies, nijk
Friendly shading (highlight association pattern):

Residuals: rijk = (nijk − m̂ijk )/
√

(m̂ijk )
Color— blue: r > 0, red: r < 0
Saturation: |r | < 2 (none), > 4 (max), else (middle)

(Other shadings highlight significance)
(Other color schemes: HSV, HCL, . . . )
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Mosaic displays: Fitting & visualizing models
Mutual independence model: Dept ⊥Gender ⊥Admit

berk.mod0 <- loglm(˜ Dept + Gender + Admit, data=UCB)
mosaic(berk.mod0, gp=shading_Friendly, ...)
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Mosaic displays: Fitting & visualizing models
Joint independence model: Admit ⊥ (Gender, Dept)

berk.mod1 <- loglm(˜ Admit + (Gender * Dept), data=UCB)
mosaic(berk.mod1, gp=shading_Friendly, ...)
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Mosaic displays: Fitting & visualizing models
Conditional independence model: Admit ⊥Gender |Dept

berk.mod2 <- loglm(˜ (Admit + Gender) * Dept, data=UCB)
mosaic(berk.mod2, gp=shading_Friendly, ...)
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Binary responses Visualizing data, fitting models

MCA
What can we learn from MCA?

ucb.mca <- mjca(UCBAdmissions)
plot(ucb.mca)
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Binary responses Logit models and log odds

Logit models and log odds

For a binary response variable, each loglinear model has an equivalent
logit model for log odds
These provide a simpler way to formulate and test model(s)
Data + Model plots are simpler to interpret the data and fitted results.

Consider a three-way table, with variable C as a binary response, with
expecected frequencies, mijk

For A = i and B = j , the log odds that C = 1 versus C = 2 is

ψAB
ij = log

(
mij1

mij2

)
= log(mij1)− log(mij2) .

Models now pertain to a two-way table of log odds, ψAB
ij

Plots can show observed values as points, fitted models as lines, uncertainty
as error bars
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Binary responses Logit models and log odds

Logit models and log odds
Equivalent log odds forms:

the model of joint independence, [AB][C] , asserts constant log odds,
ψAB

ij = α
the model of conditional independence, [AB][AC] , allows log odds to vary
with A, ψAB

ij = α+ βA
i

the model of homogeneous association, [AB][AC][BC] , allows log odds to
vary with A & B, ψAB

ij = α+ βA
i + βB

j

Table: Equivalent loglinear and logit models for a three-way table, with C as a binary
response variable.

Loglinear model Logit model Logit formula
[AB][C] α C ˜ 1
[AB][AC] α + βA

i C ˜ A
[AB][BC] α + βB

j C ˜ B

[AB][AC][BC] α + βA
i + βB

j C ˜ A + B

[ABC] α + βA
i + βB

j + βAB
ij C ˜ A * B
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Binary responses Logit models and log odds

Berkeley data: log odds models

For the UCBAdmissions data, the loglinear model of homogeneous
association is [AD][AG][DG].
This model doesn’t fit very well: G2(5) = 20.2. Why?
The equivalent log odds model is:

ψij = log
(

mAdmit(ij)

mReject(ij)

)
= α + βDept

i + βGender
j .

This is the parallel odds model, ∼ a main-effects ANOVA model.
Fit this using glm():
berkeley <- as.data.frame(UCBAdmissions)
berk.logit2 <- glm(Admit == "Admitted" ˜ Dept + Gender,

data = berkeley, weights = Freq,
family = "binomial")
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Binary responses Logit models and log odds

Berkeley data: log odds models
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The effect of gender is extremely
small (NS)
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have a sensible interpretation
i.e., reflect overall rate of
admission
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Binary responses Logit models and log odds

Berkeley data: log odds models

Compare with mosaic display: log odds plot is much clearer

−4.4
−4.0

−2.0

 0.0

 2.0

 4.0
rstandard

p−value =
< 2.22e−16

Model: [DeptGender][DeptAdmit][AdmitGender]
Dept

A
dm

it

G
en

de
r

R
ej

ec
te

d

F
em

al
e

M
al

e

A
dm

itt
ed

A B C D E F

F
em

al
e

M
al

e

−4

3.9

4

−4.4

●

●

●

●

●
● ●

●

●

●

●

●

−2

−1

0

1

A B C D E F
Dept

Lo
g 

od
ds

 (
A

dm
itt

ed
)

Gender
●

●

Male
Female

21 / 68

Binary responses Logit models and log odds

Berkeley data: log odds models

Fit a simpler, more adequate model for log odds:

Drop the general 1 df term for Gender ([AG] in the loglinear model)
Replace with a specific 1 df term for Gender, only in Dept. A

ψij = α + βDept
i + I(j = 1)βGender .

This model now fits very well: G2(5) = 2.68
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Binary responses Logit models and log odds

Berkeley data: log odds models
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Excellent fit is now evident
Simple interpretation:

Admission depends only on
department
... except in Dept A
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Models for Log Odds Two-way Tables

Two-way Tables: Log odds

The log odds approach extends directly to general I × J tables:
Consider a two way I × J table of variables A and B, where B is the
response and A is explanatory.
Questions:

How does the distribution of categories of B vary over the levels of A?
How to visualize associations?
How to test precise hypotheses?

Log odds approach:1

I × J → (J − 1) log odds contrasts for the categories of B for each level of A
What models summarise these values?
(Similar to polytomous response models in logistic regression)

1These ideas stem from Goodman (1983), Biometrics and related papers.
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Models for Log Odds Two-way Tables

Example: Hospital Visits

How does the length of stay in hospital differ among schizophrenic patients,
classified by the frequency of visiting by friends and relatives?

data(HospVisits, package="vcdExtra")
HospVisits

## stay
## visit 2-9 10-19 20+
## Regular 43 16 3
## Infrequent 6 11 10
## Never 9 18 16

Both frequency of visit (explanatory) and length of stay are ordinal
variables
Standard methods (loglinear models) treat these as nominal (“factors”)
Specialized models can take ordinality into account, e.g., with linear or
quadratic effects
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Models for Log Odds Two-way Tables

Exploratory visualizations: Doubledecker plot

Doubledecker plot

doubledecker(HospVisits)

Shows directly the conditional
distributions of stay given visit
Length of stay is shorter with
frequent visits
Infrequent and Never don’t differ
very much

visitRegular Infrequent Never

20+

10−19

2−9

stay
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Models for Log Odds Exploratory visualizations

Exploratory visualizations: Mosaic plot

Mosaic plot

mosaic(HospVisits,
gp=shading_Friendly)

Also shows the conditional
distributions as area-proportional
tiles
Color shows departure (residuals)
from the independence model
The “opposite corner” pattern
signals a possibly unidimensional
relationship between visit and stay
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Models for Log Odds Exploratory visualizations

Exploratory visualizations: CA

What does CA tell us?

plot(ca(HospVisits))

Dimension 1 (100%)
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Association is entirely 1D!
Infrequent and Never category
points don’t differ much
Greater visit frequency
associated with shorter stay

But, how can we test and and visu-
alize these ideas with models?
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Models for Log Odds Models

Models for log odds
Start with the saturated loglinear model for the two-way table

log mij = µ+ λA
i + λB

j + λAB
ij

For adjacent categories of the response variable B, the odds, ωAB
ij and log

odds, ψAB
ij , that the response is in category j rather than j + 1 are:

odds: ωAB
ij =

mij

mi,j+1
log odds: ψAB

ij = log
(

mij

mi,j+1

)
, j = 1, . . . , J − 1

For the hospital visits data, this gives:

t(lodds(HospVisits, response=2))

## log odds for visit by stay
##
## visit
## stay 2-9:10-19 10-19:20+
## Regular 0.9886 1.67398
## Infrequent -0.6061 0.09531
## Never -0.6931 0.11778
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Models for Log Odds Models

Models for log odds

A variety of simple models can be specified in terms of log odds:

Table: Models for adjacent log odds in an I × J table with B as the response

Model log odds parameters degrees of freedom
null log odds ψAB

ij = 0 I(J − 1)

constant log odds ψAB
ij = ψ I(J − 1)− 1

uniform B log odds ψAB
ij = ψA

i I(J − 2)

parallel log odds ψAB
ij = ψA

i + ψB
j (I − 1)(J − 2)

saturated ψAB
ij unspecified

The log odds, ψAB
ij can be viewed as entries in an I × (J − 1) table

These models are analogous to ANOVA tests of the A, B and A ∗ B
effects in this table.
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Models for Log Odds Models

Fit some models

mod.null <- lm(logodds ˜ -1, data=hosp.lodds) # null
mod.const <- lm(logodds ˜ 1, data=hosp.lodds) # constant
mod.unif <- lm(logodds ˜ visit, data=hosp.lodds) # uniform
mod.par <- lm(logodds ˜ visit + stay, data=hosp.lodds) # parallel

Compare models:

anova(mod.null, mod.const, mod.unif, mod.par)

## Analysis of Variance Table
##
## Model 1: logodds ˜ -1
## Model 2: logodds ˜ 1
## Model 3: logodds ˜ visit
## Model 4: logodds ˜ visit + stay
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 6 4.65
## 2 5 4.24 1 0.41 177 0.0056 **
## 3 4 3.43 1 0.81 345 0.0029 **
## 4 2 0.00 2 3.43 734 0.0014 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Models for Log Odds Models

Ordinal variables

When the levels of A are ordinal, we can also test for linear effects.

mod1a <- lm(logodds ˜ as.numeric(visit), data=hosp.lodds)
mod2a <- lm(logodds ˜ as.numeric(visit) + stay, data=hosp.lodds)
# compare parallel log odds models
anova(mod.const, mod2a, mod.par)

## Analysis of Variance Table
##
## Model 1: logodds ˜ 1
## Model 2: logodds ˜ as.numeric(visit) + stay
## Model 3: logodds ˜ visit + stay
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 5 4.24
## 2 2 0.00 3 4.23 604 0.0017 **
## 3 2 0.00 0 0.00
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effects of visit are certainly not linear.
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Models for Log Odds Models

Visualizing log odds and models

Plots of observed and fitted log odds: easy interpretation of data and models
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Models for Log Odds Three-way Tables

Three-way+ Tables: Log odds I

These methods naturally extend to three- and higher-way tables:

Consider a three-way I × J × K table of variables A, B and C, where C is
the response (or focal variable)
The standard loglinear model is:

log mijk = µ+ λA
i + λB

j + λC
k + λAB

ij + λAC
ik + λBC

jk + λABC
ijk

For categories k and k + 1 the adjacent log odds for C are

log odds: ψABC
ijk = log

(
mijk

mi,j+1

)
, k = 1, . . . ,K − 1

These log odds can be viewed as entries in a two-way, IJ × (K − 1) table.
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Three-way+ Tables: Log odds II
The parallel log odds model is

ψABC
ijk = ΨAB

ij + ψC
k

= ψ + ψA
i + ψB

j + ψAB
ij + ψC

k

where the ΨAB
ij are unspecified and the ψ parameters obey standard

(sum-to-zero) constraints.
Simpler models:

uniform log odds: ψC
k = 0

joint independence: ΨAB
ij = ψ

Even simpler models: null effects of A (ψA
i = 0) or B (ψB

j = 0)
Linear effects models: An ordinal A can use ψA

i = i × βA to test for
linearity
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Example: Mice Depletion Data

Kastenbaum and Lamphiear (1959) gave a 3× 5× 2 table of the number
of deaths (0, 1, 2+) in 657 litters of mice, classified by litter size (7–11)
and treatment (“A”, “B”)
How does number of deaths depend on litter size and treatment?

data(Mice, package="vcdExtra")
mice.tab <- xtabs(Freq ˜ litter + treatment + deaths, data=Mice)
ftable(litter + treatment ˜ deaths, data=mice.tab)

## litter 7 8 9 10 11
## treatment A B A B A B A B A B
## deaths
## 0 58 75 49 58 33 45 15 39 4 5
## 1 11 19 14 17 18 22 13 22 12 15
## 2+ 5 7 10 8 15 10 15 18 17 8
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Mice data: Mosaic plot
Fit and display the model of joint independence, [litter, treatment] [deaths]

mosaic(mice.tab, expected= ˜ litter * treatment + deaths)
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What can we see?
Small litters more likely to have 0
deaths
Large litters more likely to have 2+
deaths
More deaths with treatment A
than B
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Mice data: MCA

mice.mca <- mjca(mice.tab)
plot(mice.mca)
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What can we see?
Larger litter size
associated with more
deaths
More deaths with
treatment A than B
What model? How to
simplify?
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Calculating log odds

For a three-way table, a simple way to calculate all (log) odds is to reshape
the data as a two-way matrix, T , with I × J rows and K columns.

## 0 1 2+
## 7:A 58 11 5
## 8:A 49 14 10
## 9:A 33 18 15
## 10:A 15 13 15
## 11:A 4 12 17
...

The IJ × (K − 1) table of adjacent log odds can then be calculated as
log(T )C, where C is the K × K − 1 matrix of contrasts,

C =

 1 0
−1 1

0 −1
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Calculating log odds

More generally,
Consider an R ×K1 ×K2 × . . . frequency table nij···, with factors K1,K2 . . .
considered as strata.
Let n = vec(nij···) be the N × 1 vectorization of the table.
Then, all log odds and their asymptotic covariance matrix S can be
calculated as:

ψ̂ = C log(n)
S = Var[ψ] = C diag n−1 CT

where C is an N-column matrix containing all zeros, except for one +1
elements and one −1 elements in each row.
With strata, C can be calculated as the Kronecker product
C = CR ⊗ IK1 ⊗ IK2 ⊗ · · ·
Linear models for log odds: ψ = Xβ
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Mice data: Log odds

The vcd package now contains a general implementation of these ideas:
odds() and lodds(): calculate odds and log odds for 1 variable in an
n-way table
provides methods (coef(), vcov(), confint() . . . ) for "lodds"
objects

(mice.lodds <- as.data.frame(lodds(mice.tab, response="deaths")))

## litter treatment deaths logodds ASE
## 1 0:1 7 A 1.6625 0.3289
## 2 1:2+ 7 A 0.7885 0.5394
## 3 0:1 8 A 1.2528 0.3030
## 4 1:2+ 8 A 0.3365 0.4140
## 5 0:1 9 A 0.6061 0.2930
## 6 1:2+ 9 A 0.1823 0.3496
## 7 0:1 10 A 0.1431 0.3789
## 8 1:2+ 10 A -0.1431 0.3789
## 9 0:1 11 A -1.0986 0.5774
...
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Mice data: Fit models
Use WLS, with weights ∼ ASE−2

mod0 <- lm(logodds ˜ 1, weights=1/ASEˆ2, data=mice.lodds)
mod1 <- lm(logodds ˜ litter + treatment, weights=1/ASEˆ2, data=mice.lodds)
mod2 <- lm(logodds ˜ litter * treatment, weights=1/ASEˆ2, data=mice.lodds)
mod3 <- lm(logodds ˜ litter * treatment + deaths, weights=1/ASEˆ2, data=mice.lodds)

Compare models:

anova(mod0, mod1, mod2, mod3)

## Analysis of Variance Table
##
## Model 1: logodds ˜ 1
## Model 2: logodds ˜ litter + treatment
## Model 3: logodds ˜ litter * treatment
## Model 4: logodds ˜ litter * treatment + deaths
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 19 65.0
## 2 14 17.8 5 47.2 18.22 0.00018 ***
## 3 10 6.7 4 11.1 5.36 0.01737 *
## 4 9 4.7 1 2.1 3.98 0.07723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Visualize log odds and models: Data plot
Data plot: log odds with error bars: ψABC

ijk ± 1ASEψ
This is equivalent to the saturated model for log odds
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Visualize log odds and models: Smoothing
Apply a linear smoother (weighed linear regression) to each
This is equalvalent to a model with a three-way term,
as.numeric(litter)*treatment*deaths
Error bands show model uncertainty
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Visualize log odds and models: Model + Data plots
Display the fit of the parallel log odds model, ψABC

ijk = ΨAB
ij + ψC

k

treatment: A treatment: B
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Visualize log odds and models: Model + Data plots
Simplify the model: fit only linear effects of litter
lm(logodds as.numeric(litter)*treatment + deaths)
Error bands show smaller model uncertainty
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Generalized log odds ratios
In any two-way, R × C table, all associations can be represented by a set
of (R − 1)× (C − 1) odds ratios,

θij =
nij/ni+1,j

ni,j+1/ni+1,j+1
=

nij × ni+1,j+1

ni+1,j × ni,j+1

Simpler in terms of log odds ratios:

log(θij ) =
(

1 −1 −1 1
)

log
(

nij ni+1,j ni,j+1 ni+1,j+1
)T
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Generalized log odds ratios

log θij ∼ N (0, σ2), with estimated asymptotic standard error:

σ̂(log θij ) = (n−1
ij + n−1

i+1,j + n−1
i,j+1 + n−1

i+1,j+1)1/2

This extends naturally to θij | k in higher-way tables, stratified by one or
more “control” variables.
Many models have a simpler form expressed in terms of log(θij ).

e.g., Uniform association model

log(mij) = µ+ λA
i + λB

j + γaibj ≡ log(θij) = γ

Direct visualization of log odds ratios permits more sensitive comparisons
than area-based displays.
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Models for log odds ratios: Computation

Consider an R × C × K1 × K2 × . . . frequency table nij···, with factors
K1,K2 . . . considered as strata.
Let n = vec(nij···) be the N × 1 vectorization of the table.
Then, all log odds ratios and their asymptotic covariance matrix S can be
calculated as:

log(θ̂) = C log(n)
S = Var[log(θ)] = C diag n−1 CT

where C is an N-column matrix containing all zeros, except for two +1
elements and two −1 elements in each row.
With strata, C can be calculated as C = CRC ⊗ IK1 ⊗ IK2 ⊗ · · ·
loddsratio() in vcd provides generic methods (coef(), vcov(),
confint(), . . . )
plot() method gives reasonable data and model plots.
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Models for log odds ratios: Computation
For example, for a 2× 3 table, there are two adjacent odds ratios

## Age
## Sex Yng Mid Old
## M 30 20 10
## F 5 15 25
## log odds ratios for Sex and Age
##
## Yng:Mid Mid:Old
## 1.504 1.204

These are calculated as:

log(θ) = C log(n) =

[
1 −1 −1 1 0 0
0 0 1 −1 −1 1

]
log


n11
n21
n12
n21
n13
n23
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Models for log odds ratios: Estimation

A log odds ratio linear model for the log(θ) is

log(θ) = Xβ

where X is the design matrix of covariates

The (asymptotic) ML estimates β̂ are obtained by GLS via

β̂ =
(

X TS−1X
)−1

X TS−1 log
(
θ̂
)

where S = Var[log(θ)] is the estimated covariance matrix
=⇒ Standard graphical and diagnostic methods can be adapted to this
case.

visualization: full-model plots, effect plots, . . .
diagnostics: influence plots, added-variable plots, . . .
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Example: Breathlessness & Wheeze in Coal Miners

Ashford & Sowden (1970) gave data on the association between two
pulmonary conditions: breathlessness and wheeze, in a large sample of
coal miners
Age is the primary covariate
How does the association between breathlessness and wheeze vary with
age?

ftable(CoalMiners)

## Age 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
## Breathlessness Wheeze
## B W 23 54 121 169 269 404 406 372
## NoW 9 19 48 54 88 117 152 106
## NoB W 105 177 257 273 324 245 225 132
## NoW 1654 1863 2357 1778 1712 1324 967 526
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Example: Breathlessness & Wheeze in Coal Miners
fourfold(CoalMiners, mfcol=c(2,4), fontsize=18)
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There is a strong + association at all ages
But can you see the trend?
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Coal Miners: Models

(lor.CM <- loddsratio(CoalMiners))

## log odds ratios for Breathlessness and Wheeze by Age
##
## 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
## 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

How does LOR vary with Age?
Uniform association: ln(θ) = β0
Linear association: ln(θ) = β0 + β1 Age
Quadratic association: ln(θ) = β0 + β1 Age + β2 Age2

Fit models using WLS:

lor.CM.df <- as.data.frame(lor.CM)
age <- seq(25, 60, by = 5)
CM.mod0 <- lm(LOR ˜ 1, weights=1/ASEˆ2, data=lor.CM.df)
CM.mod1 <- lm(LOR ˜ age, weights=1/ASEˆ2, data=lor.CM.df)
CM.mod2 <- lm(LOR ˜ poly(age,2), weights=1/ASEˆ2, data=lor.CM.df)
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Coal Miners: LOR plot
Plot log odds ratios and fitted regressions: The trend is now clear!
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Coal Miners: Model comparisons

Standard ANOVA procedures allow tests of nested competing models:

anova(CM.mod0, CM.mod1, CM.mod2)

## Analysis of Variance Table
##
## Model 1: LOR ˜ 1
## Model 2: LOR ˜ age
## Model 3: LOR ˜ poly(age, 2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 7 25.61
## 2 6 6.34 1 19.28 17.23 0.0089 **
## 3 5 5.60 1 0.74 0.66 0.4525
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(vcdExtra::LRstats() gives direct tests of each model, and AIC, BIC)
The linear model, ln(θ) = β0 + β1 Age, gives the best fit.
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Going further: Bivariate response models

In this example, breathlessness and wheeze are two binary responses
A bivariate logistic response model fits simultaneously

the marginal log odds of each response, ψ1, ψ2 vs. predictors (x)
the joint log odds ratio, φ12, vs. x

This model has the form

η(x) =

 η1
η2
η12

 ≡
 log odds1(x)

log odds2(x)
log OR12(x)

 ≡
 ψ1

ψ2
log θ12

 =

 xT
1β1

xT
2β2

xT
12β12


where x1,x2,x12 ⊂ x
For example, with one x , the following model allows linear effects on log
odds, with a constant log odds ratio η1

η2
η12

 =

 α1 + β1x
α2 + β2x

log(θ)

 (1)
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Linear model for log odds and log odds ratios
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Linear model for log odds and log odds ratios
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Prevalence of breathlessness and
wheeze both increase with age
Breathlessness is less prevalent
at young age, but increases faster
Their association decreases
approx. linearly, but is still strong
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Quadratic model for log odds and log odds ratios
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Allowing quadratic fits in age
serves as a sensitivity check
The story is pretty much the same
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Example: Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in
vcd).

Attitude: approves moderate punishment of children (“moderate”), or
refuses any punishment (“no”)
Memory: Person recalls having been punished as a child?
Education: highest level (elementary, secondary, high)
Age group: (15–24, 25–39, 40+)

Age 15–24 25–39 40+
Education Attitude Memory Yes No Yes No Yes No
Elementary No 1 26 3 46 20 109

Moderate 21 93 41 119 143 324
Secondary No 2 23 8 52 4 44

Moderate 5 45 20 84 20 56
High No 2 26 6 24 1 13

Moderate 1 19 4 26 8 17
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Questions

Interest focuses on several questions:
How does Attitude toward punishment depend on Memory, Education
and Age?

Model log odds approve of moderate corporal punishment
Standard logit model:

glm(attitude memory + education + age, data=Punishment,
weight=Freq, family=binomial)

Visualize: Effect plots for model terms

How does association between Attitude and Memory vary with Education
and Age?

Model log odds ratio (Attitude, Memory)
Visualize: LOR plots
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Log odds model for Attitude

Fit the main-effects model for Attitude on other predictors:

pun.logit <- glm(attitude ˜ memory + education + age,
data=Punishment, weight=Freq, family=binomial)

Anova(pun.logit)

## Analysis of Deviance Table (Type II tests)
##
## Response: attitude
## LR Chisq Df Pr(>Chisq)
## memory 29.5 1 5.6e-08 ***
## education 50.3 2 1.2e-11 ***
## age 0.6 2 0.73
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Only Memory and Education have significant effects
A more complex model with all two-way interactions showed no
improvement
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Effect plots

Model plots, showing fitted values for high-order terms in any model
Other predictors averaged over in each plot
Simple interpretation:

Those who remembered punishment as children more likely to approve
Approval decreases with education
No effect of age
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Association of attitude with memory: Fourfold plots
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Log odds ratio plot
(lor.pun <- loddsratio(punish))

## log odds ratios for memory and attitude by age, education
##
## education
## age elementary secondary high
## 15-24 -1.7700 -0.2451 0.3795
## 25-39 -1.6645 -0.4367 0.4855
## 40+ -0.8777 -1.3683 -1.8112
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log odds ratios for attitude and memory by education, age 

●

●

●

age
● 15−24

25−39
40+

Structure now completely clear
Little diffce between younger groups
Opposite pattern for the 40+

Fit an LOR model to confirm
appearences (SEs large)!

Models for Log Odds Ratios Example: 4-way table

Summary & conclusions

Data exploration and model building are two parts of data analysis
Goal of data analysis: tell a useful, credible story
Different kinds of plots are useful: data plots model plots, data + model plots

Plots in the mosaic family are useful, but may be complex for large tables
Plots in the CA/MCA family are useful, but often don’t go far enough
log odds: Simple models and plots for one focal (response) variable

Simple extension of logit models for a binary response
Easy calculation: contrasts of log frequency
Easy estimation: weighted linear models for log odds: ψ = Xβ

log odds ratios: Simple models and plots for two focal variables
Express all associations in terms of log(θij)
Simple weighted linear models: log(θ) = Xβ
Simple data + model plots

Now available in the vcd: lodds() and loddsratio().
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Models for Log Odds Ratios Example: 4-way table

Further information

DDAR Friendly, M. & Meyer, D. (2016). Discrete Data Analysis with R:
Visualization and Modeling Techniques for Categorical and
Count Data Chapman & Hall/CRC, Jan. 2016.
https://www.crcpress.com/9781498725835

vcd Zeileis A, Meyer D & Hornik K (2006). The Strucplot
Framework: Visualizing Multi-Way Contingency Tables with
vcd. Journal of Statistical Software, 17(3), 1–48.
http://www.jstatsoft.org/v17/i03/
vignette("strucplot", package="vcd").

vcdExtra Friendly M & others (2010). vcdExtra: vcd additions.
http://CRAN.R-project.org/package=vcdExtra.
vignette("vcd-tutorial").
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