General Models and Graphs for Log Odds and Log Odds Ratios

Michael Friendly York University, Toronto David Meyer UAS Technium, Vienna

CARME 2015 Naples, September 20–23, 2015

Slides: http://datavis.ca/papers/CARME2015-2x2.pdf

Outline

Introduction

- General ideas
- Plots: Data, Model, Data + Model
- Main ideas
- 2 Binary responses
 - Visualizing data, fitting models
 - Logit models and log odds

Models and Visualization for Log Odds

- Two-way Tables
- Exploratory visualizations
- Models
- Three-way Tables
- Models and Visualization for Log Odds Ratios
 - Log odds ratios
 - Examples
 - Bivariate response models
 - Example: 4-way table

Introduction General ideas

General ideas

Introduction

- **Topic**: analysis and interpretation of multi-way frequency tables
 - How to visualize and understand associations?
 - How to test or compare competing explanations?
 - How to allow for special circumstances: ordinal variables, square tables, that provide simplified descriptions?

General ideas

- Loglinear models provide one, very general approach
 - loglm() and Poisson glm() frameworks
 - Special models for ordinal variables, square tables, non-linear terms (RC models), etc.
 - A wide range of associated visualization methods: mosaic plots and family
 - Full-data plots: maybe these plot too much?

General ideas

- CA and MCA
 - Two-way tables: CA; n-way tables: MCA, JCA, etc. (but only bivariate associations)
 - Simple visualizations: 2D (3D?) plots of category points
 - Principally descriptive: Hard to specify or test specific hypotheses
 - Model plots: maybe these plot too little?
- Odds and odds ratios
 - Odds and odds ratios are natural summaries for quantities of interest
 - Some familiar models can be recast as models for odds or odds ratios
 - Model-based plots can provide simpler interpretation
 - Data + Model plots: maybe these are just right!

Introduction Plots: Data, Model, Data + Model

Plots: Data, Model, Data + Model

- Data plots: well-known. They help answer different kinds of questions:
 - What do the data look like?
 - Are there unusual features?
 - What kinds of summaries would be useful?
- Model plots: less well-known, but also help answer important questions:
 - What does the model look like? (plot predicted values)
 - How does the model change when its parameters change? (plot competing models)
 - How does the model change when the data is changed? (e.g., influence plots)
- Data + Model plots combine these features, and lead to other questions:
 - How well does a model fit the data?
 - Does a model fit uniformly good or bad, or just good/bad in some regions?
 - How can a model be improved?
 - (Model uncertainty: show confidence/prediction intervals or regions)
 - (Data support: where is data too "thin" to make a difference?)

Plots: Data, Model, Data + Model

Example: Linear model— Prestige \sim Income + Education + Type

- Data plot: marginal relation of Income on Prestige
- Model (effect) plot: conditional fitted values, controlling for other variables
- Data + Model plot: Effect of Income (model) + partial residuals (data)

5/68

Introduction Main ideas

Shameless plug

Texts in Statistical Science

Discrete Data Analysis with R

Visualization and Modeling Techniques for Categorical and Count Data

David Meyer

CRC Pres

- This talk draws on material from our new book, out \sim Jan., 2016.
- The successor to my earlier book, *Visualizing Categorical Data*
- Supported by many enhancements in the vcd, vcdExtra and ca packages for R
- Large collection of real data sets used in Examples (170) and Exercises (88)
- All Examples contain reproducible R code

Talk plan: Main ideas

- Familiar case— Binary responses:
 - Every loglinear model for a binary response has an equivalent form in terms of log odds ["logit" models]
 - Log odds models have simple interpretations
 - Data + model plots give simple descriptions of data and models
- Extend to two-way $(I \times J)$ and three-way + $(I \times J \times K_1 \dots)$ tables:
 - Log odds as contrasts in log(n)
 - Variety of simple models for log odds (ANOVA-like)
 - Easily incorporate ordinal variables
 - Data + model plots give simple descriptions of data and models
- Generalized log odds ratios capture associations between two focal variables
 - Simple linear models for LOR
 - Direct visualization (Data + model plots) \implies more sensitive comparisons

Binary responses Visualizing data, fitting models

Simple example: UCB Admissions

Data on admission to graduate programs at UC Berkeley, by Dept, Gender and Admission

Binary responses

sti	ructable	Gendei	c+Adr	nit,	UCBA	Admis	ssior	1S)		
## ##	Gender	Admit	Dept	A	В	С	D	Ε	F	
##	Male	Admitted		512	353	120	138	53	22	
##		Rejected		313	207	205	279	138	351	
##	Female	Admitted		89	17	202	131	94	24	
##		Rejected		19	8	391	244	299	317	

or, as a two-way table (collapsed over Dept),

structable	e(~ Gender + A	dmit, UCB	Admissions)
## ## Gender ## Male ## Female	Admit Admitte 119 55	ed Rejecte 8 149 7 127	d 3 8

Fourfold displays for 2 \times 2 tables

General ideas:

- Model-based graphs can show *both* data and model tests (or other statistical features)
- Visual attributes tuned to support perception of relevant statistical comparisons

- Quarter circles: radius ~ √n_{ij} ⇒ area ~ frequency
- Independence: Adjoining quadrants \approx align
- Odds ratio: ratio of areas of diagonally opposite cells
- Confidence rings: Visual test of
 H₀: θ = 1 ↔ adjoining rings overlap

Visualizing data, fitting models

9/68

Binary responses

Fourfold displays for $2 \times 2 \times k$ tables

• Stratified analysis: one fourfold display for each department

Binary responses

Visualizing data, fitting models

- Each 2 × 2 table standardized to equate marginal frequencies
- Shading: highlight departments for which $H_a: \theta_i \neq 1$

Mosaic displays

- Tiles: Area ~ observed frequencies, n_{ijk}
- Friendly shading (highlight association pattern):

• Residuals:
$$r_{ijk} = (n_{ijk} - \hat{m}_{ijk})/\sqrt{(\hat{m}_{ijk})}$$

- Color— blue: *r* > 0, red: *r* < 0
- Saturation: |r| < 2 (none), > 4 (max), else (middle)
- (Other shadings highlight *significance*)
- (Other color schemes: HSV, HCL, ...)

Mosaic displays: Fitting & visualizing models Mutual independence model: Dept \perp Gender \perp Admit

berk.mod0 <- loglm(~ Dept + Gender + Admit, data=UCB)
mosaic(berk.mod0, gp=shading_Friendly, ...)</pre>

Model: ~Dept+Gender+Admit

$\underset{\text{Joint independence model: Admit } \bot (Gender, Dept)}{\text{Mosaic displays: Fitting & visualizing models}}$

berk.mod1 <- loglm(~ Admit + (Gender * Dept), data=UCB)
mosaic(berk.mod1, gp=shading_Friendly, ...)</pre>

Mosaic displays: Fitting & visualizing models Conditional independence model: Admit _ Gender | Dept

berk.mod2 <- loglm(~ (Admit + Gender) * Dept, data=UCB)
mosaic(berk.mod2, gp=shading_Friendly, ...)</pre>

MCA

What can we learn from MCA?

ucb.mca <- mjca(UCBAdmissions) plot(ucb.mca)

Visualizing data, fitting models

Binary responses

Binary responses Logit models and log odds

Logit models and log odds

- For a binary response variable, each loglinear model has an equivalent logit model for log odds
- These provide a simpler way to formulate and test model(s)
- Data + Model plots are simpler to interpret the data and fitted results.
- Consider a three-way table, with variable C as a binary response, with expecected frequencies, m_{ijk}
 - For A = i and B = j, the log odds that C = 1 versus C = 2 is

$$\psi_{ij}^{AB} = \log\left(rac{m_{ij1}}{m_{ij2}}
ight) = \log(m_{ij1}) - \log(m_{ij2})$$

• Models now pertain to a two-way table of log odds, ψ_{ii}^{AB}

Binary responses

 Plots can show observed values as points, fitted models as lines, uncertainty as error bars

Logit models and log odds

Logit models and log odds

- Equivalent log odds forms:
 - the model of joint independence, [AB][C] , asserts constant log odds, $\psi^{AB}_{ij} = \alpha$
 - the model of conditional independence, [AB][AC] , allows log odds to vary with A, $\psi_{ij}^{AB} = \alpha + \beta_i^A$
 - the model of homogeneous association, [AB][AC][BC], allows log odds to vary with A & B, $\psi_{ij}^{AB} = \alpha + \beta_i^A + \beta_j^B$

Table: Equivalent loglinear and logit models for a three-way table, with C as a binary response variable.

Loglinear model	Logit model	Logit formula
[AB][C]	α	C ~ 1
[AB][AC]	$\alpha + \beta_i^A$	C~A
[<i>AB</i>][<i>BC</i>]	$\alpha + \beta_i^B$	С~В
[AB][AC][BC]	$\alpha + \beta_i^A + \beta_i^B$	C ~ A + B
[ABC]	$\alpha + \beta_i^{A} + \beta_j^{B} + \beta_{ij}^{AB}$	C ~ A * B

17/68

Binary responses Logit models and log odds

Berkeley data: log odds models

- For the UCBAdmissions data, the loglinear model of homogeneous association is [*AD*][*AG*][*DG*].
- This model doesn't fit very well: $G^2(5) = 20.2$. Why?
- The equivalent log odds model is:

Berkeley data: log odds models

$$\psi_{ij} = \log\left(rac{m_{\mathsf{Admit}(ij)}}{m_{\mathsf{Reject}(ij)}}
ight) = lpha + eta_i^{\mathsf{Dept}} + eta_j^{\mathsf{Gender}}$$
.

- $\bullet\,$ This is the parallel odds model, \sim a main-effects ANOVA model.
- Fit this using glm():

- Data + Model plot
- The effect of gender is extremely small (NS)
- Main lack of fit is for Dept A
- Fitted values for departments have a sensible interpretation
- i.e., reflect overall rate of admission

20/68

Logit models and log odds Binary responses

Berkeley data: log odds models

Compare with mosaic display: log odds plot is much clearer

Fit a simpler, more adequate model for log odds:

Berkeley data: log odds models

- Drop the general 1 df term for Gender ([AG] in the loglinear model)
- Replace with a specific 1 df term for Gender, only in Dept. A

$$\psi_{ij} = \alpha + \beta_i^{\text{Dept}} + I(j = 1)\beta^{\text{Gender}}$$

• This model now fits very well: $G^2(5) = 2.68$

22/68

Binary responses Logit models and log odds

Two-way Tables: Log odds

• Admission depends only on

department

... except in Dept A

21/68

The log odds approach extends directly to general $I \times J$ tables:

Models for Log Odds

- Consider a two way $I \times J$ table of variables A and B, where B is the response and A is explanatory.
- Questions:
 - How does the distribution of categories of B vary over the levels of A?
 - How to visualize associations?
 - How to test precise hypotheses?
- Log odds approach:¹
 - $I \times J \rightarrow (J-1)$ log odds contrasts for the categories of B for each level of A

Two-way Tables

- What models summarise these values?
- (Similar to polytomous response models in logistic regression)

¹These ideas stem from Goodman (1983), *Biometrics* and related papers.

Models for Log Odds Two-way Tables

Models for Log Odds Two-way Tables

Exploratory visualizations: Doubledecker plot

Example: Hospital Visits

How does the length of stay in hospital differ among schizophrenic patients, classified by the frequency of visiting by friends and relatives?

dat Hos	ta(HospVisits	, pac	ckage='	'vcdE	xtra")
1101	phipico				
##		stay			
##	visit	2-9	10-19	20+	
##	Regular	43	16	3	
##	Infrequent	6	11	10	
##	Never	9	18	16	

- Both frequency of visit (explanatory) and length of stay are ordinal variables
- Standard methods (loglinear models) treat these as nominal ("factors")
- Specialized models can take ordinality into account, e.g., with linear or quadratic effects

Exploratory visualizations

Models for Log Odds

Exploratory visualizations

25/68

3.0

2.0

0.0

-2.0

-20

26/68

Exploratory visualizations: Mosaic plot

Models for Log Odds

Mosaic plot

mosaic (HospVisits, gp=shading_Friendly)

- Also shows the conditional distributions as area-proportional tiles
- Color shows departure (residuals) from the independence model
- The "opposite corner" pattern signals a possibly unidimensional relationship between visit and stay

Exploratory visualizations: CA

What does CA tell us?

plot(ca(HospVisits))

- Association is entirely 1D!
- Infrequent and Never category points don't differ much
- Greater visit frequency associated with shorter stay

But, how can we test and and visualize these ideas with models?

Models for log odds

• Start with the saturated loglinear model for the two-way table

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_{ij}^{AB}$$

For adjacent categories of the response variable B, the odds, ω^{AB}_{ij} and log odds, ψ^{AB}_{ij}, that the response is in category *j* rather than *j* + 1 are:

odds:
$$\omega_{ij}^{A\overline{B}} = \frac{m_{ij}}{m_{i,j+1}}$$
 log odds: $\psi_{ij}^{A\overline{B}} = \log\left(\frac{m_{ij}}{m_{i,j+1}}\right)$, $j = 1, \dots, J-1$

• For the hospital visits data, this gives:

```
t(lodds(HospVisits, response=2))
## log odds for visit by stay
##
##
              visit
## stay
               2-9:10-19 10-19:20+
##
   Regular
                 0.9886
                         1.67398
  Infrequent -0.6061
##
                          0.09531
                 -0.6931
                          0.11778
    Never
```

Models for log odds

A variety of simple models can be specified in terms of log odds:

Table: Models for adjacent log odds in an $I \times J$ table with B as the response

Model	log odds parameters	degrees of freedom
null log odds	$\psi^{A\overline{B}}_{ij} = 0$	<i>I</i> (<i>J</i> – 1)
constant log odds	$\psi_{ij}^{\overline{AB}} = \psi$	I(J-1) - 1
uniform B log odds	$\psi_{ij}^{\overline{AB}} = \psi_i^A$	I(J - 2)
parallel log odds	$\psi_{ij}^{\overline{AB}} = \psi_i^{A} + \psi_j^{B}$	(I - 1)(J - 2)
saturated	$\psi_{ij}^{\overline{AB}}$ unspecified	

- The log odds, ψ^{AB}_{ij} can be viewed as entries in an *I* × (*J* 1) table
 These models are analogous to ANOVA tests of the A, B and *A* * *B*
- These models are analogous to ANOVA tests of the A, B and A * B effects in this table.

29/68

Models for Log Odds Models

Fit some models

mod.null <- lm(logodds ~ -1, data=hosp.lodds) # null
mod.const <- lm(logodds ~ 1, data=hosp.lodds) # constant
mod.unif <- lm(logodds ~ visit, data=hosp.lodds) # uniform
mod.par <- lm(logodds ~ visit + stay, data=hosp.lodds) # parallel</pre>

Compare models:

```
anova(mod.null, mod.const, mod.unif, mod.par)
## Analysis of Variance Table
##
## Model 1: logodds ~ -1
## Model 2: logodds ~ 1
## Model 3: logodds ~ visit
## Model 4: logodds ~ visit + stay
## Res.Df RSS Df Sum of Sq F Pr(>F)
         6 4.65
## 1
## 2
         5 4.24 1
                        0.41 177 0.0056 **
## 3
         4 3.43 1 0.81 345 0.0029 **
         2 0.00 2
## 4
                      3.43 734 0.0014 **
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Models for Log Odds Models

Ordinal variables

When the levels of A are ordinal, we can also test for linear effects.

```
modla <- lm(logodds ~ as.numeric(visit), data=hosp.lodds)</pre>
mod2a <- lm(logodds ~ as.numeric(visit) + stay, data=hosp.lodds)</pre>
# compare parallel log odds models
anova(mod.const, mod2a, mod.par)
## Analysis of Variance Table
##
## Model 1: logodds ~ 1
## Model 2: logodds ~ as.numeric(visit) + stay
## Model 3: logodds ~ visit + stay
##
    Res.Df RSS Df Sum of Sq F Pr(>F)
## 1
         5 4.24
## 2
         2 0.00 3
                         4.23 604 0.0017 **
## 3
         2 0.00 0
                         0.00
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Effects of visit are certainly not linear.

Models for Log Odds Models

Visualizing log odds and models

Plots of observed and fitted log odds: easy interpretation of data and models

Three-way+ Tables: Log odds I

These methods naturally extend to three- and higher-way tables:

- Consider a three-way *I* × *J* × *K* table of variables A, B and C, where C is the response (or focal variable)
- The standard loglinear model is:

$$\log m_{ijk} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_k^{C} + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC} + \lambda_{ijk}^{ABC}$$

• For categories k and k + 1 the adjacent log odds for C are

log odds:
$$\psi_{ijk}^{AB\overline{C}} = \log\left(\frac{m_{ijk}}{m_{i,j+1}}\right)$$
, $k = 1, \dots, K - T$

• These log odds can be viewed as entries in a two-way, $IJ \times (K-1)$ table.

34/68

Models for Log Odds Three-way Tables

Three-way+ Tables: Log odds II

• The parallel log odds model is

$$\begin{split} \psi_{ijk}^{AB\overline{C}} &= \Psi_{ij}^{AB} + \psi_k^C \\ &= \psi + \psi_i^A + \psi_j^B + \psi_{ij}^{AB} + \psi_k^C \end{split}$$

- where the Ψ^{AB}_{ij} are unspecified and the ψ parameters obey standard (sum-to-zero) constraints.
- Simpler models:

- Even simpler models: null effects of A ($\psi_i^A = 0$) or B ($\psi_i^B = 0$)
- Linear effects models: An ordinal A can use $\psi_i^A = i \times \beta_A$ to test for linearity

Models for Log Odds Three-way Tables

Example: Mice Depletion Data

- Kastenbaum and Lamphiear (1959) gave a 3 × 5 × 2 table of the number of deaths (0, 1, 2+) in 657 litters of mice, classified by litter size (7–11) and treatment ("A", "B")
- How does number of deaths depend on litter size and treatment?

```
data(Mice, package="vcdExtra")
mice.tab <- xtabs(Freq ~ litter + treatment + deaths, data=Mice)</pre>
ftable(litter + treatment ~
                            deaths, data=mice.tab)
                           8
         litter
                     7
                                 9
                                      10
                                            11
##
          treatment A B A B A B A B
                                            A B
## deaths
## 0
                    58 75 49 58 33 45 15 39 4 5
                    11 19 14 17 18 22 13 22 12 15
## 1
## 2+
                        7 10 8 15 10 15 18 17
```

Mice data: Mosaic plot

Fit and display the model of joint independence, [litter, treatment] [deaths]

What can we see?

- Larger litter size associated with more deaths
- More deaths with treatment A than B
- What model? How to simplify?

38/68

Models for Log Odds Three-way Tables

Calculating log odds

For a three-way table, a simple way to calculate all (log) odds is to reshape the data as a two-way matrix, T, with $I \times J$ rows and K columns.

```
      ##
      0
      1
      2+

      ##
      7:A
      58
      11
      5

      ##
      8:A
      49
      14
      10

      ##
      9:A
      33
      18
      15

      ##
      10:A
      15
      13
      15

      ##
      11:A
      4
      12
      17
```

The $IJ \times (K - 1)$ table of adjacent log odds can then be calculated as log(T)C, where C is the $K \times K - 1$ matrix of contrasts,

$$\boldsymbol{\textit{C}} = \left[\begin{array}{rrr} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{array} \right]$$

Calculating log odds

Mice data: MCA

plot (mice.mca)

mice.mca <- mjca(mice.tab)</pre>

More generally,

• Consider an $R \times K_1 \times K_2 \times \ldots$ frequency table $n_{ij}\ldots$, with factors $K_1, K_2 \ldots$ considered as strata.

Three-way Tables

• Let $\mathbf{n} = \text{vec}(n_{ij...})$ be the $N \times 1$ vectorization of the table.

Models for Log Odds

- Then, all log odds and their asymptotic covariance matrix *S* can be calculated as:
 - $\widehat{\psi} = \boldsymbol{C} \log(\boldsymbol{n})$
 - $\boldsymbol{S} = \operatorname{Var}[\boldsymbol{\psi}] = \boldsymbol{C} \operatorname{diag} \boldsymbol{n}^{-1} \boldsymbol{C}^{\mathsf{T}}$

where C is an *N*-column matrix containing all zeros, except for one +1 elements and one -1 elements in each row.

- With strata, *C* can be calculated as the Kronecker product $C = C_R \otimes I_{K_1} \otimes I_{K_2} \otimes \cdots$
- Linear models for log odds: $\psi = X\beta$

Models for Log Odds Three-way Tables

Mice data: Log odds

The vcd package now contains a general implementation of these ideas:

- odds () and lodds (): calculate odds and log odds for 1 variable in an n-way table
- o provides methods (coef(), vcov(), confint() ...) for "lodds"
 objects

```
(mice.lodds <- as.data.frame(lodds(mice.tab, response="deaths")))</pre>
##
      litter treatment deaths logodds
                                           ASE
         0:1
##
  1
                     7
                             A 1.6625 0.3289
## 2
                      7
        1:2+
                             A 0.7885 0.5394
## 3
         0:1
                      8
                             A 1.2528 0.3030
##
        1:2+
                      8
                                0.3365 0.4140
  4
                             А
## 5
        0:1
                      9
                             А
                               0.6061 0.2930
## 6
        1:2+
                     9
                             A 0.1823 0.3496
##
  7
        0:1
                    10
                                0.1431 0.3789
                             A
## 8
        1:2+
                    10
                             A -0.1431 0.3789
## 9
         0:1
                    11
                             A -1.0986 0.5774
```

Mice data: Fit models

Use WLS, with weights $\sim ASE^{-2}$

mod0 <- lm(logodds ~ 1, weights=1/ASE^2, data=mice.lodds) mod1 <- lm(logodds ~ litter + treatment, weights=1/ASE^2, data=mice.lodds) mod2 <- lm(logodds ~ litter * treatment, weights=1/ASE^2, data=mice.lodds) mod3 <- lm(logodds ~ litter * treatment + deaths, weights=1/ASE^2, data=mice.lodds)</pre>

Compare models:

```
anova(mod0, mod1, mod2, mod3)
## Analysis of Variance Table
##
## Model 1: logodds ~ 1
## Model 2: logodds ~ litter + treatment
## Model 3: logodds ~ litter * treatment
## Model 4: logodds ~ litter * treatment + deaths
##
    Res.Df RSS Df Sum of Sq
                                  F Pr(>F)
## 1
        19 65.0
## 2
        14 17.8 5
                         47.2 18.22 0.00018 ***
## 3
        10
            6.7 4
                         11.1 5.36 0.01737 *
## 4
         9
            4.7 1
                         2.1 3.98 0.07723 .
##
  ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

41/68

Models for Log Odds Three-way Tables

Visualize log odds and models: Data plot

- Data plot: log odds with error bars: $\psi_{iik}^{AB\overline{C}} \pm 1ASE_{\psi}$
- This is equivalent to the saturated model for log odds

Models for Log Odds Three-way Tables

Visualize log odds and models: Smoothing

- Apply a linear smoother (weighed linear regression) to each
- This is equalvalent to a model with a three-way term,
 - as.numeric(litter)*treatment*deaths
- Error bands show model uncertainty

Visualize log odds and models: Model + Data plots

• Display the fit of the parallel log odds model, $\psi_{iik}^{AB\overline{C}} = \Psi_{ii}^{AB} + \psi_{k}^{C}$

Visualize log odds and models: Model + Data plots

- Simplify the model: fit only linear effects of litter
- lm(logodds as.numeric(litter) *treatment + deaths) •
- Error bands show smaller model uncertainty

46/68

Models for Log Odds Ratios Log odds ratios

Generalized log odds ratios

• In any two-way, $R \times C$ table, all associations can be represented by a set of $(R-1) \times (C-1)$ odds ratios,

$$\theta_{ij} = \frac{n_{ij}/n_{i+1,j}}{n_{i,j+1}/n_{i+1,j+1}} = \frac{n_{ij} \times n_{i+1,j+1}}{n_{i+1,j} \times n_{i,j+1}}$$

Simpler in terms of log odds ratios:

$$\log(\theta_{ij}) = \begin{pmatrix} 1 & -1 & -1 & 1 \end{pmatrix} \log \begin{pmatrix} n_{ij} & n_{i+1,j} & n_{i,j+1} & n_{i+1,j+1} \end{pmatrix}^{\mathsf{T}}$$

С

-1

Generalized log odds ratios

• $\log \theta_{ii} \sim \mathcal{N}(0, \sigma^2)$, with estimated asymptotic standard error:

Models for Log Odds Ratios

$$\widehat{\sigma}(\log \theta_{ij}) = (n_{ij}^{-1} + n_{i+1,j}^{-1} + n_{i,j+1}^{-1} + n_{i+1,j+1}^{-1})^{1/2}$$

Log odds ratios

- This extends naturally to $\theta_{ij|k}$ in higher-way tables, stratified by one or more "control" variables.
- Many models have a simpler form expressed in terms of $log(\theta_{ii})$.
 - e.g., Uniform association model

$$\log(\textit{m}_{\it ij}) = \mu + \lambda^{\it A}_{\it i} + \lambda^{\it B}_{\it j} + \gamma \textit{a}_{\it i} \textit{b}_{\it j} \equiv \log(heta_{\it ij}) = \gamma$$

 Direct visualization of log odds ratios permits more sensitive comparisons than area-based displays.

Models for log odds ratios: Computation

- Consider an $R \times C \times K_1 \times K_2 \times ...$ frequency table $n_{ij...}$, with factors $K_1, K_2...$ considered as strata.
- Let $\mathbf{n} = \text{vec}(n_{ij\dots})$ be the $N \times 1$ vectorization of the table.
- Then, all log odds ratios and their asymptotic covariance matrix S can be calculated as:
 - $\log(\widehat{\theta}) = \boldsymbol{C} \log(\boldsymbol{n})$
 - $\boldsymbol{S} = \operatorname{Var}[\log(\boldsymbol{\theta})] = \boldsymbol{C} \operatorname{diag} \boldsymbol{n}^{-1} \boldsymbol{C}^{\mathsf{T}}$

where C is an *N*-column matrix containing all zeros, except for two +1 elements and two -1 elements in each row.

- With strata, *C* can be calculated as $C = C_{RC} \otimes I_{K_1} \otimes I_{K_2} \otimes \cdots$
- loddsratio() in vcd provides generic methods (coef(), vcov(), confint(),...)
- plot () method gives reasonable data and model plots.

Models for log odds ratios: Computation

For example, for a 2 \times 3 table, there are two adjacent odds ratios

Age
Sex Yng Mid Old
M 30 20 10
F 5 15 25
log odds ratios for Sex and Age
##
Yng:Mid Mid:Old
1.504 1.204

These are calculated as:

$$\log(\theta) = \mathbf{C}\log(\mathbf{n}) = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix} \log \begin{pmatrix} n_{11} \\ n_{21} \\ n_{12} \\ n_{21} \\ n_{13} \\ n_{23} \end{pmatrix}$$

49/68

Models for Log Odds Ratios Log odds ratios

Models for log odds ratios: Estimation

• A log odds ratio linear model for the $log(\theta)$ is

$$\log(\theta) = \pmb{X} eta$$

where \boldsymbol{X} is the design matrix of covariates

• The (asymptotic) ML estimates \widehat{eta} are obtained by GLS via

$$\widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{S}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{S}^{-1}\log\left(\widehat{\boldsymbol{\theta}}\right)$$

where $\mathbf{S} = \operatorname{Var}[\log(\theta)]$ is the estimated covariance matrix

- Standard graphical and diagnostic methods can be adapted to this case.
 - visualization: full-model plots, effect plots, ...
 - $\bullet\,$ diagnostics: influence plots, added-variable plots, $\ldots\,$

Models for Log Odds Ratios Examples

Example: Breathlessness & Wheeze in Coal Miners

- Ashford & Sowden (1970) gave data on the association between two pulmonary conditions: breathlessness and wheeze, in a large sample of coal miners
- Age is the primary covariate
- How does the association between breathlessness and wheeze vary with age?

ftable(CoalMiners)

# # # #	Breathlessness	Wheeze	Age	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-
##	В	W		23	54	121	169	269	404	406	3
##		NoW		9	19	48	54	88	117	152	1
# #	NoB	W		105	177	257	273	324	245	225	1
# #		NoW		1654	1863	2357	1778	1712	1324	967	5

Example: Breathlessness & Wheeze in Coal Miners

fourfold(CoalMiners, mfcol=c(2,4), fontsize=18)

- There is a strong + association at all ages
- But can you see the trend?

Coal Miners: Models

(lor.CM <- loddsratio(CoalMiners))</pre>

log odds ratios for Breathlessness and Wheeze by Age
##

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 ## 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

How does LOR vary with Age?

- Uniform association: $\ln(\theta) = \beta_0$
- Linear association: $ln(\theta) = \beta_0 + \beta_1$ Age
- Quadratic association: $ln(\theta) = \beta_0 + \beta_1 Age + \beta_2 Age^2$

Fit models using WLS:

```
lor.CM.df <- as.data.frame(lor.CM)
age <- seq(25, 60, by = 5)
CM.mod0 <- lm(LOR ~ 1, weights=1/ASE^2, data=lor.CM.df)
CM.mod1 <- lm(LOR ~ age, weights=1/ASE^2, data=lor.CM.df)
CM.mod2 <- lm(LOR ~ poly(age,2), weights=1/ASE^2, data=lor.CM.df)</pre>
```

53/68

Models for Log Odds Ratios Examples

Coal Miners: LOR plot

Plot log odds ratios and fitted regressions: The trend is now clear!

CoalMiners data: Log odds ratio plot

Models for Log Odds Ratios Examples

Coal Miners: Model comparisons

Standard ANOVA procedures allow tests of nested competing models:

```
anova(CM.mod0, CM.mod1, CM.mod2)
## Analysis of Variance Table
##
## Model 1: LOR ~ 1
## Model 2: LOR ~ age
## Model 3: LOR ~
                  poly(age, 2)
     Res.Df
             RSS Df Sum of Sq
                                    F Pr(>F)
##
## 1
          7 25.61
## 2
                         19.28 17.23 0.0089 **
          6
            6.34 1
## 3
            5.60 1
                          0.74 0.66 0.4525
          5
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(vcdExtra::LRstats () gives direct tests of each model, and AIC, BIC) The linear model, $ln(\theta) = \beta_0 + \beta_1$ Age, gives the best fit.

Models for Log Odds Ratios Bivariate response models

Linear model for log odds and log odds ratios

Going further: Bivariate response models

- In this example, breathlessness and wheeze are two binary responses
- A bivariate logistic response model fits simultaneously
 - the marginal log odds of each response, ψ_{1},ψ_{2} vs. predictors (**x**)
 - the joint log odds ratio, ϕ_{12} , vs. **x**
- This model has the form

$$\eta(\mathbf{x}) = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_{12} \end{pmatrix} \equiv \begin{pmatrix} \log \operatorname{odds}_1(\mathbf{x}) \\ \log \operatorname{odds}_2(\mathbf{x}) \\ \log \operatorname{OR}_{12}(\mathbf{x}) \end{pmatrix} \equiv \begin{pmatrix} \psi_1 \\ \psi_2 \\ \log \theta_{12} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1^{\mathsf{T}} \beta_1 \\ \mathbf{x}_2^{\mathsf{T}} \beta_2 \\ \mathbf{x}_{12}^{\mathsf{T}} \beta_{12} \end{pmatrix}$$

where $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_{12} \subset \boldsymbol{x}$

• For example, with one *x*, the following model allows linear effects on log odds, with a constant log odds ratio

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_{12} \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 x \\ \alpha_2 + \beta_2 x \\ \log(\theta) \end{pmatrix}$$
(1)

Bivariate response models

58/68

Models for Log Odds Ratios Bivariate response models

Linear model for log odds and log odds ratios

Models for Log Odds Ratios

Quadratic model for log odds and log odds ratios

This data + model plot has a simple interpretation:

- Prevalence of breathlessness and wheeze both increase with age
- Breathlessness is less prevalent at young age, but increases faster
- Their association decreases approx. linearly, but is still strong

- Allowing quadratic fits in age serves as a sensitivity check
- The story is pretty much the same

Models for Log Odds Ratios Example: 4-way table

Example: Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in vcd).

- Attitude: approves moderate punishment of children ("moderate"), or refuses any punishment ("no")
- Memory: Person recalls having been punished as a child?
- Education: highest level (elementary, secondary, high)
- Age group: (15–24, 25–39, 40+)

		Age	15-	-24	25-	-39	40)+
Education	Attitude	Memory	Yes	No	Yes	No	Yes	No
Elementary	No		1	26	3	46	20	109
	Moderate		21	93	41	119	143	324
Secondary	No		2	23	8	52	4	44
•	Moderate		5	45	20	84	20	56
High	No		2	26	6	24	1	13
0	Moderate		1	19	4	26	8	17

Questions

Interest focuses on several questions:

- How does Attitude toward punishment depend on Memory, Education and Age?
 - Model log odds approve of moderate corporal punishment

Models for Log Odds Ratios

Standard logit model:

```
glm(attitude memory + education + age, data=Punishment,
weight=Freq, family=binomial)
```

Example: 4-way table

- Visualize: Effect plots for model terms
- How does association between Attitude and Memory vary with Education and Age?
 - Model log odds ratio (Attitude, Memory)
 - Visualize: LOR plots

61/68

64/68

Models for Log Odds Ratios Example: 4-way table

Log odds model for Attitude

Fit the main-effects model for Attitude on other predictors:

```
pun.logit <- glm(attitude ~ memory + education + age,</pre>
                 data=Punishment, weight=Freq, family=binomial)
Anova (pun.logit)
## Analysis of Deviance Table (Type II tests)
##
## Response: attitude
##
             LR Chisq Df Pr(>Chisq)
## memory
                 29.5
                      1
                             5.6e-08
                                     +++
                 50.3 2
                             1.2e-11 ***
## education
## age
                  0.6 2
                                0.73
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Only Memory and Education have significant effects
- A more complex model with all two-way interactions showed no improvement

Models for Log Odds Ratios Example: 4-way table

Effect plots

- Model plots, showing fitted values for high-order terms in any model
- Other predictors averaged over in each plot
- Simple interpretation:
 - Those who remembered punishment as children more likely to approve
 - Approval decreases with education
 - No effect of age

Models for Log Odds Ratios Example: 4-way table

Association of attitude with memory: Fourfold plots

Log odds ratio plot

(lor.pun <- loddsratio(punish))</pre>

log odds ratios for memory and attitude by age, education
##

Models for Log Odds Ratios

education

##	age	elementary	secondary	high
##	15-24	-1.7700	-0.2451	0.3795
##	25-39	-1.6645	-0.4367	0.4855
##	40 +	-0 8777	-1 3683	-1 8112

- Structure now completely clear
- Little diffce between younger groups
- Opposite pattern for the 40+
- Fit an LOR model to confirm appearences (SEs large)!

Models for Log Odds Ratios Example: 4-way table

Summary & conclusions

- Data exploration and model building are two parts of data analysis
 - Goal of data analysis: tell a useful, credible story
 - Different kinds of plots are useful: data plots model plots, data + model plots
- Plots in the mosaic family are useful, but may be complex for large tables
- Plots in the CA/MCA family are useful, but often don't go far enough
- log odds: Simple models and plots for one focal (response) variable
 - Simple extension of logit models for a binary response
 - Easy calculation: contrasts of log frequency
 - Easy estimation: weighted linear models for log odds: $\psi = X\beta$
- log odds ratios: Simple models and plots for two focal variables
 - Express all associations in terms of log(θ_{ij})
 - Simple weighted linear models: $\log(\theta) = X\beta$
 - Simple data + model plots
- Now available in the vcd: lodds() and loddsratio().

Further information

DDAR Friendly, M. & Meyer, D. (2016). *Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data* Chapman & Hall/CRC, Jan. 2016. https://www.crcpress.com/9781498725835

Example: 4-way table

- vcd Zeileis A, Meyer D & Hornik K (2006). The Strucplot Framework: Visualizing Multi-Way Contingency Tables with vcd. Journal of Statistical Software, 17(3), 1–48. http://www.jstatsoft.org/v17/i03/ vignette("strucplot", package="vcd").
- vcdExtra Friendly M & others (2010). vcdExtra: vcd additions. http://CRAN.R-project.org/package=vcdExtra. vignette("vcd-tutorial").