The Milestones Project. 7±2 Stories from the History of Data Visualization [Old Wind into New Bottles]

Michael Friendly York University

Geographic Visualization Across the Social Sciences June 12, 2006

(Slides at: www.math.yorku.ca/SCS/Papers/7Stories-2x3.pdf)

Plan & Outline

- Introduction
 - Inspirational orienting ideas & widgets
 - Milestones Project
 - Whirlwind Milestones Tour

Stories Logo> TO TellStories :STORIES if empty? :STORIES [STOP] if TimeRunsOut? [STOP] # Tell first :STORIES END Logo> STORIES <- load("./gv2006.txt") Logo> TellStories list(Langren Galton Playfair Minard ...) Logo> quit

Themes

- History of data visualization
- Graphical communication & excellence
 - Tasks: Lookup, comparison, detection
 - Effective visual comparisons
 - Effect ordering
- Statistical historiography
 - History as data
 - Understanding through reproduction
 - How to visualize a history?

Dimensions of Info Presentation

Where do we want to be? moment in time (△t) NONE 0: *R*⁰ omething happens time (but, on what scale?) ONE 1: R^1 oral presentation avg(PPT) presentation static graph/map TWO 2: R^2 2D timelines written paper? (interactive skipping) Dynamic statistical graphics MANY 2+: R^p (ViSta, ggobi, R+extensions) • Web: java, Flash, blogs, wikis PDAs, phones, GPS devices

Milestones: Project Goals

- Comprehensive catalog of historical developments in *all fields* related to data visualization.
- → Collect representative bibliography, images, cross-references, web links, etc.
- → Enable researchers to find/study themes, antecedents, influences, patterns, trends, etc.
- Web: http://www.math.yorku.ca/SCS/Gallery/milestone/

5

Milestones: Conceptual Overview

- Roots of Data Visualization
 - Cartography: map-making, geomeasurement, thematic cartography, GIS, geo-visualization
 - Statistics: probability theory, distributions, estimation, models, stat-graphics, stat-vis
 - Data: population, economic, social, moral, medical, ...
 - Visual thinking: geometry, functions, mechanical diagrams, EDA, ...
 - **Technology**: printing, lithography, computing...

Milestones Tour

1600-1699: Measurement and Theory

1700-1799: New graphic forms

1800-1849: Beginning of modern data graphics

1850-1899: Golden Age STREET ASSOCIATE A NATI WY STERES 1855: Dot map of disease data (cholera)-John Snow 1879: Stereogram (3D Broad St. pump population pyramid)- Luigi Perozzo 1896: Area 1884: Recursive multi-mosaic on a rectangles on a map map- Emile to display two Cheysson variables and their product- Jacques Bertillon BC AD 17th C 18th C 19th Century 20th Century 12

1800

1900

2000

1000

1600

Data and Stories

- Statistical analysis: Data + Story
- Conf. presentation: .4*Data + .6*Story ?
- Historical analysis: .2*Data + .8*Story ?
 - Meta-Q: What is the "data" of history?
- A one-parameter family?
 - Wischenschaftliche-Forschung: WF = p * Data + (1-p)*Story
- Where are the pictures?
- Statistical graphics: Data + Picture + Story

Data, Stories and Pictures

Data, Stories and Pictures

Logo> show STORIES

- Why the 1st statistical graph got it right
- Escaping flatland: ISOs from Halley to Galton
- Playfair's graphic sins and blunders
- The day social science was invented
- Why Minard?

13

- Graphic discoveries
- Visions of time & history

Logo> plot STORIES

Why the 1st statistical graph got it right

1644: First visual representation of statistical data: determination of longitude between Toledo and Rome- Michel Florent van Langren, Spain

What else could he have done?

- What would occur to men of his time to convey a message to the king?
- ... he could used a table have sorted by year to establish priority (or show change).

Sorted by Priority				
Year	Name	Longitude	Where	
150	Ptolomeus, C.	27.7		
1471	Regiomontanus,	25.4	Germany	
1501	lanfonius, G.	17.7		
1530	Lantsbergius, P.	21.1		
1536	Schonerus, I.	20.8	Germany	
1541	Argelius, A.	28.0		
1542	Ortonius	26.0	France	
1567	Mercator, G.	19.6		
1567	Clavius, C.	26.5	Germany	
1578	Brahe, T.	21.5		
1582	Maginus, A.	29.8	Italy	
1601	Organus, D.	30.1	-	

- ... he could have sorted by *name*, to show *authority*.
- •... he could have sorted by *longitude* to show the *range*.

Sorted by Authority

Name	Longitude	Year	Where	
Argelius, A.	17.7	1501		
Brahe, T.	19.6	1567		
Clavius, C.	20.8	1536	Germany	
anfonius, G.	21.1	1530		
antsbergius, P.	21.5	1578		
laginus, A.	25.4	1471	Germany	
lercator, G.	26.0	1542	France	
Organus, D.	26.5	1567	Germany	
tolomeus, C.	27.7	150		
Regiomontanus, I.	28.0	1541		
Schonerus, I.	29.8	1582	Italy	
Ortonius	30.1	1601		

Longitude	Name	Year	Where
17.7	G. lanfonius	1501	
19.6	G. Mercator	1567	
20.8	I. Schonerus	1536	Germany
21.1	P. Lantsbergius	1530	
21.5	T. Brahe	1578	
25.4	I. Regiomontanus	1471	Germany
26.0	Orontius	1542	France
26.5	C. Clavius	1567	Germany
27.7	C. Ptolomeus	150	
28.0	A. Argelius	1541	
29.8	A. Maginus	1582	Italy
30.1	D. Organus	1601	-

Only a graph shows...

See: Friendly, M., & Kwan, E. (2003). Effect Ordering for Data Displays. Computational Statistics and Data Analysis, 43(4), 509–539.

21

Another early graphical success

1626: Scheiner's representation of **changes** in sunspots over time.

- "small multiples"
- allows comparison
- multiple legends
- A+ for info design!

22

Escaping flatland: ISOs from Halley to Galton

1800

19th Century

20th Century

1900

23

2000

BC AD

1000

17th C

1700

1600

<18th C

1701: Halley's contour maps showing curves of equal value (an isogonic map: lines of equal magnetic declination for the world) -- possibly the first thematic contour map of a data-based variable.

1782: Marcellin du Carla, France The first topographical map, showing contours of equal elevation.

25

27

1817: Alexander von Humboldt (1769-1859) Germany

First graph of isotherms, showing mean temperature around the world by latitude and longitude.

1843: Léon Lalanne (1811-1892) France Contour diagram of a 3D table: temperature ~ hour x month

1879: Luigi Perozzo Italy Stereogram (3D population pyramid) modeled on actual data (Swedish census, 1750--1875)

temperature on these two

variables

Construction diagrams for 3D surfaces

Galton's discovery of the bivariate normal correlation surface (1886)

worthy scientific discoveries arising from analysis of pure observation (Pearson 1920, p37)

How did Galton reach this conclusion?

How did Galton reach this conclusion?

Playfair's graphic sins and blunders

Playfair designed this graph to show that workers were best off in recent years, comparing prices to wages. Is this what you see?

Graphic sins:

- The "double Y scale" trick
- Discrete bars for prices, smooth curve for wages

What do you really see?

- Volatility of prices
- Small range for wages
- How to compare?

33

Playfair re-designed

The day social science was invented

André-Michel Guerry (1802-1866)

- *Essai* presented to Academie des Sciences Français: July 2, 1832
- First analysis of comprehensive data on crime, suicide, other 'moral' variables.

 Along with Quetelet, established the study of "moral statistics" -> criminology, sociology, "social science".

17th C

1700

1600

BC AD

The discovery of "social facts" Stability and Variation

Guerry's results were both compelling and startling:

- Rates of crime and suicide remained remarkably invariant over time, yet varied sytematically by region, sex of accused, type of crime, etc.
- In any given French city or department, almost the same number committed suicide, stole, gave birth out of wedlock, etc.

Year	1826	1827	1828	1829	1830	Avg
Sex	All accused (%)					
Male	79	79	78	77	78	78
Female	21	21	22	23	22	22
Age	Accused of Theft (%)					
16–25	37	35	38	37	37	37
25–25	31	32	30	31	32	31
Crime	Committed in summer (%)					
Indecent assault	5 2 5	36	36	35	38	36
Assault & battery	3-8	28	27	27	27	28

"We are forced to conclude that the facts of the moral order are subject, like those of the physical order to invariable laws." (Guerry, 1833, p14)

1829: Statistique comparée de l'état de l'instruction...

- Done with Adriano Balbi
- Single-sheet set of three shaded maps (darker = worse)
- Crime against persons, property (pop per crime)
- Instruction (# male school children)

38

1829: Statistique comparée de l'état de l'instruction...

- First shaded thematic maps of crime data
- First comparative maps of social data
- inversely related to crime against property!
- Instruction: → France obscure and France éclairée (Dupin, 1826)
- North of France highest in education, but also in property crime!

1864: Statistique morale de l'Angleterre comparée... Dayenu!

- Proposes to replace simple "moral statistics" (tables) with "analytical statistics"
 - calculation, graphic display
 - ► → general, abstract results
- 17 large color plates (56 × 39 cm):
 - data for France (1825–1855), England (1834–1855)
 - crimes against persons and property decomposed in various ways
 - first attempt to delineate multivariate relations among moral variables
- Voluminous data:
 - 85,564 suicide records (1836–1860), classified by motive
 - 226,224 accused of personal crime
 - \blacktriangleright numbers, in a line \rightarrow 1170 meters!

STATISTIQUE MORALE L'ANGLETERRE

LA STATISTIQUE MORALE

LA FRANCE

- control (a) compare pa characterization de la gar da statistica de paragrande de la recenta de control de la rece de paragra, de la service, de statistica de , que recellentemente el service control de la service de paragrande de la service de la service de la service control de la service de la service

PAN A.-N. GUENNY PAN A.-N. GUENNY Children Antonio

ATLAS CARES IT CONSISTENTIAL STREETS REPORTED TO REPORT OF THE STREETS STREETS

l infilie new IT planties provin sur imprimies en evele Prin = 800 fte.

PROSPECTUS

PARIS L-BL PALISER ET FILS, Internet an une Internet and Internet a

1864: Statistique morale de l'Angleterre comparée... Comparing France and England

Statistique Analytique: General Causes of Crime Plate XVII: M. Guerry's Magnum Opus

- Analysis of the factors associated with crimes and their geographic distribution
- Rows: 23 crimes, ordered by frequency and seriousness
 - keeping baudy house, bigamy, cattle stealing, ...
 - ... fraud, rape, murder
- Cols: Rank order of degree of criminality of English counties

42

44

Statistique Analytique: General Causes of Crime Plate XVII: M. Guerry's Magnum Opus

- Entries: Symbols for associated moral aspects
 - Population (% Irish, agricultural, domestics, ...)
 - Criminality (Male, young, ...)
 - Religion (Anglicans, "dissenters", ...)
- Curves: positive and negative coincidences

Why Minard?

• "The best statistical graphic ever produced... defies the pen of the historian"

43

Why Minard?

- Study breadth and depth of his work
 - How related to work in his time?
 - How related to modern statistical graphics?
 - How related to his personal history?

45

47

Visual thinking

Andèol collapse?

1844: Tableau-graphique: variable-width, divided bars, area ~ cost of transport- Charles Joseph Minard

Where to build a new post office?(1867)

The Ebb and Flow of Minard's **Graphic Output**

Graphical insight: smoothing helps the mind's eve

Life skills insight: retirement may not be a bad thing.

Minard's themes: Goods vs. Other

discrete data are hard to show effectively

Statistical insight: models are often crude approximations

The March Re-Visited (1869)

Graphic discoveries

- When have graphics led to scientific discoveries that might not have been achieved otherwise?
 - Galton (1883): anti-cyclonic weather pattern
 - Moseley (1913): concept of atomic number
 - Hertzsprung/Russell (1911): temperature classes of stars (spectral type)
 - Phillips (1958): "Phillips curve" of inverse relation between inflation and unemployment

51

49

Galton's discovery of anti-cyclonic weather patterns

Data: recordings of barometric pressure, wind, rain, temp. 3x/day, 50 weather stations in Europe.

Graphic: 3x3x31 grid, mapping {pressure, wind/ rain, temperature} x {AM, 12, PM} x day {1:31}

(try this with your software!)

Galton did for weathermen what Kepler did for Tycho Brahe (Wainer 2005, p56)

53

Visual comparison \rightarrow Insight

The visual insight from 93 (3x31) high-D graphs: · Changes in wind dir w/ pressure over time → Winds revolve CCW in low pressure areas; CW in high pressure

Moseley's discovery of atomic number

Plot of serial numbers of elements vs. square root of frequencies from X-ray spectra:

 linear relations → periodic table better explained by atomic number than weight (serial # must have a physical basis).

 gaps in series → predicted existence of several undiscovered elements!

 multiple lines later explained with discovery of the spin of electrons.

The hallmark of good science is the discovery of laws that unify & simplify findings, and allow prediction of yet unobserved phenomena.

Visions of time & history

- How to export advances in data visualization to an historical realm?
 - How might a graphically-minded statistician look at history of data visualization?
- History as data
- How to visualize a history?

Priestly's Chart of Biography

• Life spans of famous people, 1200 BC to 1750

(Priestley, 1765)

61

Priestley's Chart of History

Lessons from data visualization

- Zoom, focus & resolution
 - Non-linear scales for space & time
 - Table lens
- Network representations
- Tree representations

Zoom, Focus & Resolution

Non-linear Scales for Space and Time

Hand with Sphere, M. E. Esher

Non-linear Scales for Space

Non-linear Scales for Time

Dynamic views: Hyperbolic Viewer Display Resolution 2 A hyperbolic viewer varies Linear Viewer resolution smoothly, trading off detail against span of the view: Resolution * Span = constant 0 -200 0 -400200 400 Years from Focus

Non-linear Scales for Time

Static views:

Tree-based views: Geschictesbaum Europa (2003)

space-filling design: resolution ~ time²
natural metaphors for roots, branches

Tree-based views

• Branches for countries & domains of thought

• linear horizontal scale \rightarrow area ~ time²

Lessons from the Web

- Dynamic timelines (flash, java, svg, ...)
- Hyper histories
- Apps for your PDA, phone, ...
- What do we need to escape flatland?

Dynamic timelines HyperHistory Online http://www.hyperhistory.com/ OVIE 1930 1940 1960 1960 1970 1990 1990 2000 1920 ? Movies -----HuperHistor Stars Tech advances 0-000000000000-c D-00000-000000000000000000 Events Zoom, files covering 3000 years o Unzoom world history Select any button on the Menu Panel 0 zoom 🕞 🔿 🕑 6.00 d Arcast Films, the Dawn of the Secuel and More B What is HyperHistory **Classical Music Archive** more info bus ne of the touchstone movies of the 1980s, Tootsie stars Dustin Hoffman as an out-of-v image or who disguises himself as a dowdy, middle-aged woman to get a part on a hit soap text ara. The scheme works, but while he/she keeps up the charade, Hoffman's character es to see life through the eves of the opposite sex. The script by Larry Gelbart (with gal) is a winner, and director Sydney Pollack brings taut proficiency to the co Flash app: www.5etdemi.com (Patrick Mineault) 73

HyperHistory Online

People view (a la Priestley): time x domain

HyperHistory Online

Event view

DateLens for your PDA

Useful visual interfaces support a variety of selectable views and a range of scales.

Big view

Graphic view, focused

Table view, zoomed

77

Dali TimeScape

78

What do we need? Vis Tools: Availability & Accessibility

www.prefuse.org: Java toolkit for building interactive visualization apps

