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[Part 2: Assessing bivariate problems ]

e Enhanced scatterplots

m Data ellipse: Visualizing bivariate spread and correlation
m Group differences: total sample vs. within sample analysis
m Smoothing relations (LOWESS macro and PROC LOESS)
m Plotting discrete data

e Transformations to linearity
m Resistant lines and the double ladder of powers
m Box-Cox transformation for y (BOXCOX macro, BOXGLM macro)
m Box-Tidwell transformation for X's (BOXTID macro)
e Dealing with heteroscedasticity (non-constant error variance)
m Spread vs. level plots (SPRDPLOT macro)
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Data Ellipse

Scatterplots can be enhanced by adding an elliptical confidence region (the
data ellipse) around the mean

e Shows the variability of each variable, correlation, and regression line
(assuming bivariate normality).

e A 50% data ellipse is analogous to the central box in a boxplot.
o A67.7% data ellipse is analogous X + 1std. dev.

e The CONTOUR macro produces plots with a data ellipse

%include data(iris);

%contour (data=iris, x=petalwid, y=petallen);

%contour (data=iris, x=petalwid, y=petallen,
group=species) ;

/*totalx/

Iris data with 68% data ellipsoids Iris data with 68% data ellipsoids

/*within*/
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See http://www.math.yorku.ca/SCS/sssg/contour.html
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[Total Sample vs. Within Sample Analysis ]

e In any correlational analysis (e.g., regression, factor analysis) with multiple
groups, differences among group means can affect correlations between

variables
o |f group means differ substantially, better to (a) include group as a factor,
or (b) subtract group means before calculating correlations (‘within-group
correlations’)
Within and Between Group SSCP Deviation and Pooled Within-Sample 68% Elipsoids
e Correlations: Total and Within group
Total sample Group 1 Group 2 Group 3
-0.88591 0.65414 0.71811 0.71464
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[Total Sample vs. Within Sample Analysis ]

e Total-sample correlations

proc corr data=groups;
var x1 x2;

-=>

Total sample:

Within-sample correlations

proc corr data=groups;
var x1 x2;

by group;
-=>
Group 1 Group 2
0.65414 0.71811

var x1 x2;
by group;

proc corr data=dev;
var x1 x2;

-—=>

Within sample:

\_

Pooled within-sample correlations (from X;; — X;; —

-0.88591

Group 3
0.71464

proc standard data=groups out=dev m=0;

0.69480
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What to do?

(Total Sample vs. Within Sample Analysis )

Do the means differ substantially over grouping variables (ANOVA or
MANOVA)?

proc glm data=groups;
class group;
model x1 x2 = group/ nouni;
manova h=group;

Regression: Yes — include GROUP as a factor.

proc glm data=groups;
class group;
model y = group x1 x2;

Do the variance-covariance (corelation) matrices differ over groups?

proc discrim data=groups pool=test;
class group;
var x1 x2;

-->
Test Chi-Square Value = 4.506765
with 6 DF Prob > Chi-Sq = 0.6084

The chi-square value is not significant at the 0.05 level,
a pooled covariance matrix will be used...

Factor analysis: No — use pooled within-group correlation matrix.

Factor analysis: Yes — separate analyses by group (or include dummy

vars for group).
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Example: 1970 USA Draft Lottery

USA Draft Lottery Data
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Draft Priority value
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e Our eyes can often see patterns not easily captured in numbers.

e Drawing a smoothed curve helps show the trend.
e A general and useful technique is LOcally WEighted Scatterplot

Smoothing (‘LOWESS'), a form of non-parametric regression.

USA Draft Lottery Data

® Sometimes relationships may be too weak to see the trend in a scatterplot.

Dratft Priority value

o 100 200 300
Brithday (day of year)

symbol=square, step=5);

\_

400 o 100 200 300
Brithday (day of year)

%lowess (data=draftusa, x=birthday, y=priority,
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[Lowess Smoothing ]

Finds a smoothed fitted value, g;, for each x; by fitting a weighted

regression (linear, quadratic) to points in the ‘neighborhood’ of x;.

Neighborhood depends on a smoothing parameter, f, 0 < f < 1, the

fraction of the data points to be considered in the calculation of ;.

Points closest to x; receive the greatest weight. Only the r = [fn] points

closest to x; have non-zero weights.

Increasing f makes the fitted curve smoother; decreasing f lets the curve

follow the data more closely.

A “robustness step” calculates residuals, (y,; — g),) down-weights

observations ~ squared residual, and re-computes the smoothed values

using adjusted weights.

SAS:

m LOWESS macro calculates the lowess smooth, and plots ¥ vs. & with
the smoothed curve.

m SAS V7/v8: LOWESS macro uses PROC LOESS for the calculations
(fast). SAS 6.12: uses PROC IML.

m See http://www.math.yorku.ca/SCS/vcd/lowess.html
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[Lowess Smoothing ]

Canadian occupational prestige vs. Income

e 7 = [fn] nearest neighbors to x;
e tricube function gives weights for WLS

(2 Neighborhood of nearest points to X() @) Tricube weights
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e WLS gives smoothed (fitted) y; at x;
e Repeat for all points
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[Lowess Smoothing ]

Example: Baseball data — Salary vs. Years

o All other analyses suggested transforming Salary to log(Salary)
o Smoothing the relation between log(Salary) and Years suggested “years

up to 7" (players become free agents)

log(Salary) ~ years® = min (years, 7)

Baseball data: Smoothing salary vs. years

107

log2 1986 salary
©

671 T T T
0 10 20 30
Years in the Major Leagues

%lowess(data=baseball, y=logsal, x=years, id=name,
clm=0.05, £=0.67);
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[Plotting discrete data ]

e When the x or y variables are discrete (or for large data sets), it may be

difficult to see patterns because of overplotting.

Two solutions:

m Sunflower plots: bin data into (x, y) cells, plot using a ‘sunflower
symbol’ showing cell frequency.
m Jittering: add a small random quantity to each point to reduce

overplotting.

e Sunflower example: Mixture data: 3 bivariate normals with j ~ T
Mixture data Sunflower plot of Mixture data
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See: www.math.yorku.ca/SCS/sasmac/sunplot.html
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[Example: Galton’s data ]

e Francis Galton, in his studies on heredity, collected data on characteristics
of parents and their children

e By “inspection” of his graphs, he derived the theory of correlation and

regression.
DIAGRAM BASED oN TABLE 1.
(al) feunale heights are multiplied by 108)
M ADULT CHILDREN

e e their Heights , and Devintions from 63%inches.

inches

72

71—

e How did he arrive at this insight?
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more clearly:

(Example: Galton's data )

A plot of his data (grouped into class intervals) is unrevealing:

Galton's data on heights of parents and children
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A jittered plot of the observations shows the concentration of observations

Galton's data on heights of parents and children
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(Example: Galton's data )

Sunflower symbols, loess smoothed curve, regression line, and
non-parametric bivariate density contours (PROC KDE):

Galton’s data: Kernel density estimate
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Brain weight and body weight of mammals

[Transformations to linearity ]

Brain weight and body weight of mammals:

e Marginal boxplots show that both variables are highly skewed
e Most points bunched up at origin

e Relation is strongly non-linear

e Log transform removes both problems

Brain weight and body weight of mammals
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Body weight
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[Transformations to linearity ]

e If yis aresponse (“dependent”) and x is a predictor, we often want to fit
y = f(z) + residual

e Generally we prefer a “simple” f(r) like a linear function,
Yy = a+ bx + residual.

o If the relation between y and x is substantially non-linear, we have two
choices:

Bend the model: Try fitting a quadratic, cubic, or other polynomial (easy:
linear in parameters), or else a non-linear model, e.g., y = aexp(bxz)
(harder).

Unbend the data: Transform either y — y/, orx — 1z’ (or both), so that
relation is linear,

yl =a+ba + residual
e Ladder of powers and Tukey’s “arrow rule” indicate which direction to go.

e A ‘“ratio of slopes” table pinpoints good power transformations.

\_
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[Transformations to linearity ]

Tukey’s arrow rule and the double ladder of powers:
e Draw an arrow in the direction of the “bulge”.

e The arrow points in the direction to move along the ladder of powers for =
or y (or both).

@ (b)

log sgrt  raw X2 X3
sqrt

log

© * ()

N /
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[Transformations to linearity ]

Resistant lines and the ratio of slopes table (Tukey, 1977):

e Least squares regression can give misleading results with highly skewed
data or with outliers
e A resistant line often does better with ill-behaved data

o Summary values — medians of thirds, dividing by X-values (but neither
end-third can cover more than 1/2 the range)

Summary Values

X Y n
Low 0.122 2.500 21
Mid 10.000  80.996 39
High  4600.627 5157.515 2 R

e Ratio of slopes
m The curvature of the data can be measured by the ratio of slopes

_ uppersiope  (yr —ym)/(xm — )

"~ lower slope (ymr —yr)/(xnm — L)

X Y half-slope ratio
High  4600.627 5157.515
1.1058
Mid 10.000  80.996 0.1391
7.9465

Low 0.122 2.500

m A linear relation = 7 & 1 (or log r = 0)

m The effect of any transformation, z — 2, y — y?, can be judged by
the effect it has on the ratio of slopes,

Fpa) — (yir — yin)/ (@ — ahy)
(ol — v /(e — o)

N /
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e The resline macro calculates the ratio of slopes for a set of powers of =
and of y

Y%resline(data=brains,

x = bodywt, y = brainwt, id=mammal);
m For this data, values of r & 1 tend to run along the diagonal
m log-log is the best combination

————— Ratio of Slopes table ------
Rows are powers of X, columns are powers of Y

-1.0 -0.5 log sqrt raw 2.0
-1.0 2.544  15.127  96.908 687.070 5247.745 329241.7
-0.5 0.265 1.576 10.089  71.527 546.314 34275.54
log 0.023 0.134 0.858 6.085  46.477 2915.947
sqrt 0.001 0.008 0.052 0.368 2.813 176.504
raw 0.000 0.000 0.003 0.018 0.139 8.731
2.0 0.000 0.000 0.000 0.000 0.000 0.019

——————— 5 Best powers -------
Power of X Power of Y Slope Ratio log Ratio

log log 0.858 -0.066
-0.5 -0.5 1.575 0.197
-1.0 -1.0 2.544 0.405
sqrt sqrt 0.368 -0.434
sqrt raw 2.813 0.449

e See http://www.math.yorku.ca/SCS/sasmac/resline.html

N /

Michael Friendly

Data Screening SCS Short Course 56

4 N

[Transformations to linearity ]

Infant mortality rate and per-capita income

e Arrow points toward lower powers of x and/or y
o Ratio of slopes suggest log x, log y

IMR vs. Per Capita Income IMR data: log-log fit
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Per Capita Income log Income:

IMR data: Residuals from log-log fit

Saudi Arabi®
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(Box-Cox Transformations )

e Another way to select an “optimal” transformation of ¥ in regression is to
add a parameter for the power to the model,

YN =XpB+e

where )\ is another parameter, the power in (the ‘ladder’)

A
y =1
NOTD A£0
logy, A=0
e Box and Cox (1964) proposed a maximum likelihood procedure to
estimate the power (\) along with the regression coefficients (3).
e This is equivalent to minimizing v/ M S E over choices of \. = fit the
model for a range of \ (-2 to +2, say)
e The maximum likelihood method also provides a 95% confidence interval
for \.
e Can also plot the partial ¢ or F' statistic for each regressor vs. \.

N /
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e Baseball data: predicting Salary from Years, RBIc, HITSc.
m ClI (\) includes A = 0 — log(Salary)

m Effects plot shows ¢ statistic for each regressor
e The boxcox macro provides the RMSE, EFFECTS, and INFL plots:

title ’Box-Cox transformation for Baseball salary’;

%include data(baseball);

%boxcox(data=baseball, id=name, resp=Salary,
model=Years HITSc RBIc, gplot=RMSE EFFECT INFL);

Box-Cox Power Transform for Salary tvalues for Model Effects on Salary
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Box-Cox Power () Box-Cox Power ()
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[Box-Cox: Score test and influence plot ]

A score test is based on the slope of the log L function at A = 1 (slope

== (0 < at maximum)

For Box-Cox, this can be formulated as the ¢ statistic for a constructed
variable, g,

Yi
gi = yi(log% -1

where ¥ is the geometric mean of the ;.

Fit the model §y = X 3 + ¢g.

Test Hy: ¢ =0 (<> A = 1). Another estimate of Ais 1 — ¢.

A partial regression plot for g shows the influence of individual
observations on the choice of the transformation.

N /
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e Baseball data: predicting Salary from Years, RBIc, HITSc.

m The influence plot shows that a few players are strongly determining
the choice of power, but they are not out of line with the rest.
m The slope (¢)) again leads to the choice A = 0 = logy

e Plot produced by the boxcox macro (with GPLOT=INFL):

Partial Regression Influence plot for Box-Cox power

2000
Schrnlci{7

Slope: 0.939
Power: O

1000

Partial Salary

-1000

-2000
-1000 o 1000 2000
Partial Constructed Variable
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[Transformations of predictors ]

e In any correlational analysis (e.g., regression, factor analysis) we can get a
simple overview of the relations by
m Plotting all pairs of variables together (scatmat macro)
m Drawing a quadratic regression curve for each pair
%scatmat (. ..,interp=rq).
m “curves” will be straight when the relations are linear.
m (lowess fits are better, but more computationally intensive.)

e e.g., Canadian occupational prestige: %women, income, education

Prestige

Income

m — Prestige non-linear w.r.t. Educ and Income

N /

Michael Friendly

Data Screening SCS Short Course

-

(Box-Tidwell Transformations )

e Box and Tidwell (1962) suggested a model to determine transformations
of the X's,

y =0+ ] +- ]t + e

e Parameters of this model—[, 51 . .. Bk, 71 - - - Yk can be estimated by:
1. Regress y on &1, ..., — bg, b1, ... b.
2. Create constructed variables, x1 log x1, . . . zj log x.
3. Regressy onx1,...,T, T1logxy,.. .z logxy

- b(]v l17~~b2-7!]17~~gk
4. Estimate of the power ~; is given by ¥ = 1 + ¢;/b;
5. Repeat steps 3, 4 until 7 converge (gives MLE).

The constructed variables, x; log x;, can be used to test the need for a
transformation of x;: Test Hy : ; = 1 from test of coefficient of
z;loga; =0.

Partial regression plots for the constructed variables help to assess the
leverage and influence on the decision to transform an x variable.

N /
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[Box-TidweII transformations: Example ]
Canadian Occupational Prestige — find powers for Educ and Income
e The BOXTID macro carries out this procedure:
%boxtid(data=prestige,
yvar=Prestige, id=job,
xvar=Women Educ Income, /* vars in model */
xtrans=Educ Income, /* vars to xform  */
round=.5, /* round powers */
out=boxtid) ; /* output data set */
e Printed results show the iteration history...
Iteration History: Transformation Powers
Iteration EDUC INCOME Criterion
1 2.2551 -0.9132 1.9132
2 2.3790 0.8273 1.9059
3 2.3593 -0.6834 1.8261
4 2.3221 0.4444 1.6503
137 2.2109 -0.0426 0.0005
e ... and (score) tests for power transformations
Score tests for power transformations
Power StdErr Score Z Prob>|Z|
EDUC 2.2109 4.9114 2.4097 0.0160
INCOME -0.0426 0.0000 -5.2625 0.0000
e Powers are rounded to the nearest 0.5:
Educ — Educ?, Income — log Income.

N /
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[Box-TidweII transformations: Example ]

e Partial regression plots for the transformed variables show that several
observations are influential for the choice of power for Income.

BT power: 2 BT power: 0

o Minigters

me ag _
oo B%0 %8 o —
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Partial Prestige
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2
Partial Prestige

20 20 o
o8 o6 04 04 os o8 10 2000 1000 _© 00 2000 3000 4000 5000 6000 7000
Partial Constructed Variable (Educ) Partial Constructed Variable (income)
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[Box-TidweII transformations: Example ]

e The BOXTID macro creates the transformed variables for you (e.g.,
t_income).
e Plot with LOWESS macro, adding linear regression lines:

%lowess(data=boxtid, x=t_educ, y=prestige, id=job,
£=.667, interp=rl);

%lowess(data=boxtid, x=t_income, y=prestige, id=job,
£=.667, interp=rl);

Plots of Prestige vs. Educ? and log(Income) show that both variables are
now approx. linearly related to Prestige.

0.

0.

Prestige score
Prestige score

30.

20.

10. 10.
o 100 200 300 1 s °
Squared Educ Log Income.

The lowest two occupations on log(Income) should be looked at more

closely.
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(Dealing with heteroscedasticity )

e Classical linear models (ANOVA, regression) assume constant (residual)

variance
y=XB+e, Var(e) =o>

o ANOVA: examine std. dev. of residuals by groups

m Plot means = 1 std. error (neanplot macro)
m Boxplots of residuals vs. predicted (boxplot macro)

Jmeanplot (data=animals, class=poison treatmt,
response=time) ;

proc glm data=animals;

class poison treatmt;

model time = poison | treatmt;

output out=results p=predict r=resid;
%boxplot (data=results, class=Predict, var=resid);

Survival times of animals: Means Survival times of animals: Residuals vs. Pred

s RESID
s

\

Survival time (hrs)

o g Ma

Tremment ssA siie mie By

1 3 2 3 4 7 5 o

2 5 .
POISON Predict

e Both plots show greater variance associated with longer survival time.

N /

Michael Friendly

Data Screening SCS Short Course 67

4 N

(Dealing with heteroscedasticity )

Spread vs. level plots (the sprdplot macro)
e Plot log(spread) vs. log(level) e.g., log(IQR) vs. log(Median)

o If alinear relation exists, with slope b, transform y — 4P, withp = 1 — b.

%sprdplot (data=animals, class=poison treatmt, var=time);
J%meanplot (data=animals, class=poison treatmt,
response=t_time) ;

Spread - Level plot Meanplot of 1/Time

log Spread
mIvE
@
g

Slope: 2.00
Power: 1.0

c3 Treatment eseA s55B ++:C - D

o3 04 o5 os oo 10 1 3

os 07 2
log Median time POISON

e The plot suggests transforming Time — 1/Time.

e 1/Time also reduces apparent interaction of Poison * Treatment
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[Dealing with heteroscedasticity ]

Regression data

Divide an x variable into ordered groups (e.g., deciles)

proc rank data=baseball out=grouped groups=10;
var batavgc;
ranks decile;

\

2000. ' . 2000.

Satary (n 10008%)
Satary (1000%)

Median Bating Average

e Use Spread vs. level plot on grouped

a1 os.

S I

20

28

2.7

26

tog Spread

Stope: 0.97
225 Fower: 6.0

B
log M.

e log Salary is again indicated
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