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Data Screening: Part 2

Self-Reports of Height and Weight
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Part 2: Assessing bivariate problems

• Enhanced scatterplots

Data ellipse: Visualizing bivariate spread and correlation
Group differences: total sample vs. within sample analysis
Smoothing relations (LOWESS macro and PROC LOESS)
Plotting discrete data

• Transformations to linearity

Resistant lines and the double ladder of powers
Box-Cox transformation for y (BOXCOX macro, BOXGLM macro)
Box-Tidwell transformation for Xs (BOXTID macro)

• Dealing with heteroscedasticity (non-constant error variance)

Spread vs. level plots (SPRDPLOT macro)

Michael Friendly
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Data Ellipse

Scatterplots can be enhanced by adding an elliptical confidence region (the

data ellipse) around the mean

• Shows the variability of each variable, correlation, and regression line

(assuming bivariate normality).

• A 50% data ellipse is analogous to the central box in a boxplot.

• A 67.7% data ellipse is analogous X̄ ± 1std. dev.

• The CONTOUR macro produces plots with a data ellipse

%include data(iris);
%contour(data=iris, x=petalwid, y=petallen); /*total*/
%contour(data=iris, x=petalwid, y=petallen, /*within*/

group=species);

Iris data with 68% data ellipsoids
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See http://www.math.yorku.ca/SCS/sssg/contour.html
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Total Sample vs. Within Sample Analysis

• In any correlational analysis (e.g., regression, factor analysis) with multiple

groups, differences among group means can affect correlations between

variables

• If group means differ substantially, better to (a) include group as a factor,

or (b) subtract group means before calculating correlations (‘within-group

correlations’)

1

2

3

Within and Between Group SSCP
Within Sample and Total Data 68% Ellipsoids

X
2

0

10

20

30

40

X1
0 10 20 30 40

123

Deviation and Pooled Within-Sample 68% Ellipsoids

X
2

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

X1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

• Correlations: Total and Within group

Total sample Group 1 Group 2 Group 3
-0.88591 0.65414 0.71811 0.71464
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Total Sample vs. Within Sample Analysis

• Total-sample correlations

proc corr data=groups;
var x1 x2;

-->
Total sample: -0.88591

• Within-sample correlations

proc corr data=groups;
var x1 x2;
by group;

-->
Group 1 Group 2 Group 3
0.65414 0.71811 0.71464

• Pooled within-sample correlations (from Xij → Xij − X̄·j )

proc standard data=groups out=dev m=0;
var x1 x2;
by group;

proc corr data=dev;
var x1 x2;

-->
Within sample: 0.69480

Michael Friendly
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Total Sample vs. Within Sample Analysis

What to do?

• Do the means differ substantially over grouping variables (ANOVA or
MANOVA)?

proc glm data=groups;
class group;
model x1 x2 = group/ nouni;
manova h=group;

• Regression: Yes → include GROUP as a factor.

proc glm data=groups;
class group;
model y = group x1 x2;

• Do the variance-covariance (corelation) matrices differ over groups?

proc discrim data=groups pool=test;
class group;
var x1 x2;

-->
Test Chi-Square Value = 4.506765
with 6 DF Prob > Chi-Sq = 0.6084

The chi-square value is not significant at the 0.05 level,
a pooled covariance matrix will be used...

• Factor analysis: No → use pooled within-group correlation matrix.

• Factor analysis: Yes → separate analyses by group (or include dummy

vars for group).

Michael Friendly
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Smoothing

Example: 1970 USA Draft Lottery

• Our eyes can often see patterns not easily captured in numbers.

• Sometimes relationships may be too weak to see the trend in a scatterplot.

• Drawing a smoothed curve helps show the trend.

• A general and useful technique is LOcally WEighted Scatterplot

Smoothing (‘LOWESS’), a form of non-parametric regression.

USA Draft Lottery Data
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%lowess(data=draftusa, x=birthday, y=priority,
symbol=square, step=5);
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Lowess Smoothing

• Finds a smoothed fitted value, ŷi, for each xi by fitting a weighted

regression (linear, quadratic) to points in the ‘neighborhood’ of xi.

• Neighborhood depends on a smoothing parameter, f, 0 < f ≤ 1, the

fraction of the data points to be considered in the calculation of ŷi.

• Points closest to xi receive the greatest weight. Only the r = [fn] points

closest to xi have non-zero weights.

• Increasing f makes the fitted curve smoother; decreasing f lets the curve

follow the data more closely.

• A “robustness step” calculates residuals, (yi − ŷi), down-weights

observations ∼ squared residual, and re-computes the smoothed values

using adjusted weights.

• SAS:

LOWESS macro calculates the lowess smooth, and plots y vs. x with

the smoothed curve.

SAS V7/V8: LOWESS macro uses PROC LOESS for the calculations

(fast). SAS 6.12: uses PROC IML.

See http://www.math.yorku.ca/SCS/vcd/lowess.html
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Lowess Smoothing

Canadian occupational prestige vs. Income

• r = [fn] nearest neighbors to xi

• tricube function gives weights for WLS
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(c) WLS fitted value at X(i)
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(d) Lowess fit for all points
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• WLS gives smoothed (fitted) yi at xi

• Repeat for all points
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Lowess Smoothing

Example: Baseball data – Salary vs. Years

• All other analyses suggested transforming Salary to log(Salary)

• Smoothing the relation between log(Salary) and Years suggested “years

up to 7” (players become free agents)

log(Salary) ∼ years� = min (years, 7)

Baseball data: Smoothing salary vs. years
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%lowess(data=baseball, y=logsal, x=years, id=name,
clm=0.05, f=0.67);
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Plotting discrete data

• When the x or y variables are discrete (or for large data sets), it may be

difficult to see patterns because of overplotting.

• Two solutions:

Sunflower plots: bin data into (x, y) cells, plot using a ‘sunflower

symbol’ showing cell frequency.

Jittering: add a small random quantity to each point to reduce

overplotting.

• Sunflower example: Mixture data: 3 bivariate normals with ȳ ∼ x̄
Mixture data
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See: www.math.yorku.ca/SCS/sasmac/sunplot.html
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Example: Galton’s data

• Francis Galton, in his studies on heredity, collected data on characteristics

of parents and their children

• By “inspection” of his graphs, he derived the theory of correlation and

regression.

• How did he arrive at this insight?

Michael Friendly
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Example: Galton’s data

A plot of his data (grouped into class intervals) is unrevealing:

Galton’s data on heights of parents and children
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A jittered plot of the observations shows the concentration of observations

more clearly:

Galton’s data on heights of parents and children
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Example: Galton’s data

Sunflower symbols, loess smoothed curve, regression line, and

non-parametric bivariate density contours (PROC KDE):

Galton’s data: Kernel density estimate
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Transformations to linearity

Brain weight and body weight of mammals:

• Marginal boxplots show that both variables are highly skewed

• Most points bunched up at origin

• Relation is strongly non-linear

• Log transform removes both problems

Brain weight and body weight of mammals
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Transformations to linearity

• If y is a response (“dependent”) and x is a predictor, we often want to fit

y = f(x) + residual

• Generally we prefer a “simple” f(x), like a linear function,

y = a + b x + residual.

• If the relation between y and x is substantially non-linear, we have two

choices:

Bend the model: Try fitting a quadratic, cubic, or other polynomial (easy:

linear in parameters), or else a non-linear model, e.g., y = a exp(bx)
(harder).

Unbend the data: Transform either y → y
′
, or x → x

′
(or both), so that

relation is linear,

y
′
= a + b x

′
+ residual

• Ladder of powers and Tukey’s “arrow rule” indicate which direction to go.

• A “ratio of slopes” table pinpoints good power transformations.

Michael Friendly
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Transformations to linearity

Tukey’s arrow rule and the double ladder of powers:

• Draw an arrow in the direction of the “bulge”.

• The arrow points in the direction to move along the ladder of powers for x

or y (or both).

(a) (b)

(c) (d)
...

log

sqrt

raw

Y2

Y3

...

... log sqrt X2 X3 ...
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Transformations to linearity

Resistant lines and the ratio of slopes table (Tukey, 1977):

• Least squares regression can give misleading results with highly skewed
data or with outliers

• A resistant line often does better with ill-behaved data

• Summary values – medians of thirds, dividing by X-values (but neither
end-third can cover more than 1/2 the range)

Summary Values

X Y n

Low 0.122 2.500 21
Mid 10.000 80.996 39
High 4600.627 5157.515 2 R

• Ratio of slopes

The curvature of the data can be measured by the ratio of slopes

r =
upper slope

lower slope
=

(yH − yM )/(xH − xM )
(yM − yL)/(xM − xL)

X Y half-slope ratio
High 4600.627 5157.515

1.1058
Mid 10.000 80.996 0.1391

7.9465
Low 0.122 2.500

A linear relation ⇒ r ≈ 1 (or log r ≈ 0)
The effect of any transformation, x → xp, y → yq , can be judged by
the effect it has on the ratio of slopes,

r(p,q) =
(yq

H − yq
M )/(xp

H − xp
M )

(yq
M − yq

L)/(xp
M − xp

L)
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• The resline macro calculates the ratio of slopes for a set of powers of x
and of y

%resline(data=brains,
x = bodywt, y = brainwt, id=mammal);

For this data, values of r ≈ 1 tend to run along the diagonal
log-log is the best combination

----- Ratio of Slopes table ------
Rows are powers of X, columns are powers of Y

-1.0 -0.5 log sqrt raw 2.0

-1.0 2.544 15.127 96.908 687.070 5247.745 329241.7
-0.5 0.265 1.575 10.089 71.527 546.314 34275.54
log 0.023 0.134 0.858 6.085 46.477 2915.947
sqrt 0.001 0.008 0.052 0.368 2.813 176.504
raw 0.000 0.000 0.003 0.018 0.139 8.731
2.0 0.000 0.000 0.000 0.000 0.000 0.019

------- 5 Best powers -------
Power of X Power of Y Slope Ratio log Ratio

log log 0.858 -0.066
-0.5 -0.5 1.575 0.197
-1.0 -1.0 2.544 0.405
sqrt sqrt 0.368 -0.434
sqrt raw 2.813 0.449

• See http://www.math.yorku.ca/SCS/sasmac/resline.html

Michael Friendly

Data Screening SCS Short Course 56�

�

�

�

Transformations to linearity

Infant mortality rate and per-capita income

• Arrow points toward lower powers of x and/or y

• Ratio of slopes suggest log x, log y

IMR vs. Per Capita Income
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Box-Cox Transformations

• Another way to select an “optimal” transformation of y in regression is to

add a parameter for the power to the model,

y(λ) = Xβ + ε

where λ is another parameter, the power in (the ‘ladder’)

y(λ) =




yλ−1
λ , λ �= 0

log y , λ = 0

• Box and Cox (1964) proposed a maximum likelihood procedure to

estimate the power (λ) along with the regression coefficients (β).

• This is equivalent to minimizing
√

MSE over choices of λ. ⇒ fit the

model for a range of λ (-2 to +2, say)

• The maximum likelihood method also provides a 95% confidence interval

for λ.

• Can also plot the partial t or F statistic for each regressor vs. λ.

Michael Friendly
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• Baseball data: predicting Salary from Years, RBIc, HITSc.

CI (λ) includes λ = 0 → log(Salary)

Effects plot shows t statistic for each regressor

• The boxcox macro provides the RMSE, EFFECTS, and INFL plots:

title ’Box-Cox transformation for Baseball salary’;
%include data(baseball);
%boxcox(data=baseball, id=name, resp=Salary,

model=Years HITSc RBIc, gplot=RMSE EFFECT INFL);

Box-Cox Power Transform for Salary
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Box-Cox: Score test and influence plot

• A score test is based on the slope of the log L function at λ = 1 (slope

≈ 0 ↔ at maximum)

• For Box-Cox, this can be formulated as the t statistic for a constructed

variable, g,

gi = yi(log
yi

ỹ
− 1)

where ỹ is the geometric mean of the yi.

• Fit the model ŷ = Xβ + φg.

• Test H0 : φ = 0 (↔ λ = 1). Another estimate of λ is 1 − φ.

• A partial regression plot for g shows the influence of individual

observations on the choice of the transformation.

Michael Friendly
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• Baseball data: predicting Salary from Years, RBIc, HITSc.

The influence plot shows that a few players are strongly determining

the choice of power, but they are not out of line with the rest.

The slope (φ) again leads to the choice λ = 0 ⇒ log y

• Plot produced by the boxcox macro (with GPLOT=INFL):
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Transformations of predictors

• In any correlational analysis (e.g., regression, factor analysis) we can get a

simple overview of the relations by

Plotting all pairs of variables together (scatmat macro)

Drawing a quadratic regression curve for each pair

%scatmat(...,interp=rq).

“curves” will be straight when the relations are linear.

(lowess fits are better, but more computationally intensive.)

• e.g., Canadian occupational prestige: %women, income, education

Prestige
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611

 25879

→ Prestige non-linear w.r.t. Educ and Income
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Box-Tidwell Transformations

• Box and Tidwell (1962) suggested a model to determine transformations

of the Xs,

y = β0 + β1x
γ1
1 + · · ·βkxγk

k + ε

• Parameters of this model—β0, β1 . . . βk, γ1 . . . γk can be estimated by:

1. Regress y on x1, . . . , xk → b0, b1, . . . bk.

2. Create constructed variables, x1 log x1, . . . xk log xk.

3. Regress y on x1, . . . , xk, x1 log x1, . . . xk log xk

→ b′0, b
′
1, . . . b

′
k, g1, . . . gk

4. Estimate of the power γi is given by γ̂ = 1 + gi/bi

5. Repeat steps 3, 4 until γ̂ converge (gives MLE).

• The constructed variables, xi log xi, can be used to test the need for a

transformation of xi: Test H0 : γi = 1 from test of coefficient of

xi log xi = 0.

• Partial regression plots for the constructed variables help to assess the

leverage and influence on the decision to transform an x variable.
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Box-Tidwell transformations: Example

Canadian Occupational Prestige – find powers for Educ and Income

• The BOXTID macro carries out this procedure:

%boxtid(data=prestige,
yvar=Prestige, id=job,
xvar=Women Educ Income, /* vars in model */
xtrans=Educ Income, /* vars to xform */
round=.5, /* round powers */
out=boxtid); /* output data set */

• Printed results show the iteration history...

Iteration History: Transformation Powers
Iteration EDUC INCOME Criterion

1 2.2551 -0.9132 1.9132
2 2.3790 0.8273 1.9059
3 2.3593 -0.6834 1.8261
4 2.3221 0.4444 1.6503
...

13 2.2109 -0.0426 0.0005

• ... and (score) tests for power transformations

Score tests for power transformations
Power StdErr Score Z Prob>|Z|

EDUC 2.2109 4.9114 2.4097 0.0160
INCOME -0.0426 0.0000 -5.2625 0.0000

• Powers are rounded to the nearest 0.5:

Educ → Educ2, Income → log Income.
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Box-Tidwell transformations: Example

• Partial regression plots for the transformed variables show that several

observations are influential for the choice of power for Income.

BT power: 2
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Box-Tidwell transformations: Example

• The BOXTID macro creates the transformed variables for you (e.g.,

t_income).

• Plot with LOWESS macro, adding linear regression lines:

%lowess(data=boxtid, x=t_educ, y=prestige, id=job,
f=.667, interp=rl);

%lowess(data=boxtid, x=t_income, y=prestige, id=job,
f=.667, interp=rl);

• Plots of Prestige vs. Educ2 and log(Income) show that both variables are

now approx. linearly related to Prestige.
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• The lowest two occupations on log(Income) should be looked at more

closely.
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Dealing with heteroscedasticity

• Classical linear models (ANOVA, regression) assume constant (residual)

variance

y = Xβ + ε , Var(ε) = σ2

• ANOVA: examine std. dev. of residuals by groups

Plot means ± 1 std. error (meanplot macro)

Boxplots of residuals vs. predicted (boxplot macro)

%meanplot(data=animals, class=poison treatmt,
response=time);

proc glm data=animals;
class poison treatmt;
model time = poison | treatmt;
output out=results p=predict r=resid;

%boxplot(data=results, class=Predict, var=resid);

Survival times of animals: Means

Treatment A B C D

S
u
rv

iv
a
l 
ti
m

e
 (

h
rs

)

2

3

4

5

6

7

8

9

POISON
1 2 3

Survival times of animals: Residuals vs. Pred

RESID

-4

-3

-2

-1

0

1

2

3

4

5

Predict
2 3 4 5 6 7 8 9

• Both plots show greater variance associated with longer survival time.
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Dealing with heteroscedasticity

Spread vs. level plots (the sprdplot macro)

• Plot log(spread) vs. log(level) e.g., log(IQR) vs. log(Median)

• If a linear relation exists, with slope b, transform y → yp, with p = 1 − b.

%sprdplot(data=animals, class=poison treatmt, var=time);
%meanplot(data=animals, class=poison treatmt,

response=t_time);

Slope:  2.00
Power:   -1.0

A1

A2

A3

B1

B2

B3

C1

C2

C3

D1

D2

D3

Spread - Level plot

lo
g
 S

p
re

a
d

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log Median time
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Meanplot of 1/Time

Treatment A B C D

1
/T

IM
E

-50

-40

-30

-20

-10

POISON
1 2 3

• The plot suggests transforming Time → 1/Time.

• 1/Time also reduces apparent interaction of Poison * Treatment
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Dealing with heteroscedasticity

Regression data

• Divide an x variable into ordered groups (e.g., deciles)

proc rank data=baseball out=grouped groups=10;
var batavgc;
ranks decile;
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• Use Spread vs. level plot on grouped x

Slope:  0.97
Power:    0.0222

237.5

248

254

259

265

274

280

287

300

lo
g
 S

p
r
e
a
d

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

log Median Salary
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Kennedy

Schmidt
Smith

Sierra

Pasqua

Sax

Clark

lo
g
 S

a
la

r
y

4.5

5.0

5.5

6.0

6.5

Batting Average Decile
0 1 2 3 4 5 6 7 8 9

• log Salary is again indicated
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