

a Screening	SCS Short Course			
Total Sa	mple vs. Wit	hin Samp	le Analysis	
 In any correlational groups, differences variables If group mapping diff 	among group <i>n</i>	neans can af	fect correlations be	etween
 If group means diff or (b) subtract grou correlations') 	-			
Within Sample and Tet 40 40 40 40 40 40 40 40 40 40		Deviation and 5 4 3 2 1 0 0 X 1 -2 -3 -4 -5 -6 -7 -6 -5 -7 -6 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	Pooled Within-Sample 689	6 Ellipsoids
• Correlations: Total Total sample -0.88591	C	p Group 2 0.71811	Group 3 0.71464	

SCS Short Course

50

Data Screening

SCS Short Course

57

Box-Cox Transformations

• Another way to select an "optimal" transformation of *y* in regression is to add a parameter for the power to the model,

$$y^{(\lambda)} = X\beta + \epsilon$$

where λ is another parameter, the power in (the 'ladder')

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \lambda \neq 0\\ \log y, & \lambda = 0 \end{cases}$$

- Box and Cox (1964) proposed a maximum likelihood procedure to estimate the power (λ) along with the regression coefficients (β).
- This is equivalent to minimizing \sqrt{MSE} over choices of λ . \Rightarrow fit the model for a range of λ (-2 to +2, say)
- The maximum likelihood method also provides a 95% confidence interval for $\lambda.$
- Can also plot the partial t or F statistic for each regressor vs. λ .

59

Data Screening

SCS Short Course

60

- Baseball data: predicting Salary from Years, RBIc, HITSc.
 - The influence plot shows that a few players are strongly determining the choice of power, but they are not out of line with the rest.
 - The slope (ϕ) again leads to the choice $\lambda = 0 \Rightarrow \log y$
- Plot produced by the boxcox macro (with GPLOT=INFL):

Michael Friendly

• A score test is based on the slope of the $\log L$ function at $\lambda=1$ (slope $\approx 0 \leftrightarrow$ at maximum)

Box-Cox: Score test and influence plot

• For Box-Cox, this can be formulated as the *t* statistic for a *constructed* variable, *g*,

$$g_i = y_i (\log \frac{y_i}{\tilde{y}} - 1)$$

where \tilde{y} is the geometric mean of the y_i .

- Fit the model $\hat{y} = X\beta + \phi g$.
- Test $H_0: \phi = 0 \quad (\leftrightarrow \lambda = 1)$. Another estimate of λ is 1ϕ .
- A partial regression plot for *g* shows the influence of individual observations on the choice of the transformation.

ata Screening	SCS Short Course	62	
	Box-Tidwell Transformations		
 Box and Tic of the Xs, 	well (1962) suggested a model to determine transformations		
	$oldsymbol{y} = eta_0 + eta_1 oldsymbol{x}_1^{\gamma_1} + \cdots eta_k oldsymbol{x}_k^{\gamma_k} + oldsymbol{\epsilon}$		
 Parameters 	of this model— $eta_0,eta_1\dotseta_k,\gamma_1\dots\gamma_k$ can be estimated by	:	
2. Create c 3. Regress $\rightarrow b'_0, b$ 4. Estimate	$y \text{ on } x_1, \ldots, x_k \to b_0, b_1, \ldots b_k.$ constructed variables, $x_1 \log x_1, \ldots x_k \log x_k.$ $y \text{ on } x_1, \ldots, x_k, x_1 \log x_1, \ldots x_k \log x_k$ $i'_1, \ldots b'_k, g_1, \ldots g_k$ e of the power γ_i is given by $\hat{\gamma} = 1 + g_i/b_i$ steps 3, 4 until $\hat{\gamma}$ converge (gives MLE).		
	incred variables, $x_i \log x_i$, can be used to test the need for a ion of x_i : Test H_0 : $\gamma_i = 1$ from test of coefficient of = 0.		
_	ession plots for the constructed variables help to assess the d influence on the decision to transform an x variable.		

SCS Short Course

65

Box-Tidwell transformations: Example

- The BOXTID macro creates the transformed variables for you (e.g.,
- t_income).
- Plot with LOWESS macro, adding linear regression lines:

```
%lowess(data=boxtid, x=t_educ, y=prestige, id=job,
f=.667, interp=rl);
%lowess(data=boxtid, x=t_income, y=prestige, id=job,
f=.667, interp=rl);
```

• Plots of Prestige vs. $Educ^2$ and log(Income) show that both variables are now approx. linearly related to Prestige.

- The lowest two occupations on $\log({\rm Income})$ should be looked at more closely.

Data Screening SCS Short Course 66 **Dealing with heteroscedasticity** • Classical linear models (ANOVA, regression) assume constant (residual) variance $y = X\beta + \epsilon$, $Var(\epsilon) = \sigma^2$ • ANOVA: examine std. dev. of residuals by groups Plot means ± 1 std. error (meanplot macro) Boxplots of residuals vs. predicted (boxplot macro) %meanplot(data=animals, class=poison treatmt, response=time); proc glm data=animals; class poison treatmt; model time = poison | treatmt; output out=results p=predict r=resid; %boxplot(data=results, class=Predict, var=resid); Survival times of animals: Means Survival times of animals: Residuals vs. Pred Treatment 2 POISON • Both plots show greater variance associated with longer survival time.

Michael Friendly

Data Screening

SCS Short Course

107

References

- Box, G. E. P. and Cox, D. R. An analysis of transformations (with discussion). *Journal* of the Royal Statistical Society, Series B, 26:211–252, 1964. 57
- Box, G. E. P. and Tidwell, P. W. Transformation of the independent variables. *Technometrics*, 4:531–550, 1962. 62
- Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. *Graphical Methods for Data Analysis.* Wadsworth, Belmont, CA, 1983.
- Emerson, J. D. and Stoto, M. A. Exploratory methods for choosing power transformations. *Journal of the American Statistical Association*, 77:103–108, 1982.
- Friendly, M. SAS System for Statistical Graphics. SAS Institute, Cary, NC, 1st edition, 1991.
- Gnanadesikan, R. and Kettenring, J. R. Robust estimates, residuals, and outlier detection with multiresponse data. *Biometrics*, 28:81–124, 1972.
- Little, R. J. A. and Rubin, D. B. *Statistical Analysis with Missing Data*. John Wiley and Sons, New York, 1987.
- McGill, R., Tukey, J. W., and Larsen, W. Variations of box plots. *The American Statistician*, 32:12–16, 1978.
- Rubin, D. B. *Multiple Imputation for Nonresponse in Surveys*. John Wiley and Sons, New York, 1987.
- Schafer, J. L. Analysis of Incomplete Multivariate Data. Chapman & Hall, London, 1997.
- Tukey, J. W. Exploratory Data Analysis. Addison Wesley, Reading, MA, 1977. 54