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Course Outline

@ Principal components analysis
@ FAvs. PCA
@ Least squares fit to a data matrix
@ Biplots
@ Basic Ideas of Factor Analysis
@ Parsimony— common variance — small number of factors.
@ Linear regression on common factors
o Partial linear independence
@ Common vs. unique variance
@ The Common Factor Model
@ Factoring methods: Principal factors, Unweighted Least Squares, Maximum
likelihood
9 Factor rotation

@ Confirmatory Factor Analysis

@ Development of CFA models
@ Applications of CFA

Part 1: Outline

e PCA and Factor Analysis: Overview & Goals
@ Why do Factor Analysis?
@ Two modes of Factor Analysis
@ Brief history of Factor Analysis

e Principal components analysis
@ Atrtificial PCA example

e PCA: details

@ PCA: Example

6 Biplots

@ Low-D views based on PCA
@ Application: Preference analysis

e Summary

Why do Factor Analysis?

@ Data Reduction: Replace a large number of variables with a smaller
number which reflect most of the original data [PCA rather than FA]
Example: In a study of the reactions of cancer patients to radiotherapy,
measurements were made on 10 different reaction variables. Because it
was difficult to interpret all 10 variables together, PCA was used to find
simpler measure(s) of patient response to treatment that contained most
of the information in data.

@ Test and Scale Construction: Develop tests and scales which are “pure”
measures of some construct.
Example: In developing a test of English as a Second Language,
investigators calculate correlations among the item scores, and use FA to
construct subscales. Any items which load on more than one factor or
which have low loadings on their main factor are revised or dropped from
the test.




Why do Factor Analysis? Why do Factor Analysis?

@ Operational definition of theoretical constructs:

o To what extent different observed variables measure the the same thing? @ Factorial invariance: Test equivalence of factor structures across several
@ Validity: Do they all measure it equally well? groups.

Example: A researcher has developed 2 rating scales for assertiveness, @ Same factor loadings?

and has several observational measures as well. They should all @ Same factor correlations?

measure a single common factor, and the best measure is the one with @ Same factor means?

the greatest common variance. Example: A researcher wishes to determine if normal people and
depressive patients have equivalent factor structures on scales of
intimacy and attachment she developed.

The most sensitive inferences about mean differences on these scales
assume that the relationships between the observed variables
(subscales) and the factor are the same for the two groups.

@ Theory construction:
@ Several observed measures for each theoretical construct (factors)
@ How are the underlying factors related?
Example: A researcher has several measures of Academic self-concept,
and several measures of educational aspirations. What is the correlation
between the underlying, latent variables?

Two modes of Factor Analysis Principal component analysis vs. Factor analysis
Principal Components Factor analysis
@ Exploratory Factor Analysis : Examine and explore the @ A descriptive method for data @ A statistical model which can be
interdependence among the observed variables in some set. reduction. tested.
i i ~J 0 .
o Still widely used today (~ 50%) _ @ Accounts for variance of the data. @ Accounts for pattern of
@ Use to develop a structural theory: how many factors? correlations.
° Useto select “best” measures ofa consruct, @ Scale dependent (R vs. S) o Scale free (ML, GLS)
@ Confirmatory Factor Analysis : Test specific hypotheses about the @ Components are always @ Factors may be correlated or
factorial structure of observed variables. uncorrelated uncorrelated
@ Does for FA what ANOVA does for studying relations among group means. @ Components are linear @ Factors are linear combinations
@ Requires much more substantive knowledge by the researcher. combinations of observed of common parts of variables
@ Provides exactly the methodology required to settle theoretical controversies. variables (unobservable variables)
9 Requires moderately large sample sizes for precise tests. '
g ylarge samp P o Scores on components can be @ Scores on factors must always be
computed exactly. estimated (even from population

correlations)




Brief history of Factor Analysis Brief history of Factor Analysis |

Early origins Early origins

@ Galton (1886): “regression toward the mean” in heritable traits (e.g.,

height)

Height of S @ Spearman (1904): “General intelligence,” objectively determined and
the mid- leight of the adult chi

:mmd measured

in i % . 2 42 65.2 66.2 672 682 692 702 712 722 732 >737 . .
SR 7 6 B 8 @ Proposes that performance on any observable measure of mental ability is a

function of two unobservable quantities, or factors:
@ General ability factor, g — common to all such tests
@ Specific ability factor, u — measured only by that particular test
@ “Proof:” tetrad differences = 0 — rank(R) = 1

@ “Factoring” a matrix

5 Panntnelort

a5 = F — a2 @ Hotelling (1933): Principal components analysis
;:: T “ - fe i 5 @ Eckart & Young (1937): Singular value decomposition — biplot
Medians — — 663 678 €7.9 677 679 683 €85 690 69.0 700 — —

@ Pearson (1896): mathematical formulation of correlation

Brief history of Factor Analysis Brief history of Factor Analysis
Early origins Modern development
@ Thurstone (1935): Vectors of the mind; Thurstone(1947): Multiple factor ® Lawley & Maxwell (1973): Facto.r analysis as statistical model, MLE
analysis @ — (large-sample) x? hypothesis test for # of common factors
@ Common factor model— only general, common factors could contribute to @ Confirmatory factor analysis
correlations among the observed variables. @ Joreskog (1969): confirmatory maximum liklihood factor analysis— by
@ Multiple factor model— two or more common factors + specific factors imposing restrictions on the factor loadings
@ Primary Mental Abilities— attempt to devise tests to measure multiple facets @ Joreskog (1972): ACOVS model— includes “higher-order” factors
of general intelligence @ Structural equation models
@ Thurstone (1947): rotation to simple structure o Joreskog (1976): LISREL model— separates the measurement model
@ Kaiser (1953): Idea of analytic rotations (varimax) for factor solutions relating observed variables to latent variables from the structural model

relating variables to each other.




Principal components

@ Purpose : To summarize the variation of several numeric variables by a
smaller number of new variables, called components.

@ The components are linear combinations— weighted sums— of the
original variables.

21 =PCi=ap Xg+apXo+---+ alep = aIx

@ The first principal component is the linear combination which explains as
much variation in the raw data as possible.

@ The second principal component is the linear combination which explains
as much variation not extracted by the first component

Z, = PCy = apn Xy +apXo + -+ +apXp = agx

Principal components analysis

Principal components

@ The principal component scores are uncorrelated with each other. They
represent uncorrelated (orthogonal) directions in the space of the original
variables.

X, 4

PCo

»
>

X1

@ The first several principal components explain as much variation from the
raw data as possible, using that number of linear combinations.

Principal components analysis

Principal components
Galton’s regresion/correlation/PCA diagram

DIAGRAM BASED ON TABLE 1.
(all female heights are multiplied by I'08)

MID-PARENTS ADULT CHILDREN
their Heights , and Deviations from 68%inches.
Beighes[Dewazesf & 65 68 § 6 ® B 7 7 7F
inEa.s i'nxas - b
72— |
z 1
+3 — !
71~
S 1
+2 —— s )
70 —
3
*1 —— ]
69 —
& 3
(1] L
63 -
3 1
_1 e -—
67 —
1
St 2]
66 —
[ | 1 ] |

Principal components analysis Artificial PCA example

Artificial PCA example

@ Some artificial data, on two variables, X and Y.
@ We also create some linear combinations of X and Y, named A, B and C.

A=X+Y

B =5«X+Y

C=-2xX+Y
The data looks like this:

X Y A B C
14 1 15 71 - 27
12 2 14 62 -22
11 2 13 57 -20

9 3 12 48 -15
10 3 13 53 -17
11 3 14 58 -19

1 10 11 15 8

2 10 12 20 6

@ How much of the variance of X and Y do different linear combinations
account for?




Principal components analysis Avrtificial PCA example Principal components analysis Artificial PCA example

] ] ] ) The plot below shows the data, with the linear combinations, A = X + Y, and
From simple regression, the proportion of variance of X accounted for by any C=_-2X+Y.
other variable, say A, is just rZ,. 5
The correlations among these variables are: 12 Asxry
_NAMVE_ X Y A B C
X 1. 000 -0. 866 0.764 0. 997 -0.991
Y -0. 866 1. 000 -0. 339 -0.824 0.924
A 0. 764 -0. 339 1. 000 0.812 -0.673
B 0. 997 -0.824 0.812 1. 000 -0.978
C -0.991 0.924 -0.673 -0.978 1. 000
The variances are:
X Y A B C
12. 757 6. 000 3. 605 249. 160 87.330
So, the total variance of X and Y is 12.76 + 6.00 = 18.76. o " s & T
Therefore, the variance of X and Y accounted for by any other variable (say, *
A)is As you may guess, the linear combination C = —2X + Y accounts for more of
the variance in X and Y.
rXAaX = (.764)%(12.76) = 7.44
Nacy = (—339)°(6.00) = 069 rxcox _ ( 991)? (1276) = 1253
— — 0
Total = 17.65 — 17.65/18.75 = 94%
Principal components finds the directions which account for the most
variance.
@ Geometrically, these are just the axes of an ellipse (ellipsoid in 3D+) that Using PROC PRI NCOVP on our example data, we find,
encloses the data Ei genvalue Difference Proportion Cunulative
@ Length of each axis ~ eigenvalue ~ variance accounted for PRI N1 17 6732 16. 5898 0. 942237 0. 94224
@ Direction of each axis ~ eigenvector ~ weights in the linear combination PRI N2 1.0834 . 0. 057763 1. 00000
by Ei genvectors
PRI N1 PRI N2
) X 0. 838832 0. 544390
Y -. 544390 0. 838832
s
@ The first principal component, PRIN1 = .8388 X - .5444 Y, accounts for
the greatest variance, 17.673 (94.22%)).
o @ The second principal component, PRIN2 = .5444 X + .8388 Y, accounts
for the remaining variance, 1.083 (5.78%).
@ The two components are uncorrelated, r( PRIN1, PRIN1) = 0.
O*‘ T T T
o) 4 8 12 16
X




PCA: detalils PCA: details

PCA details: Covariances or correlations? PCA details: How many components?
@ Principal components can be computed from either the covariance matrix @ Complete set of principal components contains the same information as
or the correlation matrix. the original data— just a rotation to new, uncorrelated variables.
@ Correlation matrix: all variables are weighted equally @ For dimension reduction, you usually choose a smaller number
@ Covariance matrix: each variable is weighted ~ its variance. @ Four common criteria for choosing the number of components:
@ Using the covariance matrix makes sense iff: @ Number of eigenvalues > 1 (correlation matrix only)— based on idea that

average eigenvalue = 1
@ Number of components to account for a given percentage— typically
80-90% of variance
@ “Scree” plot of eigenvalues— look for an “elbow”
@ SAS: @ How many components are interpretable?
PROC PRI NCOWP dat a=nydata opti ons; @ SAS:

VAR vari abl es; PROC PRI NCOVP dat a=nydat a

@ All variables are measured in comparable units
@ You have adjusted the scales of the variables relative to some external
measure of importance

@ options: COV - analyze the covariance matrix; PLOT=SCREE - produce N=#_conponents OUT=out put _dat aset ;
scree plot VAR vari abl es;
PCA details: Scree plot PCA details: Parallel analysis
Scree Plot
5
scree: 3
4 eigenvalues>1: 4

@ Horn (1965) proposed a more “objective” way to choose the number of
components (or factors, in EFA), now called parallel analysis

T @ The basic idea is to generate correlation matrices of random,
uncorrelated data, of the same size as your sample.

@ Take # of components =the number of eigenvalues from the observed

Ch data > eigenvalues of the random data.
i @ From scree plot, this is where the curves for observed and random data
RRE Cross.
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PCA: details PCA: details

PCA details: Parallel analysis PCA details: Parallel analysis
Holzinger-Swineford 24 psychological variables: Holzinger-Swineford 24 psychological variables: Other criteria
Parallel Analysis Scree Plot Paralell analysis and other criteria
o - X —>*— PC_Actual Data w - ° © Eigenvalues (nkaiser = 5)
x- PC Simulated Data A Parallel Aralysis (n = 4)
Optimal Ceordinates (n= 4)
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Factor Number Component
PCA details: Interpreting the components PCA Example: US crime data

title "PCA: Crine rates per 100,000 popul ation by state’;
data crine;

@ Eigenvectors (component weights or “loadings”) input State $1-15 Mirder Rape Robbery Assault Burglary Larceny
o Examine the signs & magnitudes of each column of loadings datal i neSAUt o ST$
9 Often, the f'I,l‘St component will have all positive signs — “general/overall Al abama 14.2 25.2 96.8 278.3 1135.5 18819 280.7 AL
component” _ _ _ Al aska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3 AK
@ Interpret the variables in each column with absolute loadings > 0.3 - 0.5 Ari zona 0.5 34.2 138.2 312.3 2346.1 4467.4 439.5 AZ
@ Try to give a hame to each Ar kansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4 AR
California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5 CA
° Component scores . . . Col or ado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1 CO
@ Component scores give the position of each observation on the component Connecti cut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2 CT
@ Scatterplots of: Prinl, Prin2, Prin3 with observation labels o
o What characteristics of the observations vary along each dimension? W sconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7 W
Womi ng 5.4 21.9 39.7 173.9 811.6 2772.2 282.0 WY

proc princonp out=crinconp;




PCA: Example PCA: Example

PCA Example: US crime data PCA Example: US crime data
Output:
Ei genval ues of the Correlation Mtrix Output:
Ei genvectors
Ei genval ue Difference Proportion Qunul ative Prinil Prin2 Prin3 Prind  Prin5 Prin6 Prin7
1 4.11495951 2.87623768 0.5879 0.5879 Mur der 0.3002 -.6291 0.1782 -.2321 0.5381 0.2591 0.2675
2 1.23872183 0.51290521 0.1770 0.7648 Rape 0.4317 -.1694 -.2441 0.0622 0.1884 -.7732 -.2964
3 0. 72581663 0. 40938458 0. 1037 0. 8685 Robbery  0.3968 0.0422 0.4958 -.5579 -.5199 -.1143 -.0039
4 0. 31643205 0. 05845759 0. 0452 0. 9137 Assaul t 0.3966 -.3435 -.0695 0.6298 -.5066 0.1723 0.1917
Burglary 0.4401 0.2033 -.2098 -.0575 0.1010 0.5359 -.6481
2 8 gg;g;gji 8 83?32:33 8 82?2 8 gggg Larceny 0.3573 0.4023 -.5392 -.2348 0.0300 0.0394 0.6016
) ) ) ) Aut o 0.2951 0.5024 0.5683 0.4192 0.3697 -.0572 0.1470
7 0. 12405606 0.0177 1. 0000 . . .
Which variables have large weights on each component?
@ Eigenvalues > 1: 2 components @ Prin1: all positive weights: Overall crime index
@ Differences (numerical version of scree plot): 3 components @ Prin2: Property crimes (+) vs. Violent crimes (—)
@ Proportion > .80: 2 components @ Prin3: Robbery, auto vs. Larceny ??
@ Interpretability?
PCA Example: Plotting component scores PCA Example: Plotting component scores
%l otit(data=crinconp, plotvars=prin2 prinl, |abelvar=ST); . . . .
PCA: Crime rates per 100,000 population by state (y(pl otit ( dat a=cri rn:orrpv pI ot var S:pr I n3 pr I nlv I abel var :ST) ;
| | | | | | PCA: Crime rates per 100,000 population by state
ad 1 : : : : : :
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PCA: Example PCA: Example

PCA Example: Plotting component scores, better PCA Example: Plotting component scores, better still
Prinl, Prin2, with variable weights as vectors (Biplot)
Prin1, Prin2, colored by Murder rate % % % % %
+ + + + + + 2+ -+
oA
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Dimension 1: Overall crime (58.8%) 27T T
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Biplots: Low-D views of multivariate data
@ Display variables and observations in a reduced-rank space of d (=2 or 3) Auto
dimensions, 11
variables V2 2
TT Vl o
z 1 B ™
£l o 3f22] . . <
< N
Z Y = A V. N 3 c 01
g £ ) =
2 E
) ° A g
° ° £
. a8
\Z ® Dim 1
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@ Biplot properties:
@ Plot observations as points, variables as vectors from origin (mean) Murder
@ Angles between vectors show correlations (r ~ cos(6))
@ y; ~ a/b;: projection of observation on variable vector o]
@ Observations are uncorrelated overall (but not necessarily within group) i ‘2 ‘1 (‘) i é
@ Data ellipses for scores show low-D between and within variation i i
Dimension 1 (58.8%)
Biplot of US crime data




Biplots Application: Preference analysis Biplots Application: Preference analysis

Application: Preference mapping |

@ Judges give “preference” ratings of a set of objects

@ How many dimensions are required to account for preferences?
@ What is the interpretation of the “preference map”?
@ NB: Here, the judges are treated as variables

Objects

Judges

Preference
Ratings

* Judge
objle
judge?2
L ]
* ® o judge3
Bim
abjte L4 °
Preference | eob)
space °

Application: Preference mapping Il

@ Also obtain ratings of a set of attributes to aid interpretation

@ Find correlations of attribute ratings with preference dimensions
@ Project these into preference space

Objects

Attributes

Attribute
Ratings

Dim1
Dim2

Plot correlations

as vectors

Preference &
i attribute space

ohjle

abjie

Biplots Application: Preference analysis

Example: Car Preference

Preference ratings

25 judges gave preference ratings for 17 automobile models:

MAKE

Cadi |l | ac
Chevr ol et
Chevr ol et
Chevrol et
Ford

Ford

Ford
Honda
Honda

Li ncol n
Pl ynout h
Pl ynout h

Pl yrmout h

MODEL Ji1 J
El dor ado
Chevette
Citation
Mal i bu

Fai r nont
Must ang
Pinto
Accord
Cvic

Cont i nent al
Gran Fury
Hori zon

Vol ar e

OCOO0OO0OWOWOOOOOOO
AWNNAOCIOONORAOON

Analysis & biplot:

%bi pl ot (dat a=Car s,

var =J1-J25,

J3 J4 J5 J6

0 7 9 9
5 1 2 0
5 3 3 0
2 7 4 0
2 4 0 0
0 7 1 9
2 1 0 0
5 6 8 9
3 6 7 0
0 8 9 9
0 6 0 0
0 5 0 0
0 5 0 0
i d=rmake) ;

J7
0

WUIOO0OWONO~NOOUIO

8 J9 J10 .
4 9 1.
4 2 3
8 1 4
7 2 3
7 1 5
7 0 5
3 0 3
6 0 9
5 0 7
5 9 2
4 3 4
6 3 5
6 1 4

Dimension 2 (23.40%)

Car Preferences - Biplot
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1.01
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ggﬁ]llgc J6 a5t
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Pontiac
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Chevrolet
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Plymout| Fenda

Eor&hevrolet

J22
Fetevrolet

J24

Ji8

Ji4
J19911

Swagen Jt
ondadd

\olkswagen jis

J12
JlleO

J3

J20

Volvo

-2.01,
1.5

T T
-1.0 -0.5 0.0 0.5 1.0

Dimension 1 (43.54%)

15

2.0

Biplots Application: Preference analysis

@ 2 dimensions: 67% of
variance (3: 75%)

@ Dim 1 separates
Domestic vs. Foreign

@ What is Dim 2?

@ Clusters of judges

vectors suggest market
segmentation




Biplots Application: Preference analysis Biplots Application: Preference analysis

Example: Car Preference
Attribute ratings

We also have attribute ratings on 10 variables:

Model MPG Rel Accel Brake Hand Ride Vis Conf Qiet Cargo
El dor ado
Chevette
Citation
Mal i bu

Fai r nont
Must ang

Pi nto
Accord
Cvic

Conti nent al
Gran Fury
Hori zon

Vol ar e
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Analysis & biplot:

%bi pl ot (dat a=Cars, var=Rel --Cargo, id=nmake);

Car Attribute ratings - Biplot

1.57

Ride |
Lincoln Qu&t)mfort
1.07
Voélgrgo
PlymoGihevrolet .
= 051 @ Traditional PCA of
= . .
§ o Reliable Attributes x Objects
< ool Plymouth @ Dim 1: Performance
= . .
2 @ Dim 2: Comfort
Q .
£ 05 Visible @ How do these relate to
' preference dimensions?
Ford
| BrakMBG
10 Ford Chevrolet
-1.5" T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15

Dimension 1 (32.45%)

Biplots Application: Preference analysis

Example: Car Preference

Attribute ratings

Calculate correlations of the attribute ratings with the preference dimensions:

dat a components;
merge cars bipl ot (where=(_type ="0BS"));

Preferences and correlations with attributes

Biplots Application: Preference analysis

run;
proc corr data=conponents outp=vectors;
var diml ding;
with npg reliable accel braking handling ride visible confort quiet carg
Output:
DI ML DI M2
MPG 0. 60289 - 0. 45661
Rel i abl e 0. 69996 0. 13657
Accel 0. 16958 0.21867
Br aki ng 0.27708 -0.47862
Handl i ng 0. 58163 0. 18094
Ri de 0. 12654 0.56731
Visible 0. 45048 -0. 45278
Conf ort 0.26021 0. 44702
Qui et 0. 22059 0.59791
Car go 0. 29396 0. 07101

Overlay these as vectors from the origin on the Preference space

Dimension 1 (43.54%)

2.0 .
‘ 2 Ride Quiet
g&l‘ﬁ'ﬁ-rl]c s 6 a5t
1 7
15 2 /;' fort g
1.0
J23
—_ Pontiac Accel i
S an
% 0.57 525 / 7anding
g ‘ e
~ Plymouth Y _ ARt
s 0.0 Chevrolet Volkswagen Jis
G Plynfstith °
=4 J12
@ Plymoutl Menda
£ 051
For€hevrolet 3
-1.01 J22
FetHevrolet
J20
151 Braking Visible MPG
J24
-2.0 b T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Correlations of Attribute ratings with Dimensions overlaid on Preference space




Summary: Part 1

e Factor Analysis methods

@ Exploratory vs. confirmatory

@ PCA (data reduction) vs. FA (statistical model)
e Principal components analysis

@ Linear combinations that account for maximum variance
o Components are uncorrelated
@ All PCs are just a rotation of the p-dimensional data

o PCA details

@ Analyze correlations, unless variables are commensurate
@ Number of components: Rules of thumb, Scree plot, Parallel analysis
e Visualizations

@ Plots of component scores
@ Biplots: scores + variable vectors




