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PCA and Factor Analysis: Overview & Goals Why do Factor Analysis?

Why do Factor Analysis?

Data Reduction: Replace a large number of variables with a smaller
number which reflect most of the original data [PCA rather than FA]
Example: In a study of the reactions of cancer patients to radiotherapy,
measurements were made on 10 different reaction variables. Because it
was difficult to interpret all 10 variables together, PCA was used to find
simpler measure(s) of patient response to treatment that contained most
of the information in data.

Test and Scale Construction: Develop tests and scales which are “pure”
measures of some construct.
Example: In developing a test of English as a Second Language,
investigators calculate correlations among the item scores, and use FA to
construct subscales. Any items which load on more than one factor or
which have low loadings on their main factor are revised or dropped from
the test.



PCA and Factor Analysis: Overview & Goals Why do Factor Analysis?

Why do Factor Analysis?

Operational definition of theoretical constructs:
To what extent different observed variables measure the the same thing?
Validity: Do they all measure it equally well?

Example: A researcher has developed 2 rating scales for assertiveness,
and has several observational measures as well. They should all
measure a single common factor, and the best measure is the one with
the greatest common variance.
Theory construction:

Several observed measures for each theoretical construct (factors)
How are the underlying factors related?

Example: A researcher has several measures of Academic self-concept,
and several measures of educational aspirations. What is the correlation
between the underlying, latent variables?

PCA and Factor Analysis: Overview & Goals Why do Factor Analysis?

Why do Factor Analysis?

Factorial invariance: Test equivalence of factor structures across several
groups.

Same factor loadings?
Same factor correlations?
Same factor means?

Example: A researcher wishes to determine if normal people and
depressive patients have equivalent factor structures on scales of
intimacy and attachment she developed.
The most sensitive inferences about mean differences on these scales
assume that the relationships between the observed variables
(subscales) and the factor are the same for the two groups.

PCA and Factor Analysis: Overview & Goals Two modes of Factor Analysis

Two modes of Factor Analysis

Exploratory Factor Analysis : Examine and explore the
interdependence among the observed variables in some set.

Still widely used today (∼ 50%)
Use to develop a structural theory: how many factors?
Use to select “best” measures of a construct.

Confirmatory Factor Analysis : Test specific hypotheses about the
factorial structure of observed variables.

Does for FA what ANOVA does for studying relations among group means.
Requires much more substantive knowledge by the researcher.
Provides exactly the methodology required to settle theoretical controversies.
Requires moderately large sample sizes for precise tests.

PCA and Factor Analysis: Overview & Goals Two modes of Factor Analysis

Principal component analysis vs. Factor analysis

Principal Components

A descriptive method for data
reduction.

Accounts for variance of the data.

Scale dependent (R vs. S)

Components are always
uncorrelated

Components are linear
combinations of observed
variables.

Scores on components can be
computed exactly.

Factor analysis

A statistical model which can be
tested.
Accounts for pattern of
correlations.
Scale free (ML, GLS)
Factors may be correlated or
uncorrelated
Factors are linear combinations
of common parts of variables
(unobservable variables)
Scores on factors must always be
estimated (even from population
correlations)
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Brief history of Factor Analysis
Early origins

Galton (1886): “regression toward the mean” in heritable traits (e.g.,
height)

Pearson (1896): mathematical formulation of correlation

PCA and Factor Analysis: Overview & Goals Brief history of Factor Analysis

Brief history of Factor Analysis I
Early origins

Spearman (1904): “General intelligence,” objectively determined and
measured

Proposes that performance on any observable measure of mental ability is a
function of two unobservable quantities, or factors:
General ability factor, g — common to all such tests
Specific ability factor, u — measured only by that particular test
“Proof:” tetrad differences = 0→ rank(R) = 1

“Factoring” a matrix
Hotelling (1933): Principal components analysis
Eckart & Young (1937): Singular value decomposition→ biplot

PCA and Factor Analysis: Overview & Goals Brief history of Factor Analysis

Brief history of Factor Analysis
Early origins

Thurstone (1935): Vectors of the mind; Thurstone(1947): Multiple factor
analysis

Common factor model— only general, common factors could contribute to
correlations among the observed variables.
Multiple factor model— two or more common factors + specific factors
Primary Mental Abilities— attempt to devise tests to measure multiple facets
of general intelligence

Thurstone (1947): rotation to simple structure

Kaiser (1953): Idea of analytic rotations (varimax) for factor solutions

PCA and Factor Analysis: Overview & Goals Brief history of Factor Analysis

Brief history of Factor Analysis
Modern development

Lawley & Maxwell (1973): Factor analysis as statistical model, MLE
→ (large-sample) χ2 hypothesis test for # of common factors

Confirmatory factor analysis
Jöreskog (1969): confirmatory maximum liklihood factor analysis– by
imposing restrictions on the factor loadings
Jöreskog (1972): ACOVS model— includes “higher-order” factors

Structural equation models
Jöreskog (1976): LISREL model— separates the measurement model
relating observed variables to latent variables from the structural model
relating variables to each other.



Principal components analysis

Principal components

Purpose : To summarize the variation of several numeric variables by a
smaller number of new variables, called components.

The components are linear combinations— weighted sums— of the
original variables.

z1 ≡ PC1 = a11X1 + a12X2 + · · ·+ a1pXp = aT
1x

The first principal component is the linear combination which explains as
much variation in the raw data as possible.

The second principal component is the linear combination which explains
as much variation not extracted by the first component

z2 ≡ PC2 = a21X1 + a22X2 + · · ·+ a2pXp = aT
2x

Principal components analysis

Principal components

The principal component scores are uncorrelated with each other. They
represent uncorrelated (orthogonal) directions in the space of the original
variables.

X1

X2

PC1PC2

The first several principal components explain as much variation from the
raw data as possible, using that number of linear combinations.

Principal components analysis

Principal components
Galton’s regresion/correlation/PCA diagram

Principal components analysis Artificial PCA example

Artificial PCA example

Some artificial data, on two variables, X and Y.
We also create some linear combinations of X and Y, named A, B and C.

A = X + Y
B = 5*X + Y
C = -2*X + Y

The data looks like this:
X Y A B C

14 1 15 71 -27
12 2 14 62 -22
11 2 13 57 -20
9 3 12 48 -15

10 3 13 53 -17
11 3 14 58 -19
... ... ... ... ...
1 10 11 15 8
2 10 12 20 6

How much of the variance of X and Y do different linear combinations
account for?



Principal components analysis Artificial PCA example

From simple regression, the proportion of variance of X accounted for by any
other variable, say A, is just r2

XA.
The correlations among these variables are:
_NAME_ X Y A B C

X 1.000 -0.866 0.764 0.997 -0.991
Y -0.866 1.000 -0.339 -0.824 0.924
A 0.764 -0.339 1.000 0.812 -0.673
B 0.997 -0.824 0.812 1.000 -0.978
C -0.991 0.924 -0.673 -0.978 1.000

The variances are:
X Y A B C

12.757 6.000 3.605 249.160 87.330

So, the total variance of X and Y is 12.76 + 6.00 = 18.76.
Therefore, the variance of X and Y accounted for by any other variable (say,
A) is

r2
XAσ2

X = (.764)2(12.76) = 7.44

r2
YAσ2

Y = (−.339)2(6.00) = 0.69

Total = 8.13 → 8.13/18.76 = 43%

Principal components analysis Artificial PCA example

The plot below shows the data, with the linear combinations, A = X + Y , and
C = −2X + Y .

A = X + Y

C = -2X + Y
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As you may guess, the linear combination C = −2X + Y accounts for more of
the variance in X and Y.

r2
XCσ2

X = (−.991)2(12.76) = 12.53

r2
YCσ2

Y = (.924)2(6.00) = 5.12

Total = 17.65 → 17.65/18.75 = 94%

This is 17.65/18.75 = 94% of the total variance of X and Y. Much better, but in
Principal components analysis Artificial PCA example

Principal components finds the directions which account for the most
variance.

Geometrically, these are just the axes of an ellipse (ellipsoid in 3D+) that
encloses the data
Length of each axis ∼ eigenvalue ∼ variance accounted for
Direction of each axis ∼ eigenvector ∼ weights in the linear combination
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Principal components analysis Artificial PCA example

Using PROC PRINCOMP on our example data, we find,
Eigenvalue Difference Proportion Cumulative

PRIN1 17.6732 16.5898 0.942237 0.94224
PRIN2 1.0834 . 0.057763 1.00000

Eigenvectors

PRIN1 PRIN2

X 0.838832 0.544390
Y -.544390 0.838832

The first principal component, PRIN1 = .8388 X - .5444 Y, accounts for
the greatest variance, 17.673 (94.22%).

The second principal component, PRIN2 = .5444 X + .8388 Y, accounts
for the remaining variance, 1.083 (5.78%).

The two components are uncorrelated, r ( PRIN1, PRIN1 ) = 0.
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PCA details: Covariances or correlations?

Principal components can be computed from either the covariance matrix
or the correlation matrix.

Correlation matrix: all variables are weighted equally

Covariance matrix: each variable is weighted ∼ its variance.
Using the covariance matrix makes sense iff:

All variables are measured in comparable units
You have adjusted the scales of the variables relative to some external
measure of importance

SAS:
PROC PRINCOMP data=mydata options;

VAR variables;

options: COV - analyze the covariance matrix; PLOT=SCREE - produce
scree plot

PCA: details

PCA details: How many components?

Complete set of principal components contains the same information as
the original data— just a rotation to new, uncorrelated variables.

For dimension reduction, you usually choose a smaller number
Four common criteria for choosing the number of components:

Number of eigenvalues > 1 (correlation matrix only)— based on idea that
average eigenvalue = 1
Number of components to account for a given percentage— typically
80–90% of variance
“Scree” plot of eigenvalues– look for an “elbow”
How many components are interpretable?

SAS:
PROC PRINCOMP data=mydata

N=#_components OUT=output_dataset;
VAR variables;

PCA: details

PCA details: Scree plot

PCA: details

PCA details: Parallel analysis

Horn (1965) proposed a more “objective” way to choose the number of
components (or factors, in EFA), now called parallel analysis

The basic idea is to generate correlation matrices of random,
uncorrelated data, of the same size as your sample.

Take # of components =the number of eigenvalues from the observed
data > eigenvalues of the random data.

From scree plot, this is where the curves for observed and random data
cross.
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PCA details: Parallel analysis
Holzinger-Swineford 24 psychological variables:
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PCA: details

PCA details: Parallel analysis
Holzinger-Swineford 24 psychological variables: Other criteria

PCA: details

PCA details: Interpreting the components

Eigenvectors (component weights or “loadings”)
Examine the signs & magnitudes of each column of loadings
Often, the first component will have all positive signs→ “general/overall
component”
Interpret the variables in each column with absolute loadings > 0.3 – 0.5
Try to give a name to each

Component scores
Component scores give the position of each observation on the component
Scatterplots of: Prin1, Prin2, Prin3 with observation labels
What characteristics of the observations vary along each dimension?

PCA: Example

PCA Example: US crime data

title ’PCA: Crime rates per 100,000 population by state’;
data crime;

input State $1-15 Murder Rape Robbery Assault Burglary Larceny
Auto ST $;

datalines;
Alabama 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7 AL
Alaska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3 AK
Arizona 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5 AZ
Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4 AR
California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5 CA
Colorado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1 CO
Connecticut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2 CT
...
Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7 WI
Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0 WY
;
proc princomp out=crimcomp;



PCA: Example

PCA Example: US crime data

Output:
Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.11495951 2.87623768 0.5879 0.5879
2 1.23872183 0.51290521 0.1770 0.7648
3 0.72581663 0.40938458 0.1037 0.8685
4 0.31643205 0.05845759 0.0452 0.9137
5 0.25797446 0.03593499 0.0369 0.9506
6 0.22203947 0.09798342 0.0317 0.9823
7 0.12405606 0.0177 1.0000

Eigenvalues > 1: 2 components

Differences (numerical version of scree plot): 3 components

Proportion > .80: 2 components

Interpretability?

PCA: Example

PCA Example: US crime data

Output:
Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7

Murder 0.3002 -.6291 0.1782 -.2321 0.5381 0.2591 0.2675
Rape 0.4317 -.1694 -.2441 0.0622 0.1884 -.7732 -.2964
Robbery 0.3968 0.0422 0.4958 -.5579 -.5199 -.1143 -.0039
Assault 0.3966 -.3435 -.0695 0.6298 -.5066 0.1723 0.1917
Burglary 0.4401 0.2033 -.2098 -.0575 0.1010 0.5359 -.6481
Larceny 0.3573 0.4023 -.5392 -.2348 0.0300 0.0394 0.6016
Auto 0.2951 0.5024 0.5683 0.4192 0.3697 -.0572 0.1470

Which variables have large weights on each component?

Prin1: all positive weights: Overall crime index

Prin2: Property crimes (+) vs. Violent crimes (−)

Prin3: Robbery, auto vs. Larceny ??

PCA: Example

PCA Example: Plotting component scores
%plotit(data=crimcomp, plotvars=prin2 prin1, labelvar=ST);

PCA: Example

PCA Example: Plotting component scores

%plotit(data=crimcomp, plotvars=prin3 prin1, labelvar=ST);
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PCA Example: Plotting component scores, better

Prin1, Prin2, colored by Murder rate
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PCA: Example

PCA Example: Plotting component scores, better still
Prin1, Prin2, with variable weights as vectors (Biplot)
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Biplots Low-D views based on PCA

Biplots: Low-D views of multivariate data

Display variables and observations in a reduced-rank space of d (=2 or 3)
dimensions,

Biplot properties:
Plot observations as points, variables as vectors from origin (mean)
Angles between vectors show correlations (r ≈ cos(θ))
yij ≈ aT

i b j : projection of observation on variable vector
Observations are uncorrelated overall (but not necessarily within group)
Data ellipses for scores show low-D between and within variation

Biplots Low-D views based on PCA
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Biplots Application: Preference analysis

Application: Preference mapping I

Judges give “preference” ratings of a set of objects
How many dimensions are required to account for preferences?
What is the interpretation of the “preference map”?
NB: Here, the judges are treated as variables

Biplots Application: Preference analysis

Application: Preference mapping II

Also obtain ratings of a set of attributes to aid interpretation
Find correlations of attribute ratings with preference dimensions
Project these into preference space

Biplots Application: Preference analysis

Example: Car Preference
Preference ratings

25 judges gave preference ratings for 17 automobile models:
MAKE MODEL J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 ...
Cadillac Eldorado 0 8 0 7 9 9 0 4 9 1 ...
Chevrolet Chevette 0 0 5 1 2 0 0 4 2 3
Chevrolet Citation 0 4 5 3 3 0 5 8 1 4
Chevrolet Malibu 0 6 2 7 4 0 0 7 2 3
Ford Fairmont 0 2 2 4 0 0 6 7 1 5
Ford Mustang 0 5 0 7 1 9 7 7 0 5
Ford Pinto 0 0 2 1 0 0 0 3 0 3
Honda Accord 9 5 5 6 8 9 7 6 0 9
Honda Civic 8 4 3 6 7 0 9 5 0 7
Lincoln Continental 0 7 0 8 9 9 0 5 9 2
Plymouth Gran Fury 0 7 0 6 0 0 0 4 3 4
Plymouth Horizon 0 3 0 5 0 0 5 6 3 5
Plymouth Volare 0 4 0 5 0 0 3 6 1 4
... ...

Analysis & biplot:

%biplot(data=Cars, var=J1-J25, id=make);

Biplots Application: Preference analysis

Cadillac

Chevrolet

Chevrolet

Chevrolet

Ford

Ford

Ford

Honda

Honda

Lincoln

Plymouth

Plymouth
Plymouth

Pontiac

Volkswagen

Volkswagen

Volvo
J1

J2

J3

J4
J5J6

J7

J8

J9

J10

J11

J12

J13

J14

J15

J16

J17
J18

J19

J20

J21

J22

J23

J24

J25

Car Preferences - Biplot

D
im

en
si

on
 2

 (
23

.4
0%

)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Dimension 1 (43.54%)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

2 dimensions: 67% of
variance (3: 75%)

Dim 1 separates
Domestic vs. Foreign

What is Dim 2?

Clusters of judges
vectors suggest market
segmentation



Biplots Application: Preference analysis

Example: Car Preference
Attribute ratings

We also have attribute ratings on 10 variables:
Model MPG Rel Accel Brake Hand Ride Vis Comf Quiet Cargo

Eldorado 3 2 3 4 5 4 3 5 3 3
Chevette 5 3 3 5 4 2 5 2 2 3
Citation 4 1 5 5 5 5 5 5 2 5
Malibu 3 3 3 3 4 4 4 5 4 4
Fairmont 3 3 2 4 3 4 5 4 3 4
Mustang 3 2 4 4 3 2 3 2 2 2
Pinto 4 1 3 4 3 1 3 2 2 2
Accord 5 5 5 4 5 3 3 4 3 3
Civic 5 5 4 5 4 3 5 4 3 4
Continental 2 4 5 3 3 5 3 5 5 5
Gran Fury 2 1 3 4 3 5 3 5 3 5
Horizon 4 3 4 5 5 3 5 2 3 5
Volare 2 1 5 3 3 3 3 4 2 4
... ...

Analysis & biplot:

%biplot(data=Cars, var=Rel--Cargo, id=make);

Biplots Application: Preference analysis
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Biplots Application: Preference analysis

Example: Car Preference
Attribute ratings

Calculate correlations of the attribute ratings with the preference dimensions:
data components;

merge cars biplot(where=(_type_="OBS"));
run;

proc corr data=components outp=vectors;
var dim1 dim2;
with mpg reliable accel braking handling ride visible comfort quiet cargo;

Output:
DIM1 DIM2

MPG 0.60289 -0.45661
Reliable 0.69996 0.13657
Accel 0.16958 0.21867
Braking 0.27708 -0.47862
Handling 0.58163 0.18094
Ride 0.12654 0.56731
Visible 0.45048 -0.45278
Comfort 0.26021 0.44702
Quiet 0.22059 0.59791
Cargo 0.29396 0.07101

Overlay these as vectors from the origin on the Preference space

Biplots Application: Preference analysis
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Summary

Summary: Part 1

Factor Analysis methods
Exploratory vs. confirmatory
PCA (data reduction) vs. FA (statistical model)

Principal components analysis
Linear combinations that account for maximum variance
Components are uncorrelated
All PCs are just a rotation of the p-dimensional data

PCA details
Analyze correlations, unless variables are commensurate
Number of components: Rules of thumb, Scree plot, Parallel analysis

Visualizations
Plots of component scores
Biplots: scores + variable vectors


