Visualizing Categorical Data with SAS and R

Michael Friendly

York University
SCS Short Course, 2016
Web notes: datavis.ca/courses/VCD/

Part 3: Mosaic displays and loglinear models

Mosaic displays: Basic ideas

Hartigan and Kleiner (1981), Friendly (1994, 1999)
UCB Admissions: Observed frequencies

- Area-proportional display of frequencies in an n-way table
- Tiles (cells): recursive splits of a unit square-
- V1: width ~ marginal frequencies, n_{i++}
- V2: height \sim relative frequencies | V1, $n_{i j+} / n_{i++}$
- V3: width \sim relative frequencies | (V1, V2), $n_{i j k} / n_{i j+}$
- ...
- \Rightarrow area \sim cell frequency, $n_{i j k}$

Mosaic displays: Basic ideas

- Independence: Two-way table
- Expected frequencies:

$$
\widehat{m}_{i j}=\frac{n_{i+} n_{+j}}{n_{++}}=n_{++} \text {row } \% \text { col } \%
$$

Independence: Expected frequencies

Mosaic displays: Residuals \& shading

- Pearson residuals:

$$
d_{i j}=\frac{n_{i j}-\widehat{m}_{i j}}{\sqrt{\widehat{m}_{i j}}}
$$

- Pearson $\chi^{2}=\Sigma \Sigma d_{i j}^{2}=\Sigma \Sigma \frac{\left(n_{i j}-\hat{m}_{i j}\right)^{2}}{\hat{m}_{i j}}$
- Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...
- Shading:
- Sign: - negative in red; + positive in blue
- Magnitude: intensity of shading $\left|d_{i j}\right|>0,2,4, \ldots$
- \Rightarrow Independence: rows align, or cells are empty!

Loglinear models: Perspectives I

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where multiplicative relations (under independence) are re-expressed in additive form as models for \log (frequency).

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B} \equiv[A][B] \equiv \sim A+B
$$

- This expresses the model of independence for a two-way table (no A*B association)
- The notations $[A][B] \equiv \sim A+B$ are shorthands

Loglinear models: Perspectives III

Logit models

When one table variable is a binary response, a logit model for that response is equivalent to a loglinearmodel (as discussed in Part 4).

$$
\log \left(m_{1 j k} / m_{2 j k}\right)=\alpha+\beta_{j}^{B}+\beta_{k}^{C} \equiv[A B][A C][B C]
$$

- $\log \left(m_{1 j k} / m_{2 j k}\right)$ represents the log odds of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and C
- The equivalent loglinearmodel is $[\mathrm{AB}][\mathrm{AC}][\mathrm{BC}]$
- The logit model assumes $[\mathrm{BC}]$ association, and $[\mathrm{AB}] \rightarrow \beta_{j}^{B},[\mathrm{AC}] \rightarrow \beta_{k}^{C}$

Loglinear models: Overview

Two-way tables: Loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n over the $I J$ cells of a two-way $I \times J$ contingency table, with cell frequencies $n_{i j}$, and cell probabilities $\pi_{i j}=n_{i j} / n$.

- The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $\operatorname{Pr}(A=i \& B=j)=\operatorname{Pr}(A=i) \times \operatorname{Pr}(B=j)$, or,

$$
\pi_{i j}=\pi_{i+} \pi_{+j}
$$

- An equivalent model in terms of expected frequencies, $m_{i j}=n \pi_{i j}$ is

$$
m_{i j}=(1 / n) m_{i+} m_{+j}
$$

- This multiplicative model can be expressed in additive form as a model for $\log m_{i j}$,

$$
\begin{equation*}
\log m_{i j}=-\log n+\log m_{i+}+\log m_{+j} \tag{1}
\end{equation*}
$$

n-way tables Loglinear modeds: Overview

Loglinear models: Overview

Saturated model

Dependence between the table variables is expressed by adding association parameters, $\lambda_{i j}^{A B}$, giving the saturated model,

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B} \equiv[A B] \equiv \sim A * B . \tag{3}
\end{equation*}
$$

- The saturated model fits the table perfectly $\left(\hat{m}_{i j}=n_{i j}\right)$: there are as many parameters as cell frequencies. Residual $\mathrm{df}=0$.
- A global test for association tests $H_{0}: \boldsymbol{\lambda}_{i j}^{A B}=\mathbf{0}$.
- If reject H_{0}, which $\lambda_{i j}^{A B} \neq 0$?
- For ordinal variables, the $\lambda_{i j}^{A B}$ may be structured more simply, giving tests for ordinal association.

Loglinear models: Overview

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}, \tag{2}
\end{equation*}
$$

- μ is the grand mean of $\log m_{i j}$
- the parameters λ_{i}^{A} and λ_{j}^{B} express the marginal frequencies of variables A and B - "main effects"
- typically defined so that $\sum_{i} \lambda_{i}^{A}=\sum_{j} \lambda_{j}^{B}=0$ as in ANOVA

Example: Independence

Generate a table of Education by Party preference, strictly independent
educ <- c(50, 100, 50) \# row marginal frequencies names(educ) <- c("Low", "Med", "High")
party <- c(20, 50, 30) \# col marginal frequencies names(party) <- c("NDP", "Liberal", "Cons")
table <- outer (educ, party) / sum(party) \# row x col / n names(dimnames(table)) <- c("Education", "Party") table

\#\#	Party			
\#\#	Education	NDP	Liberal	Cons
\#\#	Low	10	25	15
\#\#	Med	20	50	30
\#\#	High	10	25	15

Mosaic plot shows equal row and column proportions:
library(vcd)
mosaic(table, shade=TRUE, legend=FALSE)

Two-way tables: GLM approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n}=\left\{n_{i j}\right\}$ is specified to have a Poisson distribution with means $\mathbf{m}=\left\{m_{i j}\right\}$ given by

$$
\log \mathbf{m}=\mathbf{X} \boldsymbol{\beta}
$$

- \mathbf{X} is a known design (model) matrix, expressing the table factors
- $\boldsymbol{\beta}$ is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
- The response, $\log \mathbf{m}$ makes multiplicative relations additive
- The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2×2 table

For a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

$$
\log \left(\begin{array}{c}
m_{11} \\
m_{12} \\
m_{21} \\
m_{22}
\end{array}\right)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left(\begin{array}{c}
\mu \\
\lambda_{1}^{A} \\
\lambda_{1}^{B} \\
\lambda_{11}^{A B}
\end{array}\right)
$$

- only the linearly independent parameters are represented. $\lambda_{2}^{A}=-\lambda_{1}^{A}$, because $\lambda_{1}^{A}+\lambda_{2}^{A}=0$, and so forth.
- association is represented by the parameter $\lambda_{11}^{A B}$
- can show that $\lambda_{11}^{A B}=\frac{1}{4} \log (\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^{2},

$$
\begin{equation*}
G^{2}=2 \sum_{i} n_{i} \log \left(\frac{n_{i}}{\widehat{m}_{i}}\right), \tag{4}
\end{equation*}
$$

or the Pearson X^{2},

$$
\begin{equation*}
x^{2}=\sum_{i} \frac{\left(n_{i}-\widehat{m}_{i}\right)^{2}}{\widehat{m}_{i}}, \tag{5}
\end{equation*}
$$

with degrees of freedom $\mathrm{df}=$ \# cells - \# estimated parameters.

- E.g., for the model of independence, $[A][B], \mathrm{df}=$
$I J-[(I-1)-(J-1)]=(I-1)(J-1)$
- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., Akaike's Information Criterion (smaller is better)

$$
A I C=G^{2}-2 d f \text { or } A I C=G^{2}+2 \# \text { parameters }
$$

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, $\lambda_{i j k}^{A B C}$

$$
\begin{align*}
\log m_{i j k}=\mu & +\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C} \\
& +\lambda_{i j}^{A B}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}+\lambda_{i j k}^{A B C} . \tag{6}
\end{align*}
$$

- One-way terms $\left(\lambda_{i}^{A}, \lambda_{j}^{B}, \lambda_{k}^{C}\right)$: differences in the marginal frequencies of the table variables.
- Two-way terms $\left(\lambda_{i j}^{A B}, \lambda_{i k}^{A C}, \lambda_{j k}^{B C}\right)$ pertain to the partial association for each pair of variables, controlling for the remaining variable.
- The three-way term, $\lambda_{i j k}^{A B C}$ allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't explain anything, so we hope for a simpler model!

Three-way tables: Reduced models

Reduced models

- Loglinearmodels are usually hierarchical: a high-order term, such as $\lambda_{i j k}^{A B C} \rightarrow$ all low-order relatives are automatically included.
- Thus, a short-hand notation for a loglinear model lists only the high-order terms,
- i.e., the saturated model $(6) \equiv[A B C]$, and implies all two-way and one-way terms
- The usual goal is to fit the smallest model (fewest high-order terms) that is sufficient to explain/describe the observed frequencies.
- This is similar to ANOVA/regression models with all possible interactions

Three-way tables: Reduced models

Reduced models

- For a 3-way table there are a variety of models between the mutual independence model, $[A][B][C]$, and the saturated model, $[A B C]$
- Each such model has an independence interpretation: $A \perp B$ means an hypothesis that A is independent of B.

Table: Log-linear Models for Three-Way Tables

Model	Model symbol	Interpretation
Mutual independence	$[A][B][C]$	$A \perp B \perp C$
Joint independence	$[A B][C]$	$(A B) \perp C$
Conditional independence	$[A C][B C]$	$(A \perp B) \mid C$
All two-way associations	$[A B][A C][B C]$	homogeneous assoc.
Saturated model	$[A B C]$	interaction

Three-way tables: Model types

- Joint independence: $(A B) \perp C$, allows $\mathrm{A}^{*} \mathrm{~B}$ association, but asserts no $A * C$ and $B^{*} C$ associations

$$
[A B][C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i j}^{A B}
$$

- Conditional independence: $A \perp B$, controlling for C

$$
[A C][B C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}
$$

- Homogeneous association: All two-way, but each two-way is the same over the other factor

$$
[A B][A C][B C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i j}^{A B}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}
$$

Nested models and ANOVA-type tests

Nested models

Two models, M_{1} and M_{2} are nested when one (say, M_{2}) is a special case of the other

- Model M_{2} (with $\nu_{2} \mathrm{df}$) fits a subset of the parameters of M_{1} (with $\nu_{1} \mathrm{df}$)
- M_{2} is more restrictive - cannot fit better than $M_{1}: G^{2}\left(M_{2}\right) \geq G^{2}\left(M_{1}\right)$
- The least restrictive model is the saturated model $[\mathrm{ABC} \ldots]$ with $G^{2}=0$ and $\nu=0$

Therefore, we can test the difference in G^{2} as a specific test of the added restrictions in M_{2} compared to M_{1}. This test has has a χ^{2} distribution with $\mathrm{df}=$ $\nu_{2}-\nu_{1}$.

$$
\begin{aligned}
\Delta G^{2} \equiv G^{2}\left(M_{2} \mid M_{1}\right) & =G^{2}\left(M_{2}\right)-G^{2}\left(M_{1}\right) \\
& =2 \sum n_{i} \log \left(\widehat{m}_{i 1} / \widehat{m}_{i 2}\right)
\end{aligned}
$$

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^{2}, or the Pearson X^{2},

$$
G^{2}=2 \sum_{i} n_{i} \log \left(\frac{n_{i}}{\widehat{m}_{i}}\right) \quad X^{2}=\sum_{i} \frac{\left(n_{i}-\widehat{m}_{i}\right)^{2}}{\widehat{m}_{i}}
$$

with residual degrees of freedom $\nu=\#$ cells $-\#$ estimated parameters.

- These measure the lack of fit of a given model- a large value \mapsto a poor model
- Both are distributed as $\chi^{2}(\nu)$ (in large samples: all $\widehat{m}_{i}>5$)
- $\mathcal{E}\left(\chi^{2}\right)=\nu$, so G^{2} / ν (or $\left.X^{2} / \nu\right)$ measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

Fitting loglinear models: SAS

SAS

- PROC CATMOD

\%include catdata(berkeley);
proc catmod order=data data=berkeley;
format dept dept. admit admit.;
weight freq;
model dept*gender*admit=_response_ ;
loglin admit|dept|gender @2 / title='Model (AD,AG,DG)'; run;
loglin admit|dept dept|gender / title='Model (AD,DG)'; run;

- PROC GENMOD

```
proc genmod data=berkeley;
    model freq = dept|gender dept|admit / dist=poisson
run;
```

- mosaic macro usually fits loglin models internally and displays results
- You can also use PROC GENMOD for a more general model, and display the result with the mosaic macro.

Fitting loglinear models in R

$\log 1 \mathrm{~lm}()$ - data in contingency table form (MASS package)

```
data(UCBAdmissions)
    ## conditional independence (AD, DG) in Berkeley data
mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
    ## all two-way model (AD, DG, AG)
mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)
```


glm () - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')
```

- $\log \operatorname{lm}()$ simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm () fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

Example: Berkeley admission data

Fit the model of mutual independence using $\log \operatorname{lm}()$

```
data("UCBAdmissions")
library(MASS)
berk.loglm0 <- loglm(~ Dept + Gender + Admit, data=UCBAdmissions)
berk.loglm0
## Call:
## loglm(formula = ~Dept + Gender + Admit, data = UCBAdmissions)
##
## Statistics:
## (r^2 df P(> X^2)
## Pearson 2000.3 16 0
```


Example: Berkeley admission data

Fit other models with $\log \operatorname{lm}()$

```
# conditional independence [AD] [AG]
berk.loglm1 <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
# joint independence [A] [DG]
berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
berk.loglm2
## Call:
## loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 877.06 11 0
## Pearson 797.70 11 0
# all two-way model [AD] [AG] [DG]
berk.loglm3 <-loglm(~ (Admit+Dept+Gender)^2, data=UCBAdmissions)
```


Example: Berkeley admission data

Compare nested models with anova()

anova(berk.loglm0, berk.loglm2, berk.loglm3, test="Chisq")

Fitting loglinear models Mossic displays

Mosaic displays for multiway tables

- Generalizes to n-way tables: divide cells recursively
- Can fit any log-linear model (e.g., 2-way, 3-way, ...),
- For a 3-way table: $[A][B][C],[A B][C],[A B][A C], \ldots,[A B C]$
- Each mosaics shows:
- Model [Dept] [Gender]: $G_{(5)}^{2}=$
- Note: Departments ordered A-F by
- Men more likely to apply to departments A,B; women more

Example: Berkeley admission data

LRStats() in vcdExtra gives one line summaries of a collection of models
LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)

```
## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## berk.loglm0 2273 2282 2098 16 <2e-16 ***
## berk.loglm1 1336 1352 1149 10 <2e-16 ***
## berk.loglm2 1062 1077 877 11 <2e-16 ***
## berk.loglm3 217 240 20 5 0.0011 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$
\begin{aligned}
& A I C=G^{2}+2 \times \# \text { parameters } \\
& B I C=G^{2}+2 \log (n) \times \# \text { parameters }
\end{aligned}
$$

1220.6. overall rate of admission. likely in depts $C-F$

Mosaic displays: Predictor variables

Berkeley data: Departments \times Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

Model: (Dept)(Gender)

Joint independence, $[\mathrm{DG}][\mathrm{A}]$ (null model, Admit as response) $\left[G_{(11)}^{2}=877.1\right]$:

Mosaic displays for multiway tables

Conditional independence, [AD] [DG]:
Model: (DeptGender)(DeptAdmit)

- E.g., Add [Admit Dept] association \rightarrow Conditional independence:
- Fits poorly: $\left(G_{(6)}^{2}=21.74\right)$
- But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

Other variations: Double decker plots

- Visualize dependence of one categorical (typically binary) variable on predictors
- Formally: mosaic plots with vertical splits for all predictor dimensions, highlighting the response by shading

Sequential plots and models

- Mosaic for an n-way table \rightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as

$$
p_{i j k \ell \cdots}=\underbrace{\{\overbrace{\left.p_{i} \times v_{j} v_{2}\right\}} \times p_{k \mid i j}}_{\left\{v_{1} v_{2} v_{3}\right\}} \times p_{\ell \mid j k} \times \cdots \times p_{n \mid i j k \cdots}
$$

- First 2 terms \rightarrow mosaic for v_{1} and v_{2}
- First 3 terms \rightarrow mosaic for v_{1}, v_{2} and v_{3}
- ...
- Roughly analogous to sequential fitting in regression: $X_{1}, X_{2}\left|X_{1}, X_{3}\right| X_{1} X_{2}$, ...
- The order of variables matters for interpretation

Sequential plots and models
Sequential plots and models: Example

- Hair color x Eye color marginal table (ignoring Sex)

Sequential plots and models: Example

- 3-way table, Joint Independence Model [Hair Eye] [Sex]

Sequential plots and models: Example

- 3-way table, Mutual Independence Model [Hair] [Eye] [Sex]

Sequential plots and models: Example

Mosaic matrices

- Analog of scatterplot matrix for categorical data (Friendly, 1999)
- Shows all $p(p-1)$ pairwise views in a coherent display
- Each pairwise mosaic shows bivariate (marginal) relation
- Fit: marginal independence
- Residuals: show marginal associations
- Direct visualization of the "Burt" matrix analyzed in MCA for p categorical variables

Hair, Eye, Sex data:

Berkeley data:

Partial association, Partial mosaics

- Stratified analysis:

- How does the association between two (or more) variables vary over levels of other variables?
- Mosaic plots for the main variables show partial association at each level of the other variables.
- E.g., Hair color, Eye color BY Sex \leftrightarrow TABLES sex $*$ hair * eye;

Partial association, Partial mosaics

Stratified analysis: conditional decomposition of G^{2}

- Fit models of partial (conditional) independence, $A \perp B \mid C_{k}$ at each level of (controlling for) C.
- \Rightarrow partial $G^{2} \mathrm{~s}$ add to the overall G^{2} for conditional independence, $A \perp B \mid C$

$$
G_{A \perp B \mid C}^{2}=\sum_{k} G_{A \perp B \mid C(k)}^{2}
$$

Table: Partial and Overall conditional tests, Hair \perp Eye \mid Sex

Model	df	G^{2}	p-value
$[$ Hair $][$ Eye $] \mid$ Male	9	44.445	0.000
$[$ Hair $][$ Eye $] \mid$ Female	9	112.233	0.000
$[$ Hair $][$ Eye $]$	Sex	18	156.668

Software for Mosaic Displays: SAS

- Macro interface: mosaic macro, table macro, mosmat macro
- mosaic macro- Easiest to use
- Direct input from a SAS dataset
- No knowledge of SAS/IML required
- Reorder table variables; collapse, reorder table levels with table macro
- Convenient interface to partial mosaics ($\mathrm{BY}=$)
- table macro
- Create frequency table from raw data
- Collapse, reorder table categories
- Re-code table categories using SAS formats, e.g., $1=$ 'Male' $2=$ 'Female'
- mosmat macro
- Mosaic matrices- analog of scatterplot matrix (Friendly, 1999)

Software for Mosaic Displays: SAS

SAS software \& documentation

http://datavis.ca/mosaics/mosaics.pdf - User Guide http://datavis.ca/books/vcd/macros.html - Software

- Examples: Many in VCD and on web site
- SAS/IML modules: mosaics.sas- Most flexible
- Enter frequency table directly in SAS/IML, or read from a SAS dataset.
- Select, collapse, reorder, re-label table levels using SAS/IML statements
- Specify structural 0s, fit specialized models (e.g., quasi-independence)
- Interface to models fit using PROC GENMOD
mosaic macro example: Berkeley data

```
\ berkeley.sas
title 'Berkeley Admissions data';
proc format;
    value admit 1="Admitted" 0="Rejected" 
    value dept 1="A 2= B S" 3="C , 4='D" }5
data berkeley;
    do dept = 1 to 6;
        do gender = 'M', 'F';
            do admit = 1, 0;
                input freq @@;
                output;
    end; end; end;
/* -- Male -- - Female- */
/* Admit Rej Admit Rej */
datalines;
\begin{tabular}{rrrrlrl}
512 & 313 & 89 & 19 & /* \(\operatorname{Dept}\) & \(A\) & \(* /\) \\
353 & 207 & 17 & 8 & /* & \(B\) & */ \\
120 & 205 & 202 & 391 & /* & \(C\) & \(* /\) \\
138 & 279 & 131 & 244 & /* & \(D\) & \(* /\) \\
53 & 138 & 94 & 299 & /* & \(E\) & */ \\
22 & 351 & 24 & 317 & /* & \(F\) & */
\end{tabular}
```


Data set berkeley:

dept	gender	admit	freq
1	M	1	512
1	M	0	313
1	F	1	89
1	F	0	19
2	M	1	353
2	M	0	207
2	F	1	17
2	F	0	8
3	M	1	120
3	F	0	205
3	F	1	202
4	M	1	391
4	M	0	138
4	F	1	279
4	F	0	241
5	M	1	53
5	M	0	138
5	F	1	94
5	F	0	299
6	M	1	22
6	F	0	351
6	F	1	24

mosaic macro example: Berkeley data

```
mosaic9m.sas
goptions hsize=7in vsize=7i
*-- apply character formats to numeric table variables;
%table(data=berkeley,
    var=Admit Gender Dept,
    weight=freq,
    char=Y, format=admit admit. gender $sex. dept dept.,
    order=data, out=berkeley);
%mosaic(data=berkeley,
    vorder=Dept Gender Admit, /* reorder variables */
    plots=2:3, /* which plots? */
    fittype=joint, /* fit joint indep. */
    split=H V V, htext=3); /* options */
```

NB: The fittype= argument allows various types of sequential models: joint, conditional, etc.

mosaic macro example: Berkeley data

Two-way, Dept. by Gender

Three-way, Dept. by Gender by Admit

mosmat macro: Mosaic matrices
 \%include catdata(berkeley); \%mosmat (data=berkeley, vorder=Admit Gender Dept, sort=no);

Partial mosaics

```
%include catdata(hairdat3s);
```

\%gdispla(0FF);
\%mosaic(data=haireye,
vorder=Hair Eye Sex, by=Sex,
htext=2, cellfill=dev);
\%gdispla(ON);
\%panels(rows=1, cols=2); /* make 2 figs -> 1 */

Using the vcd package in R

```
>library(vcd)
>
>data(HairEyeColor)
>structable(Eye ~ Hair + Sex, data=HairEyeColor)
```

Eye Brown Blue Hazel Green

Hair Black	Sex				
	Male	32	11	10	3
	Female	36	9	5	2
Brown	Male	53	50	25	15
	Female	66	34	29	14
Red	Male	10	10	7	7
	Female	16	7	7	7
Blond	Male	3	30	5	8
	Female	4	64	5	8

- The structable() function \rightarrow 'flat' representation of an n-way table, similar to mosaic displays
- Formula interface: Col factors ~ row factors

vcd: Other models

```
>## Joint independence model.
>mod.2 <- loglm(~Hair*Eye+Sex, data=HairEyeColor)
>mod. }
```

Call:
$\operatorname{loglm}(f o r m u l a=\sim$ Hair $*$ Eye + Sex, data $=$ HairEyeColor)
Statistics:

$$
X^{\wedge} 2 d f \quad P\left(>X^{\wedge} 2\right)
$$

Likelihood Ratio 19.85656150 .1775045
Pearson $\quad 19.56712150 .1891745$

$$
\begin{aligned}
& \text { >\#\# Conditional independence model: Hair*Eye + Sex*Eye } \\
& >m o d .3<-\log \operatorname{lm}(\sim(\text { Hair+Sex }) * E y e, \text { data=HairEyeColor) } \\
& >m o d .3
\end{aligned}
$$

Call:

loglm(formula $=\sim($ Hair + Sex) $*$ Eye, data $=$ HairEyeColor)
Statistics

$$
X^{\wedge} 2 d f \quad P\left(>X^{\wedge} 2\right)
$$

Likelihood Ratio 18.32715120 .1061122
$\begin{array}{llll}\text { Pearson } & 18.04110 & 12 & 0.1144483\end{array}$
model: [HairEye][Sex]

Testing differences between models

- For nested models, $M_{1} \subset M_{2}$ (M_{1} nested within, a special case of M_{2}), the difference in LR $G^{2}, \Delta=G^{2}\left(M_{1}\right)-G^{2}\left(M_{2}\right)$ is a specific test of the difference between them. Here, $\Delta \sim \chi^{2}$ with $d f=d f_{1}-d f_{2}$.
- R functions are object-oriented: they do different things for different types of objects.
>anova(mod.1, mod.2)

LR tests for hierarchical log-linear models
Model 1:
~Hair + Eye + Sex
Model 2:
${ }^{\sim}$ Hair $*$ Eye + Sex
Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1166.3001424
$\begin{array}{llllll}\text { Model } 2 & 19.85656 & 15 & 146.44358 & 9 & 0.0000\end{array}$

Saturated	0.00000	0	19.85656	15	0.1775

More structured tables

Ordered categories

Tables with ordered categories may allow more parsimonious tests of association

- Can represent $\lambda_{i j}^{A B}$ by a small number of parameters
- \rightarrow more focused and more powerful tests of lack of independence (recall: CMH tests)
- Allow one to "explain" the pattern of association in a compact way.

Square tables

For square $I \times I$ tables, where row and column variables have the same categories:

- Can ignore diagonal cells, where association is expected and test remaining association (quasi-independence)
- Can test whether association is symmetric around the diagonal cells.
- Can test substantively important hypotheses (e.g., mobility tables)

All of these require the GLM approach for model fitting

Ordered categories I

- Ordinal scores

- In many cases it may be reasonable to assign numeric scores, $\left\{a_{i}\right\}$ to an ordinal row variable and/or numeric scores, $\left\{b_{i}\right\}$ to an ordinal column variable.
- Typically, scores are equally spaced and sum to zero, $\left\{a_{i}\right\}=i-(I+1) / 2$, e.g., $\left\{a_{i}\right\}=\{-1,0,1\}$ for $\mathrm{I}=3$.
- Linear-by-Linear (Uniform) Association: When both variables are ordinal, the simplest model posits that any association is linear in both variables.

$$
\lambda_{i j}^{A B}=\gamma a_{i} b_{j}
$$

- Only adds one additional parameter to the independence model $(\gamma=0)$.
- It is similar to CMH test for linear association
- For integer scores, the local log odds ratios for any contiguous 2×2 table are all equal, $\log \theta_{i j}=\gamma$
- This is a model of uniform association - simple interpretation!

Ordered categories II

For a two way table, there are 4 possibilities, depending on which variables are ordinal, and assigned scores:

$\quad B \rightarrow$	Nominal	Col scores b, j, j, \ldots, j
A \downarrow		

Ordered categories III

- Row Effects and Column Effects: When only one variable is assigned scores, we have the row effects model or the column effects model.
- E.g., in the row effects model, the row variable (A) is treated as nominal, while the column variable (B) is assigned ordered scores $\left\{b_{j}\right\}$.

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\alpha_{i} b_{j}
$$

where the row parameters, α_{i}, are defined so they sum to zero.

- This model has $(I-1)$ more parameters than the independence model.
- A Row Effects + Column Effects model allows both variables to be ordered, but not necessarily with linear scores.
- Fitting models for ordinal variables
- Create numeric variables for category scores
- PROC GENMOD: Use as quantitative variables in MODEL statement, but not listed as CLASS variables
- R: Create numeric variables with as.numeric (factor)

Ordered categories: RC models

- $\mathbf{R C}(\mathbf{1)}$ model: Generalizes the uniform association, R, C and $R+C$ models by relaxing the assumption of specified order and spacing.

$$
R C(1): \log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\phi \mu_{i} \nu_{j}
$$

- The row parameters $\left(\mu_{i}\right)$ and column parameters $\left(\nu_{j}\right)$ are estimated from the data.
- ϕ is the measure of association, similar to γ in the uniform association model - $\mathrm{RC}(2) \ldots \mathrm{RC}(\mathrm{M})$ models: Allow two (or more) log-multiplicative association terms; e.g.:

$$
R C(2): \log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\phi_{1} \mu_{i 1} \nu_{j 1}+\phi_{2} \mu_{i 2} \nu_{j 2}
$$

Related to CA, but provide hypothesis tests, std. errors, etc.

- Fitting RC models

- SAS: no implementation
- R: Fit with gnm(Freq $\sim R+C+\operatorname{Mult}(R, C))$

Relations among models

Degrees of Freedom

$$
\begin{aligned}
& (I-1)(J-1) \\
& I J-1-J \\
& (I-1)(J-2) \\
& (I-2)(J-1) \\
& (I-2)(J-2) \\
& I J-2 I(J-2) \\
& I J-2 I-2 J+3
\end{aligned}
$$

Example: Mental impairment and parents' SES

- Srole et al. (1978) Data on mental health status of ~ 1600 young NYC residents in relation to parents' SES.
- Mental health: Well, mild symptoms, moderate symptoms, Impaired
- SES: 1 (High) - 6 (Low)

Mental	Parents' SES					
health	High	2	3	4	5	Low
1: Well	64	57	57	72	36	21
2: Mild	94	94	105	141	97	71
3: Moderate	58	54	65	77	54	54
4: Impaired	46	40	60	94	78	71

Before fitting models, it is often useful to explore the relation amongs the row/column categories. Correspondence analysis is a good idea!

Mental impairment and SES

- Essentially 1D
- Both variables are ordered
- High SES goes with better mental health status
- Can we treat either or both as equally-spaced?
- GLM approach allows testing/comparing hypotheses vs. eye-balling
- Parameter estimates quantify effects.

Square tables

- Tables where two (or more) variables have the same category levels:
- Employment categories of related persons (mobility tables)
- Multiple measurements over time (panel studies; longitudinal data)
- Repeated measures on the same individuals under different conditions
- Related/repeated measures are rarely independent, but may have simpler forms than general association
- E.g., vision data: Left and right eye acuity grade for 7477 women

Square tables: Quasi-Independence

- Related/repeated measures are rarely independent- most observations often fall on diagonal cells.
- Quasi-independence ignores diagonals: tests independence in remaining cells $\left(\lambda_{i j}=0\right.$ for $\left.i \neq j\right)$.
- The model dedicates one parameter $\left(\delta_{i}\right)$ to each diagonal cell, fitting them exactly,

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\delta_{i} I(i=j)
$$

where $I(\bullet)$ is the indicator function.

- This model may be fit as a GLM by including indicator variables for each diagonal cell: fitted exactly

diag	4 rows	4 cols		
	1	0	0	0
	0	2	0	0
	0	0	3	0
	0	0	0	4

Square tables: Symmetry

- Tests whether the table is symmetric around the diagonal, i.e., $m_{i j}=m_{j i}$
- As a loglinear model, symmetry is

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B}
$$

subject to the conditions $\lambda_{i}^{A}=\lambda_{j}^{B} \quad$ and $\quad \lambda_{i j}^{A B}=\lambda_{j i}^{A B}$.

- This model may be fit as a GLM by including indicator variables with equal values for symmetric cells, and indicators for the diagonal cells (fit exactly)

symmetry	4 rows			4 cols)
	1			
	12	13	14	
	2	23	24	
13	23	3	34	
14	24	34	4	

- Using PROC GENMOD

proc genmod data=women;
class symmetry;
model Count = symmetry /
dist=poisson link=log obstats residuals;
ods output obstats=obstats;
\%mosaic (data=obstats, vorder=RightEye LeftEye, ...);

Mosaic:

- Quasi-Symmetry

- Symmetry is often too restrictive: \mapsto equal marginal frequencies $\left(\lambda_{i}^{A}=\lambda_{i}^{B}\right)$
- PROC GENMOD: Use the usual marginal effect parameters + symmetry:
proc genmod data=women;
... mosaic10g.sas
class LeftEye RightEye symmetry;
model Count = LeftEye RightEye symmetry /
dist=poisson link=log obstats residuals; ods output obstats=obstats;

Comparing models

Table: Summary of models fit to vision data

Model	G^{2}	df	$\operatorname{Pr}\left(>G^{2}\right)$	AIC	AIC $-\min (\mathrm{AIC})$
Independence	6671.51	9	0.00000	6685.51	6656.23
Linear*Linear	1818.87	8	0.00000	1834.87	1805.59
Row+Column Effects	1710.30	4	0.00000	1734.30	1705.02
Quasi-Independence	199.11	5	0.00000	221.11	191.83
Symmetry	19.25	6	0.00376	39.25	9.97
Quasi-Symmetry	7.27	3	0.06375	33.27	3.99
Ordinal Quasi-Symmetry	7.28	5	0.20061	29.28	0.00

- Only the quasi-symmetry models provide an acceptable fit: When vision is unequal, association is symmetric!
- The ordinal quasi-symmetry model is most parsimonious
- AIC is your friend for model comparisons

Using the gnm package in R

- Diag() and Symm(): structured associations for square tables
- Topo(): more general structured associations
- mosaic.glm() in vcdExtra

```
library(vcdExtra)
library(gnm)
women <- subset(VisualAcuity, gender=="female", select=-gender)
indep <- glm(Freq ~ right + left, data = women, family=poisson)
mosaic(indep, residuals_type="rstandard", gp=shading_Friendly,
    main="Vision data: Independence (women)" )
quasi.indep <- glm(Freq ~ right + left + Diag(right, left),
    data = women, family = poisson)
symmetry <- glm(Freq ~ Symm(right, left),
    data = women, family = poisson)
quasi.symm <- glm(Freq ~ right + left + Symm(right, left),
    data = women, family = poisson)
# model comparisons: for *nested* models
anova(indep, quasi.indep, quasi.symm, test="Chisq")
anova(symmetry, quasi.symm, test="Chisq")
```


Survival on the Titanic

Survival on the Titanic: Background variables
Survival on the Titanic: 2201 passengers, classified by Class, Gender, Age, survived. Data from:

- Mersey (1912), Report on the loss of the "Titanic" S.S.
- Dawson (1995)

			Class			
Gender	Age	Survived	1st	2nd	3rd	Crew
Male	Adult	Died	118	154	387	670
Female			4	13	89	3
Male	Child		0	0	35	0
Female			0	0	17	0
Male	Adult	Survived	57	14	75	192
Female			140	80	76	20
Male	Child		5	11	13	0
Female			1	13	14	0

Order of variables in mosaics: Class, Gender, Age, Survival

Survival on the Titanic: Background variables

3 way: \{Class, Gender\} \perp Age ?

- Overall proportion of children quite small (about 5 \%).
- \% children smallest in 1st class, largest in 3rd class.
- Residuals: greater number of children in 3rd class (families?)

Survival on the Titanic: 4 way table

Survival on the Titanic: Better models

Survival on the Titanic: Better models

women and children first \longrightarrow

- model [CGA][CS][GAS] (Age and Gender affect survival, independent of Class)
- Model improved slightly, but still not good ($G_{(9)}^{2}=94.54$).

Titanic Conclusions

Mosaic displays allow a detailed explanation:

- Regardless of Age and Gender, lower economic status \longrightarrow increased mortality.
- Differences due to Class were moderated by both Age and Gender.
- Women more likely overall to survive than men, but:
- Class \times Gender: women in 3rd class did not have a significant advantage
- men in 1st class did, compared to men in other classes.
- Class \times Age:
- no children in 1st or 2nd class died, but
- nearly two-thirds of children in 3rd class died.
- For adults, mortality \uparrow as economic class \downarrow.
- Summary statement:
"women and children (according to class), then 1st class men".

Summary: Part 3

- Mosaic displays
- Recursive splits of unit square \rightarrow area \sim observed frequency
- Fit any loglinear model \rightarrow shade tiles by residuals
- \Rightarrow see departure of the data from the model
- SAS: mosaic macro, mosmat macro; R: mosaic ()
- Loglinear models
- Loglinear approach: analog of ANOVA for $\log \left(m_{i j k} \ldots\right)$
- GLM approach: linear model for $\log (\mathbf{m})=\mathbf{X} \boldsymbol{\beta} \sim$ Poisson()
- SAS: PROC CATMOD, PROC GENMOD; R: $\log \operatorname{lm}(), g 1 m()$
- Visualize: mosaic, mosmat macro; R: mosaic()
- Complex tables: sequential plots, partial plots are useful

- Structured tables

- Ordered factors: models using ordinal scores \rightarrow simpler, more powerful
- Square tables: Test more specific hypotheses about pattern of association
- SAS: PROC GENMOD; R: glm(), gnm()

References I

Bangdiwala, S. I. Using SAS software graphical procedures for the observer agreement chart. Proceedings of the SAS User's Group International Conference, 12:1083-1088, 1987.
Bowker, A. H. Bowker's test for symmetry. Journal of the American Statistical Association, 43:572-574, 1948.
Dawson, R. J. M. The "unusual episode" data revisited. Journal of Statistics Education, 3(3), 1995.
Friendly, M. Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89:190-200, 1994.
Friendly, M. Conceptual and visual models for categorical data. The American Statistician, 49:153-160, 1995.
Friendly, M. Extending mosaic displays: Marginal, conditional, and partial views of categorical data. Journal of Computational and Graphical Statistics, 8(3): 373-395, 1999.

References II

Friendly, M. Multidimensional arrays in SAS/IML. In Proceedings of the SAS User's Group International Conference, volume 25, pp. 1420-1427. SAS Institute, 2000.
Friendly, M. Corrgrams: Exploratory displays for correlation matrices. The American Statistician, 56(4):316-324, 2002.
Friendly, M. and Kwan, E. Effect ordering for data displays. Computational Statistics and Data Analysis, 43(4):509-539, 2003.
Hartigan, J. A. and Kleiner, B. Mosaics for contingency tables. In Eddy, W. F., editor, Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, pp. 268-273. Springer-Verlag, New York, NY, 1981.
Hoaglin, D. C. and Tukey, J. W. Checking the shape of discrete distributions. In Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors, Exploring Data Tables, Trends and Shapes, chapter 9. John Wiley and Sons, New York, 1985.
Koch, G. and Edwards, S. Clinical efficiency trials with categorical data. In Peace, K. E., editor, Biopharmaceutical Statistics for Drug Development, pp. 403-451. Marcel Dekker, New York, 1988.

References III

Landis, J. R. and Koch, G. G. The measurement of observer agreement for categorical data. Biometrics, 33:159-174., 1977.
Mersey, L. Report on the loss of the "Titanic" (S. S.). Parliamentary command paper 6352, 1912.
Mosteller, F. and Wallace, D. L. Applied Bayesian and Classical Inference: The Case of the Federalist Papers. Springer-Verlag, New York, NY, 1984.
Ord, J. K. Graphical methods for a class of discrete distributions. Journal of the Royal Statistical Society, Series A, 130:232-238, 1967.
Srole, L., Langner, T. S., Michael, S. T., Kirkpatrick, P., Opler, M. K., and Rennie, T. A. C. Mental Health in the Metropolis: The Midtown Manhattan Study. NYU Press, New York, 1978.
Tufte, E. R. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1983.
Tukey, J. W. Some graphic and semigraphic displays. In Bancroft, T. A., editor, Statistical Papers in Honor of George W. Snedecor, pp. 292-316. Iowa State University Press, Ames, IA, 1972.

References IV

Tukey, J. W. Exploratory Data Analysis. Addison Wesley, Reading, MA, 1977. van der Heijden, P. G. M. and de Leeuw, J. Correspondence analysis used complementary to loglinear analysis. Psychometrika, 50:429-447, 1985.

