Visualizing Categorical Data with SAS and R

Michael Friendly

York University

SCS Short Course, 2016
Web notes: datavis.ca/courses/VCD/

Part 3: Mosaic displays and loglinear models

Topics:

- Mosaic displays
- loglinear models for *n*-way tables
- Visualizing loglinear models: SAS & R
- Models for square and structured tables
- Larger tables

2 / 96

n-way table

Mosaic displays: Basic ideas

n-way tables

Mosaic displays: Basic ideas

Mosaic displays: Basic ideas

Hartigan and Kleiner (1981), Friendly (1994, 1999)

UCB Admissions: Observed frequencies

- Area-proportional display of frequencies in an *n*-way table
- Tiles (cells): recursive splits of a unit square—
 - V1: width \sim marginal frequencies, n_{i++}
 - V2: height \sim relative frequencies $|V1, n_{ij+}/n_{i++}|$
 - V3: width \sim relative frequencies | (V1, V2), n_{ijk}/n_{ij+}
- \Rightarrow area \sim cell frequency, n_{ijk}

3/96

Mosaic displays: Basic ideas

- Independence: Two-way table
- Expected frequencies:

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++}$$
row %col %

 ⇒ rows & columns align when variables are independent

Independence: Expected frequencies

Mosaic displays: Residuals & shading

Pearson residuals:

$$d_{ij} = rac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$$

- Pearson $\chi^2 = \Sigma \Sigma d_{ij}^2 = \Sigma \Sigma \frac{(n_{ij} \hat{m}_{ij})^2}{\hat{m}_{ii}}$
- Other residuals: deviance (LR), Freeman-Tukev (FT), adjusted (ADJ), ...
- Shading:
 - Sign: negative in red; + positive in blue
 - Magnitude: intensity of shading: $|d_{ii}| > 0, 2, 4, \dots$
- ⇒ Independence: rows align, or cells are empty!

Loglinear models: Perspectives I

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where multiplicative relations (under independence) are re-expressed in additive form as models for log(frequency).

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B \equiv [A][B] \equiv \sim A + B$$

- This expresses the model of independence for a two-way table (no A*B association)
- The notations $[A][B] \equiv \sim A + B$ are shorthands

5/96

n-way tables Loglinear models: Overview

Loglinear models: Perspectives II

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for log(frequency), with a Poisson distribution for the cell counts.

$$\log \mathbf{m} = \mathbf{X}\boldsymbol{\beta}$$

n-way tables Loglinear models: Overview

- This looks just like the general linear ANOVA, regression model, but for log frequency
- This approach allows quantitative predictors and special ways of treating ordinal factors

Loglinear models: Perspectives III

Logit models

When one table variable is a binary response, a logit model for that response is equivalent to a loglinearmodel (as discussed in Part 4).

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- $\log(m_{1ik}/m_{2ik})$ represents the log odds of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and
- The equivalent loglinearmodel is [AB] [AC] [BC]
- The logit model assumes [BC] association, and [AB] $\rightarrow \beta_i^B$, [AC] $\rightarrow \beta_k^C$

Loglinear models: Overview

Two-way tables: Loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size nover the IJ cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ii} , and cell probabilities $\pi_{ij} = n_{ij}/n$.

 The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} .$$

• An equivalent model in terms of expected frequencies, $m_{ii} = n\pi_{ii}$ is

$$m_{ij} = (1/n) m_{i+} m_{+i}$$
.

 This multiplicative model can be expressed in additive form as a model for $\log m_{ii}$,

$$\log m_{ii} = -\log n + \log m_{i+} + \log m_{+i} . \tag{1}$$

Loglinear models: Overview

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B , \qquad (2)$$

10 / 96

- μ is the grand mean of log m_{ii}
- ullet the parameters λ_i^A and λ_i^B express the marginal frequencies of variables Aand B — "main effects"

n-way tables Loglinear models: Overview

• typically defined so that $\sum_i \lambda_i^A = \sum_i \lambda_i^B = 0$ as in ANOVA

9 / 96

n-way tables Loglinear models: Overview

Loglinear models: Overview

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ_{ii}^{AB} , giving the saturated model,

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim A * B .$$
 (3)

- The saturated model fits the table perfectly $(\widehat{m}_{ii} = n_{ii})$: there are as many parameters as cell frequencies. Residual df = 0.
- A global test for association tests $H_0: \lambda_{ii}^{AB} = \mathbf{0}$.
- If reject H_0 , which $\lambda_{ii}^{AB} \neq 0$?
- For ordinal variables, the λ_{ii}^{AB} may be structured more simply, giving tests for ordinal association.

Example: Independence

11/96

Generate a table of Education by Party preference, strictly independent

```
educ <- c(50, 100, 50) # row marginal frequencies
names(educ) <- c("Low", "Med", "High")</pre>
party <- c(20, 50, 30) # col marginal frequencies
names(party) <- c("NDP", "Liberal", "Cons")</pre>
table <- outer(educ, party) / sum(party) # row x col / n
names(dimnames(table)) <- c("Education", "Party")</pre>
table
             Party
## Education NDP Liberal Cons
##
               10
                       25
                            15
##
        Med
               20
                       50
                            30
                            15
##
        High 10
                       25
```

Example: Independence

All row (and column) proportions are the same:

```
prop.table(table,1)

## Party
## Education NDP Liberal Cons
## Low 0.2 0.5 0.3
## Med 0.2 0.5 0.3
## High 0.2 0.5 0.3
```

All statistics are 0:

Mosaic plot shows equal row and column proportions:

13/96

n-way tables Loglinear models: Overview n-way tables Loglinear models: Overview n-way tables Loglinear models: Overview

15 / 96

Two-way tables: GLM approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ij}\}$ is specified to have a Poisson distribution with means $\mathbf{m} = \{m_{ij}\}$ given by

$$\log \mathbf{m} = \mathbf{X}\boldsymbol{\beta}$$

- X is a known design (model) matrix, expressing the table factors
- $oldsymbol{\circ}$ is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
 - ullet The response, $\log m$ makes multiplicative relations additive
 - The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2 x 2 table

For a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

- only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.
- association is represented by the parameter λ_{11}^{AB}
- can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for *over-dispersion*.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^2 ,

$$G^2 = 2\sum_{i} n_i \log \left(\frac{n_i}{\widehat{m}_i}\right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^2 = \sum_{i} \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} , \qquad (5)$$

with degrees of freedom df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df = IJ [(I-1) (J-1)] = (I-1)(J-1)
- The terms summed in (4) and (5) are the squared *cell residuals*
- Other measures of balance goodness of fit against parsimony, e.g., *Akaike's Information Criterion* (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2 \#$ parameters

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{ijk}^{ABC}

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{ik}^{BC} + \lambda_{ijk}^{ABC}.$$
(6)

18 / 96

- One-way terms $(\lambda_i^A, \lambda_j^B, \lambda_k^C)$: differences in the *marginal frequencies* of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the *partial association* for each pair of variables, *controlling* for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't explain anything, so we hope for a simpler model!

17 / 96

19 / 96

Three-way tables Reduced models

Three-way tables Reduced models

Three-way tables: Reduced models

Reduced models

- Loglinearmodels are usually hierarchical: a high-order term, such as $\lambda^{ABC}_{ijk} \rightarrow$ all low-order relatives are automatically included.
- Thus, a short-hand notation for a loglinear model lists only the high-order terms,
- i.e., the saturated model (6) \equiv [ABC], and implies all two-way and one-way terms
- The usual goal is to fit the smallest model (fewest high-order terms) that is sufficient to explain/describe the observed frequencies.
- This is similar to ANOVA/regression models with all possible interactions

Three-way tables: Reduced models

Reduced models

- For a 3-way table there are a variety of models between the mutual independence model, [A][B][C], and the saturated model, [ABC]
- ullet Each such model has an independence interpretation: $A\perp B$ means an hypothesis that A is independent of B.

Table: Log-linear Models for Three-Way Tables

Model	Model symbol	Interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(A B) \perp C$
Conditional independence	[AC][BC]	$(A \perp B) \mid C$
All two-way associations	[AB][AC][BC]	homogeneous assoc.
Saturated model	[ABC]	interaction

21 / 96

Three-way tables: Model types

• **Joint independence**: $(AB) \perp C$, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB}$$

• Conditional independence: $A \perp B$, controlling for C

$$[AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{ik}^{BC}$$

Three-way tables GOF & ANOVA tests

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 ,

$$G^{2} = 2\sum_{i} n_{i} \log \left(\frac{n_{i}}{\widehat{m}_{i}}\right) \qquad X^{2} = \sum_{i} \frac{(n_{i} - \widehat{m}_{i})^{2}}{\widehat{m}_{i}} ,$$

with residual degrees of freedom $\nu=\#$ cells -# estimated parameters.

- \bullet These measure the lack of fit of a given model— a large value \mapsto a poor model
- Both are distributed as $\chi^2(\nu)$ (in large samples: all $\widehat{m}_i > 5$)
- $\mathcal{E}(\chi^2) = \nu$, so G^2/ν (or X^2/ν) measures lack of fit per degree of freedom (overdispersion)

22 / 96

• But: how to compare or test competing models?

Three-way tables GOF & ANOVA tests

Nested models and ANOVA-type tests

Nested models

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M_2 (with ν_2 df) fits a subset of the parameters of M_1 (with ν_1 df)
- M_2 is more restrictive cannot fit better than M_1 : $G^2(M_2) \ge G^2(M_1)$
- \bullet The least restrictive model is the saturated model [ABC. . .] with ${\it G}^2=0$ and $\nu=0$

Therefore, we can test the difference in G^2 as a specific test of the added restrictions in M_2 compared to M_1 . This test has has a χ^2 distribution with df = $\nu_2 - \nu_1$.

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum_{i} n_{i} \log(\widehat{m}_{i1}/\widehat{m}_{i2})$$
(7)

Example: Berkeley admissions data

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

$$[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]$$

Table: Hierarchical G^2 tests for loglinear models fit to the UC Berkeley data

Туре	LLM terms	G^2	df	$\Delta(G^2)$	$\Delta(df)$	$\Pr(>\Delta(G^2))$
Mutual ind	[A][D][G]	2097.67	16			
Joint	[A][DG]	877.06	11	1220.62	5	0.0000
All 2-way	[AD][AG][DG]	20.20	5	1128.70	5	0.0000
Saturated	[ADG]	0.0	0	20.20	5	0.0011

- Only testing decrease in G^2 from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all 2-way: does Admit depend on Dept and/or Gender?
- Absolute fit of the all 2-way model is not terrible. Investigate further!

23/96 24/96

Fitting loglinear models

25 / 96

27 / 96

Fitting loglinear models: SAS

SAS PROC CATMOD %include catdata(berkeley); proc catmod order=data data=berkeley; format dept dept. admit admit.; /* data in freq. form */ weight freq; model dept*gender*admit=_response_ ; 5 loglin admit|dept|gender @2 / title='Model (AD,AG,DG)'; run; loglin admit|dept dept|gender / title='Model (AD,DG)'; run; PROC GENMOD proc genmod data=berkeley; class dept gender admit; model freq = dept|gender dept|admit / dist=poisson; 4 run;

- mosaic macro usually fits loglin models internally and displays results
- You can also use PROC GENMOD for a more general model, and display the result with the mosaic macro.

Fitting loglinear models in R

all two-way model (AD, DG, AG)

```
loglm() - data in contingency table form (MASS package)

data(UCBAdmissions)
    ## conditional independence (AD, DG) in Berkeley data
    mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)</pre>
```

mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)

```
glm() - data in frequency form
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,</pre>
```

- loglm() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)

26 / 96

- gnm() fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

family='poisson')

Fitting loglinear models

Fitting loglinear models

Example: Berkeley admission data

Fit the model of mutual independence using loglm()

Example: Berkeley admission data

Fit other models with logIm()

Fitting loglinear models Fitting loglinear models

29 / 96

Example: Berkeley admission data

Compare nested models with anova()

```
anova(berk.loglm0, berk.loglm2, berk.loglm3, test="Chisq")
## LR tests for hierarchical log-linear models
##
## Model 1:
## ~Dept + Gender + Admit
## Model 2:
## ~Admit + (Dept * Gender)
## Model 3:
## ~(Admit + Dept + Gender)^2
##
##
            Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1
            2097.671 16
## Model 2
             877.056 11
                           1220.615
                                                     0.00000
              20.204 5
                            856.852
                                            6
                                                     0.00000
## Model 3
## Saturated 0.000 0
                            20.204
                                                     0.00114
```

Example: Berkeley admission data

LRStats() in vcdExtra gives one line summaries of a collection of models

```
LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)
## Likelihood summary table:
##
               AIC BIC LR Chisq Df Pr(>Chisq)
## berk.loglm0 2273 2282
                            2098 16
## berk.loglm1 1336 1352
                            1149 10
                                        <2e-16 ***
## berk.loglm2 1062 1077
                             877 11
                                        <2e-16 ***
                              20 5
## berk.loglm3 217 240
                                        0.0011 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$AIC = G^2 + 2 \times \# \text{ parameters}$$

 $BIC = G^2 + 2 \log(n) \times \# \text{ parameters}$

30 / 96

Fitting loglinear models Mosaic displays

Fitting loglinear models Mosaic displays

Mosaic displays: Predictor variables

Berkeley data: Departments × Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

- Model [Dept] [Gender]: $G_{(5)}^2 =$ 1220.6.
- Note: Departments ordered A-F by overall rate of admission.
- Men more likely to apply to departments A,B; women more likely in depts C-F

Mosaic displays for multiway tables

- Generalizes to *n*-way tables: divide cells recursively
- Can fit any log-linear model (e.g., 2-way, 3-way, ...),
 - For a 3-way table: [A][B][C], [AB][C], [AB][AC], ..., [ABC]
- Each mosaics shows:
 - DATA (size of tiles)
 - (some) marginal frequencies (spacing → visual grouping)
 - RESIDUALS (shading) what associations have been omitted?
- Visual fitting:
 - Pattern of lack-of-fit (residuals) → "better" model— smaller residuals
 - "cleaning the mosaic" → "better" model— empty cells
 - best done interactively!

Joint independence, [DG][A] (null model, Admit as response) [$G_{(11)}^2 = 877.1$]:

Mosaic displays for multiway tables

Conditional independence, [AD] [DG]:

- E.g., Add [Admit Dept] association \rightarrow Conditional independence:

 - Fits poorly: $(G_{(6)}^2 = 21.74)$ But, only in Department A!

34 / 96

- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

33 / 96

Fitting loglinear models Mosaic displays

Fitting loglinear models Sequential plots and models

Other variations: Double decker plots

- Visualize dependence of one categorical (typically binary) variable on predictors
- Formally: mosaic plots with vertical splits for all predictor dimensions, highlighting the response by shading

Sequential plots and models

- Mosaic for an *n*-way table \rightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as

$$p_{ijk\ell\cdots} = \underbrace{p_i \times p_{j|i} \times p_{k|ij}}_{\{v_1v_2v_3\}} \times p_{\ell|ijk} \times \cdots \times p_{n|ijk\cdots}$$

- First 2 terms \rightarrow mosaic for v_1 and v_2
- First 3 terms \rightarrow mosaic for v_1 , v_2 and v_3
- Roughly analogous to sequential fitting in regression: X_1 , $X_2|X_1$, $X_3|X_1X_2$,
- The order of variables matters for interpretation

Sequential plots and models

Sequential models of *joint independence* \rightarrow additive decomposition of the total association, $G^2_{[v_1][v_2]...[v_p]}$ (mutual independence),

$$G^2_{[v_1][v_2]...[v_p]} = G^2_{[v_1][v_2]} + G^2_{[v_1v_2][v_3]} + G^2_{[v_1v_2v_3][v_4]} + \cdots + G^2_{[v_1...v_{p-1}][v_p]}$$

e.g., for Hair Eye color data

Model	Model symbol	df	G^2
Marginal	[Hair] [Eye]	9	146.44
Joint	[Hair, Eye] [Sex]	15	19.86
Mutual	[Hair] [Eye] [Sex]	24	166.30

Sequential plots and models: Example

• Hair color x Eye color marginal table (ignoring Sex)

37 / 96 38 / 96

Fitting loglinear models Sequential plots and models

Fitting loglinear models Sequential plots and models

Sequential plots and models: Example

• 3-way table, Joint Independence Model [Hair Eye] [Sex]

Sequential plots and models: Example

• 3-way table, Mutual Independence Model [Hair] [Eye] [Sex]

Sequential plots and models: Example

Marginal Joint Total (Hair)(Eye), G2 (9) = 146.44 [Hair Eye] [Sex] [Hair] [Eye] [Sex] [Hair] [Eye] $G_{(15)}^2 = 19.86$ $G_{(24)}^2 = 166.30$ $G_{(9)}^2 = 146.44$

Mosaic matrices

- Analog of scatterplot matrix for categorical data (Friendly, 1999)
 - Shows all p(p-1) pairwise views in a coherent display
 - Each pairwise mosaic shows bivariate (marginal) relation
 - Fit: marginal independence
 - Residuals: show marginal associations
 - Direct visualization of the "Burt" matrix analyzed in MCA for p categorical variables

41 / 96 42 / 96

Fitting loglinear models Mosaic matrices

Fitting loglinear models

Mosaic matrices

Hair, Eye, Sex data:

Berkeley data:

Partial association, Partial mosaics

Stratified analysis:

- How does the association between two (or more) variables vary over levels of other variables?
- Mosaic plots for the main variables show partial association at each level of the other variables.
- E.g., Hair color, Eye color BY Sex ↔ TABLES sex * hair * eye;

Mosaics software Web applet

Software for Mosaic Displays: Web applet

Demonstration web applet

Go to: http://datavis.ca/online/mosaics/

- Runs the *current* version of mosaics.sas via a cgi script (perl)
- Can:
 - run sample data,
 - upload a data file,
 - enter data in a form.
- Choose model *fitting* and *display* options (not all supported).
- Provides (limited) interaction with the mosaics via javascript

Partial association, Partial mosaics

Stratified analysis: conditional decomposition of G^2

- Fit models of partial (conditional) independence, $A \perp B \mid C_k$ at each level of (controlling for) C.
- ullet \Rightarrow partial G^2 s add to the overall G^2 for conditional independence, $A\perp B\mid C$

$$G_{A\perp B\mid C}^2 = \sum_{k} G_{A\perp B\mid C(k)}^2$$

Table: Partial and Overall conditional tests, $Hair \perp Eye \mid Sex$

Model	df	G^2	<i>p</i> -value
[Hair][Eye] Male	9	44.445	0.000
[<i>Hair</i>][<i>Eye</i>] Female	9	112.233	0.000
[Hair][Eye] Sex	18	156.668	0.000

File Edit View Go Communicator Help Mosaic Displays This page provides a web interface to the Mosaic Display a graphical method for the analysis of multi-way frequency tables. If your browser understands JavaScript, you'll be able to interact a bit with the graphics. Before proceeding, you will probably want to know the answers to Using the forms provided, you can: these questions: · Analyze one of several sample data sets 1. What is a Mosaic Display? . Upload a data file to be analyzed [Not all 2. How should my data be setup? browsers handle file uploads correctly.1 3. What do those options do? · Enter your data into a web form 4. How do you do this? Choose a Data Source Select a sample dataset if you chose "Use Sample data". You can browse the sample datasets first in a new window. Sample datasets C Enter data in form HairEyeSex Data View sample datasets C Upload a file Abortion Opinion Data © Use Sample data lairEyeSex Data Divorce Data Employment Status Data Titanic Data Berkeley Admission Data Infection in cesarean births Linux S (Version 1.28) by Michael Friendly Suicide Data idly@yorku.ca HairEye Data Heart Disease Data

Document Done

46 / 96

Software for Mosaic Displays: SAS

SAS software & documentation

http://datavis.ca/mosaics/mosaics.pdf - User Guide http://datavis.ca/books/vcd/macros.html - Software

- **Examples**: Many in *VCD* and on web site
- SAS/IML modules: mosaics.sas— Most flexible
 - Enter frequency table directly in SAS/IML, or read from a SAS dataset.
 - Select, collapse, reorder, re-label table levels using SAS/IML statements
 - Specify structural 0s, fit specialized models (e.g., quasi-independence)

Mosaics software SAS

Interface to models fit using PROC GENMOD

50 / 96

Mosaics software SAS

Software for Mosaic Displays: SAS

- Macro interface: mosaic macro, table macro, mosmat macro
- mosaic macro— Easiest to use
 - Direct input from a SAS dataset
 - No knowledge of SAS/IML required
 - Reorder table variables; collapse, reorder table levels with table macro
 - Convenient interface to partial mosaics (BY=)
- table macro
 - Create frequency table from raw data
 - Collapse, reorder table categories
 - Re-code table categories using SAS formats, e.g., 1='Male' 2='Female'
- mosmat macro
 - Mosaic matrices— analog of scatterplot matrix (Friendly, 1999)

mosaic macro example: Berkeley data

```
berkelev.sas
  title 'Berkeley Admissions data':
  proc format;
     value admit 1="Admitted" 0="Rejected"
     value dept 1="A" 2="B" 3="C" 4="D" 5="E" 6="F";
           value $sex 'M'='Male' 'F'='Female':
  data berkeley;
     do dept = 1 to 6;
        do gender = 'M', 'F';
            do admit = 1, 0;
               input freq 00;
               output;
11
     end; end; end;
   /* -- Male --  - Female- */
   /* Admit Rej Admit Rej */
  datalines;
       512 313
                         19
                            /* Dept A */
                          8
                                     B */
       353
            207
                    17
                       391 /*
       120 205
                  202
                                     C */
                        244 /*
            279
                  131
                                     D */
       138
19
                        299 /*
        53
            138
                    94
                                     E */
                                     F */
            351
        22
                        317 /*
^{21}
22
```

51/96 52 / 96 Mosaics software SAS Mosaics software SAS

Data set berkeley:

	<i>J</i> -		
dept	gender	admit	freq
1	М	- 1	512
1			312
Ţ	M	0	313
1	<u>F</u>	1	89
1	F	0	19
2	M	1	353
2	M	0	207
2	F	1	17
2	F	0	8
3	M	ĭ	120
3		Ō	205
3	F		202
3	r r	7	391
3	J.		120
4	I ^v I		138
4	14	U	279
4	<u>F</u>	1	131
4	F	Q	244
5		1	53
5	M	0	138
5	F	1	94
5	F	Ō	299
6	M	i	22
6	M	Ō	351
6	F	1	24
6	F	Ō	317
	dept 11112222333334444555566666666666666666666666	dept gender 1 M 1 M 1 F	dept gender admit 1 M 1 1 M 0 1 F 1

mosaic macro example: Berkeley data

```
mosaic9m.sas
  goptions hsize=7in vsize=7in;
  %include catdata(berkeley);
  *-- apply character formats to numeric table variables;
  %table(data=berkeley,
      var=Admit Gender Dept,
      weight=freq,
      char=Y, format=admit admit. gender $sex. dept dept.,
      order=data, out=berkeley);
  %mosaic(data=berkeley,
      vorder=Dept Gender Admit, /* reorder variables */
      plots=2:3,
                               /* which plots?
      fittype=joint,
                               /* fit joint indep.
14
      split=H V V, htext=3); /* options
```

NB: The fittype= argument allows various types of sequential models: joint, conditional, etc.

54 / 96 53 / 96

Mosaics software SAS

Mosaics software SAS

mosaic macro example: Berkeley data

Two-way, Dept. by Gender

Three-way, Dept. by Gender by Admit

55 / 96

mosmat macro: Mosaic matrices

```
mosmat9m.sas
%include catdata(berkeley);
%mosmat(data=berkeley,
   vorder=Admit Gender Dept, sort=no);
```


Mosaics software SAS Mosaics software vcd package in R

59 / 96

Partial mosaics

```
%include catdata(hairdat3s);
%gdispla(OFF);
%mosaic(data=haireye,
vorder=Hair Eye Sex, by=Sex,
htext=2, cellfill=dev);
%gdispla(ON);
%panels(rows=1, cols=2); /* make 2 figs -> 1 */
```


Using the vcd package in R

```
>library(vcd)  # load the vcd package & friends
>
>data(HairEyeColor)
>structable(Eye ~ Hair + Sex, data=HairEyeColor)
```

		Eye	${\tt Brown}$	Blue	Hazel	${\tt Green}$
Hair	Sex					
Black	Male		32	11	10	3
	Female		36	9	5	2
Brown	Male		53	50	25	15
	Female		66	34	29	14
Red	Male		10	10	7	7
	Female		16	7	7	7
Blond	Male		3	30	5	8
	Female		4	64	5	8

- The structable() function → 'flat' representation of an n-way table, similar to mosaic displays
- ullet Formula interface: Col factors \sim row factors

57/96 58/96

Mosaics software vcd package in R

Using the vcd package in R

- The loglm() function fits a loglinear model, returns a loglm object
 - \bullet Fit the 3-way mutual independence model: Hair + Eye + Sex \equiv [Hair] [Eye] [Sex]
 - Printing the object gives a brief model summary (badness of fit)

```
>## Independence model of hair and eye color and sex.
>mod.1 <- loglm(~Hair+Eye+Sex, data=HairEyeColor)
>mod.1
```

Call:

loglm(formula = ~Hair + Eye + Sex, data = HairEyeColor)

Statistics:

X^2 df P(> X^2) Likelihood Ratio 166.3001 24 0 Pearson 164.9247 24 0

- The mosaic() function plots the object.
- the vcdExtra package extends mosaic() to glm() models.

Mosaics software vcd package in R
>mosaic(mod.1, main="model: [Hair][Eye][Sex]")

model: [Hair][Eye][Sex]

Mosaics software vcd package in R

vcd: Other models

>## Joint independence model. >mod.2 <- loglm(~Hair*Eye+Sex, data=HairEyeColor)</pre> > mod.2

Mosaics software vcd package in R

Call:

loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:

 $X^2 df P(> X^2)$

Likelihood Ratio 19.85656 15 0.1775045 19.56712 15 0.1891745 Pearson

>## Conditional independence model: Hair*Eye + Sex*Eye >mod.3 <- loglm(~(Hair+Sex)*Eye, data=HairEyeColor)</pre> > mod.3

Call:

loglm(formula = ~(Hair + Sex) * Eye, data = HairEyeColor)

Statistics:

 $X^2 df P(> X^2)$

Likelihood Ratio 18.32715 12 0.1061122 Pearson 18.04110 12 0.1144483 >mosaic(mod.2, main="model: [HairEye][Sex]")

model: [HairEye][Sex]

61/96 62 / 96

Mosaics software vcd package in R

>mosaic(mod.2, main="model: [HairEye][Sex]", gp=shading_Friendly)

model: [HairEye][Sex]

Testing differences between models

• For nested models, $M_1 \subset M_2$ (M_1 nested within, a special case of M_2), the difference in LR G^2 , $\Delta = G^2(M_1) - G^2(M_2)$ is a specific test of the difference between them. Here, $\Delta \sim \chi^2$ with $df = df_1 - df_2$.

Mosaics software vcd package in R

• R functions are object-oriented: they do different things for different types of objects.

>anova(mod.1, mod.2)

LR tests for hierarchical log-linear models

Model 1:

~Hair + Eye + Sex

Model 2:

~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)

166.30014 24 Model 1

Model 2 19.85656 15 146.44358 9 0.0000 Saturated 0.00000 0 19.85656 15 0.1775

63 / 96 64 / 96

More structured tables

Ordered categories

Tables with ordered categories may allow more parsimonious tests of association

- Can represent λ_{ii}^{AB} by a small number of parameters
- \rightarrow more focused and *more powerful* tests of lack of independence (recall: CMH tests)
- Allow one to "explain" the pattern of association in a compact way.

Square tables

For square $I \times I$ tables, where row and column variables have the same categories:

- Can ignore diagonal cells, where association is expected and test remaining association (quasi-independence)
- Can test whether association is *symmetric* around the diagonal cells.
- Can test substantively important hypotheses (e.g., mobility tables)

All of these require the GLM approach for model fitting

Ordered categories I

Ordinal scores

- In many cases it may be reasonable to assign numeric scores, $\{a_i\}$ to an ordinal row variable and/or numeric scores, $\{b_i\}$ to an ordinal column variable.
- Typically, scores are equally spaced and sum to zero, $\{a_i\} = i (I+1)/2$, e.g., $\{a_i\} = \{-1, 0, 1\}$ for I=3.
- Linear-by-Linear (Uniform) Association: When both variables are ordinal, the simplest model posits that any association is *linear* in both variables.

$$\lambda_{ij}^{AB} = \gamma a_i b_j$$

- Only adds one additional parameter to the independence model ($\gamma = 0$).
- It is similar to CMH test for linear association
- For integer scores, the local log odds ratios for any contiguous 2×2 table are all equal, $\log \theta_{ii} = \gamma$
- This is a model of *uniform association* simple interpretation!

65 / 96

67 / 96

Structured tables Ordinal variables

66 / 96

Ordered categories II

For a two way table, there are 4 possibilities, depending on which variables are ordinal, and assigned scores:

Structured tables Ordinal variables

B→	Nominal	Col scores
A↓		b _j , j=1,J
Nominal	General association	Row effects
	df: (I-1)(J-1) parm: Դյ ^{AB}	df: I-1 parm: α _i b _j
Row scores	Col effects	Uniform association
a _i , i=1, I	df: J-1 parm: a _i β _j	df: 1 parm: γ a _i b _j

Ordered categories III

- Row Effects and Column Effects: When only one variable is assigned scores, we have the row effects model or the column effects model.
 - E.g., in the row effects model, the row variable (A) is treated as nominal, while the column variable (B) is assigned ordered scores $\{b_i\}$.

$$\log m_{ii} = \mu + \lambda_i^A + \lambda_i^B + \alpha_i b_i$$

where the row parameters, α_i , are defined so they sum to zero.

- This model has (I-1) more parameters than the independence model.
- A Row Effects + Column Effects model allows both variables to be ordered. but not necessarily with linear scores.
- Fitting models for ordinal variables
 - Create *numeric* variables for category scores
 - PROC GENMOD: Use as quantitative variables in MODEL statement, but not listed as CLASS variables
 - R: Create numeric variables with as.numeric(factor)

69 / 96

71 / 96

Ordered categories: RC models

• **RC(1) model**: Generalizes the uniform association, R, C and R+C models by relaxing the assumption of specified order and spacing.

$$RC(1)$$
: $\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B + \phi \mu_i \nu_j$

- The row parameters (μ_i) and column parameters (ν_j) are estimated from the data.
- ullet ϕ is the measure of association, similar to γ in the uniform association model
- RC(2) ... RC(M) models: Allow two (or more) log-multiplicative association terms; e.g.:

$$RC(2): \log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \phi_1 \mu_{i1} \nu_{j1} + \phi_2 \mu_{i2} \nu_{j2}$$

Related to CA, but provide hypothesis tests, std. errors, etc.

- Fitting RC models
 - SAS: no implementation
 - R: Fit with gnm(Freq ~ R + C + Mult(R, C))

Relations among models

- Structured models: different ways to account for association
- Ordered by: df (# of parameters)

Ordinal variables

- Arrows show nested models (compare directly: $\Delta \chi^2$)
- All can be compared using AIC (or BIC)

70 / 96

Structured tables Ordinal variables

Example: Mental impairment and parents' SES

 \bullet Srole et al. (1978) Data on mental health status of ${\sim}1600$ young NYC residents in relation to parents' SES.

Structured tables Ordinal variables

- Mental health: Well, mild symptoms, moderate symptoms, Impaired
- SES: 1 (High) 6 (Low)

Mental	Parents' SES						
health	High	2	3	4	5	Low	
1: Well	64	57	57	72	36	21	
2: Mild	94	94	105	141	97	71	
3: Moderate	58	54	65	77	54	54	
4: Impaired	46	40	60	94	78	71	

Before fitting models, it is often useful to explore the relation amongs the row/column categories. Correspondence analysis is a good idea!

Mental impairment and SES

- Essentially 1D
- Both variables are ordered
- High SES goes with better mental health status
- Can we treat either or both as equally-spaced?
- GLM approach allows testing/comparing hypotheses vs. eye-balling
- Parameter estimates quantify effects.

Structured tables Ordinal variables Structured tables Ordinal variables Ordinal variables

Visual assessment of various loglin/GLM models: mosaic displays

- Residuals from the independence model show an opposite-corner pattern.
 This is consistent with both:
 - Linear × linear model: equi-spaced scores for both Mental and SES
 - Row effects model: equi-spaced scores for SES, ordered scores for Mental

Statistical assesment:

Table: Mental health data: Goodness-of-fit statistics for ordinal loglinear models

Model	G^2	df	$Pr(>G^2)$	AIC	AIC-best
Independence	47.418	15	0.00003	65.418	35.523
Col effects (SES)	6.829	10	0.74145	34.829	4.934
Row effects (mental)	6.281	12	0.90127	30.281	0.386
Lin x Lin	9.895	14	0.76981	29.895	0.000

- \bullet Both the Row Effects and Linear \times linear models are significantly better than the Independence model
- AIC indicates a slight preference for the Linear × linear model
- In the Linear \times linear model, the estimate of the coefficient of $a_i b_j$ is $\hat{\gamma} = 0.0907 = \widehat{\log \theta}$, so $\hat{\theta} = \exp(0.0907) = 1.095$.
- \bullet \mapsto each step down the SES scale increases the odds of being classified one step *poorer* in mental health by 9.5%.
- Compare with purely exploratory (CA) interpretation: mental health increases with SES

74 / 96

Structured tables Ordinal variables Ordinal variables Ordinal variables

73 / 96

```
Fitting these models with PROC GENMOD:
```

```
%include catdata(mental);
data mental;
    set mental;
    m_lin = mental;    *-- copy m_lin and s_lin for;
    s_lin = ses;    *-- use non-CLASS variables;

title 'Independence model';
proc genmod data=mental;
    class mental ses;
    model count = mental ses / dist=poisson obstats residuals;
    format mental mental. ses ses.;
    ods output obstats=obstats;

%mosaic(data=obstats, vorder=Mental SES, resid=stresdev,
title=Mental Impairment and SES: Independence, split=H V);
```

```
Row Effects model:

proc genmod data=mental;
class mental ses;
model count = mental ses mental*s_lin / dist=poisson obstats;
...
```

mentgen2.sas

Linear \times linear model:

proc genmod data=mental;
class mental ses;
model count = mental ses m_lin*s_lin / dist=poisson obstats;

Fitting these models with glm() in R (see: mental-glm.R for plots)

```
library(vcdExtra)
data(Mental)
# Integer scores for rows/cols
Cscore <- as.numeric(Mental$ses)</pre>
Rscore <- as.numeric(Mental$mental)</pre>
indep <- glm(Freq ~ mental+ses, family = poisson, data=Mental)</pre>
# column effects model (ses)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,</pre>
                family = poisson, data = Mental)
# row effects model (mental)
roweff <- glm(Freq ~ mental + ses + mental:Cscore,
                family = poisson, data = Mental)
# linear x linear association
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
                family = poisson, data = Mental)
# compare models
AIC(indep, coleff, roweff, linlin)
```

75 / 96 76 / 96

Square tables

- Tables where two (or more) variables have the same category levels:
 - Employment categories of related persons (mobility tables)
 - Multiple measurements over time (panel studies; longitudinal data)
 - Repeated measures on the same individuals under different conditions
 - Related/repeated measures are rarely independent, but may have simpler forms than general association
- E.g., vision data: Left and right eye acuity grade for 7477 women

Square tables: Quasi-Independence

- Related/repeated measures are rarely independent— most observations often fall on diagonal cells.
- Quasi-independence ignores diagonals: tests independence in remaining cells $(\lambda_{ij} = 0 \text{ for } i \neq j)$.
- The model dedicates one parameter (δ_i) to each diagonal cell, fitting them exactly,

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B + \delta_i I(i = j)$$

where $I(\bullet)$ is the indicator function.

 This model may be fit as a GLM by including indicator variables for each diagonal cell: fitted exactly

diag	4 rows	4	cols		
	1	0	0	0	
	0	2	0	0	
	0	0	3	0	
	0	0	0	4	

77/96 78/96

Structured tables Square tables

6:

Structured tables Square tables

Using PROC GENMOD

```
title 'Quasi-independence model (women)';
proc genmod data=women;
class RightEye LeftEye diag;
model Count = LeftEye RightEye diag /
dist=poisson link=log obstats residuals;
ods output obstats=obstats;

%mosaic(data=obstats, vorder=RightEye LeftEye, ...);
```

Mosaic:

Square tables: Symmetry

- ullet Tests whether the table is symmetric around the diagonal, i.e., $m_{ij}=m_{ji}$
- As a loglinear model, symmetry is

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} ,$$

subject to the conditions $\lambda_i^A=\lambda_j^B$ and $\lambda_{ij}^{AB}=\lambda_{ji}^{AB}$.

• This model may be fit as a GLM by including indicator variables with equal values for symmetric cells, and indicators for the diagonal cells (fit exactly)

symmetry	4 rows	4 cols)		
	1 12	13	14	
1	2 2	23	24	
1	3 23	3	34	
1	4 24	34	4	

79/96 80/9

Structured tables Square tables Square tables Square tables

83 / 96

Using PROC GENMOD

```
proc genmod data=women;
class symmetry;
model Count = symmetry /
dist=poisson link=log obstats residuals;
ods output obstats=obstats;
%mosaic(data=obstats, vorder=RightEye LeftEye, ...);
```

Mosaic:

Quasi-Symmetry

- Symmetry is often too restrictive: \mapsto equal marginal frequencies $(\lambda_i^A = \lambda_i^B)$
- PROC GENMOD: Use the usual marginal effect parameters + symmetry:

```
proc genmod data=women;
class LeftEye RightEye symmetry;
model Count = LeftEye RightEye symmetry /
dist=poisson link=log obstats residuals;
ods output obstats=obstats;
```


81/96 82/96

Structured tables Square tables

Comparing models

Table: Summary of models fit to vision data

Structured tables Square tables

Model	G^2	df	$Pr(>G^2)$	AIC	AIC - min(AIC)
Independence	6671.51	9	0.00000	6685.51	6656.23
Linear*Linear	1818.87	8	0.00000	1834.87	1805.59
Row+Column Effects	1710.30	4	0.00000	1734.30	1705.02
Quasi-Independence	199.11	5	0.00000	221.11	191.83
Symmetry	19.25	6	0.00376	39.25	9.97
Quasi-Symmetry	7.27	3	0.06375	33.27	3.99
Ordinal Quasi-Symmetry	7.28	5	0.20061	29.28	0.00

- Only the quasi-symmetry models provide an acceptable fit: When vision is unequal, association is symmetric!
- The ordinal quasi-symmetry model is most parsimonious
- AIC is your friend for model comparisons

Using the gnm package in R

- Diag() and Symm(): structured associations for square tables
- Topo(): more general structured associations
- mosaic.glm() in vcdExtra

Survival on the *Titanic*

Survival on the *Titanic*: 2201 passengers, classified by Class, Gender, Age, survived. Data from:

- Mersey (1912), Report on the loss of the "Titanic" S.S.
- Dawson (1995)

			Class			
Gender	Age	Survived	1st	2nd	3rd	Crew
Male	Adult	Died	118	154	387	670
Female			4	13	89	3
Male	Child		0	0	35	0
Female			0	0	17	0
Male	Adult	Survived	57	14	75	192
Female			140	80	76	20
Male	Child		5	11	13	0
Female			1	13	14	0

Order of variables in mosaics: Class, Gender, Age, Survival

Survival on the *Titanic*: Background variables

85 / 96 86 / 96

Larger tables Survival on the Titanic

Larger tables Survival on the Titanic

Survival on the *Titanic*: Background variables

3 way: {Class, Gender} \perp Age?

- Overall proportion of children quite small (about 5 %).
- % children smallest in 1st class, largest in 3rd class.
- Residuals: greater number of children in 3rd class (families?)

87 / 96

Survival on the *Titanic*: 4 way table

4 way: {Class, Gender, Age} \perp Survival?

- Joint independence: [CGA][S]
- Minimal null model when C, G, A are explanatory
- More women survived, but greater % in 1st & 2nd
- Among men, % survived increases with class.
- Fits poorly $[G_{(15)}^2 = 671.96] \Rightarrow$ Add S-assoc terms

Larger tables Survival on the Titanic Larger tables Survival on the Titanic

Survival on the *Titanic*: Better models

women and children first \longrightarrow

- model [CGA][CS][GAS] (Age and Gender affect survival, independent of Class)
- Model improved slightly, but still not good ($G_{(9)}^2 = 94.54$).

Survival on the *Titanic*: Better models

Class interacts with Age & Gender on survival:

- Model [CGA][CGS][CAS]
- $G_{(4)}^2$ now 1.69, a very good fit.
- Perhaps too good? (Overfitting?)

 \rightarrow check AIC!

89 / 96

Larger tables Survival on the Titanic

Summary: Part 3

Titanic Conclusions

Mosaic displays allow a detailed explanation:

- Regardless of Age and Gender, lower economic status \longrightarrow increased mortality.
- Differences due to Class were moderated by both Age and Gender.
- Women more likely *overall* to survive than men, but:
 - Class × Gender: women in 3rd class *did not* have a significant advantage
 - men in 1st class did, compared to men in other classes.
- \bullet Class \times Age:
 - no children in 1st or 2nd class died, but
 - nearly two-thirds of children in 3rd class died.
 - For adults, mortality ↑ as economic class ↓.
- Summary statement:

"women and children (according to class), then 1st class men".

Summary: Part 3

Mosaic displays

- Recursive splits of unit square \rightarrow area \sim observed frequency
- Fit any loglinear model \rightarrow shade tiles by residuals
- \Rightarrow see *departure* of the data from the model
- SAS: mosaic macro, mosmat macro; R: mosaic()

Loglinear models

- Loglinear approach: analog of ANOVA for $log(m_{iik...})$
- GLM approach: linear model for $log(\mathbf{m}) = \mathbf{X}\boldsymbol{\beta} \sim Poisson()$
- SAS: PROC CATMOD, PROC GENMOD; R: loglm(), glm()
- Visualize: mosaic, mosmat macro; R: mosaic()
- Complex tables: sequential plots, partial plots are useful

Structured tables

- Ordered factors: models using ordinal scores → simpler, more powerful
- Square tables: Test more specific hypotheses about pattern of association
- SAS: PROC GENMOD; R: glm(), gnm()

91/96

92 / 96

Summary: Part 3 Summary: Part 3

95 / 96

References I

- Bangdiwala, S. I. Using SAS software graphical procedures for the observer agreement chart. *Proceedings of the SAS User's Group International Conference*, 12:1083–1088, 1987.
- Bowker, A. H. Bowker's test for symmetry. *Journal of the American Statistical Association*, 43:572–574, 1948.
- Dawson, R. J. M. The "unusual episode" data revisited. *Journal of Statistics Education*, 3(3), 1995.
- Friendly, M. Mosaic displays for multi-way contingency tables. *Journal of the American Statistical Association*, 89:190–200, 1994.
- Friendly, M. Conceptual and visual models for categorical data. *The American Statistician*, 49:153–160, 1995.
- Friendly, M. Extending mosaic displays: Marginal, conditional, and partial views of categorical data. *Journal of Computational and Graphical Statistics*, 8(3): 373–395, 1999.

References II

- Friendly, M. Multidimensional arrays in SAS/IML. In *Proceedings of the SAS User's Group International Conference*, volume 25, pp. 1420–1427. SAS Institute, 2000.
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. *The American Statistician*, 56(4):316–324, 2002.
- Friendly, M. and Kwan, E. Effect ordering for data displays. *Computational Statistics and Data Analysis*, 43(4):509–539, 2003.
- Hartigan, J. A. and Kleiner, B. Mosaics for contingency tables. In Eddy, W. F., editor, *Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface*, pp. 268–273. Springer-Verlag, New York, NY, 1981.
- Hoaglin, D. C. and Tukey, J. W. Checking the shape of discrete distributions. In Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors, *Exploring Data Tables*, *Trends and Shapes*, chapter 9. John Wiley and Sons, New York, 1985.
- Koch, G. and Edwards, S. Clinical efficiency trials with categorical data. In Peace,K. E., editor, *Biopharmaceutical Statistics for Drug Development*, pp. 403–451.Marcel Dekker, New York, 1988.

93/96

Summary: Part 3

Summary: Part 3

References III

- Landis, J. R. and Koch, G. G. The measurement of observer agreement for categorical data. *Biometrics*, 33:159–174., 1977.
- Mersey, L. Report on the loss of the "Titanic" (S. S.). Parliamentary command paper 6352, 1912.
- Mosteller, F. and Wallace, D. L. Applied Bayesian and Classical Inference: The Case of the Federalist Papers. Springer-Verlag, New York, NY, 1984.
- Ord, J. K. Graphical methods for a class of discrete distributions. *Journal of the Royal Statistical Society, Series A*, 130:232–238, 1967.
- Srole, L., Langner, T. S., Michael, S. T., Kirkpatrick, P., Opler, M. K., and Rennie, T. A. C. *Mental Health in the Metropolis: The Midtown Manhattan Study.* NYU Press, New York, 1978.
- Tufte, E. R. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, CT, 1983.
- Tukey, J. W. Some graphic and semigraphic displays. In Bancroft, T. A., editor, *Statistical Papers in Honor of George W. Snedecor*, pp. 292–316. Iowa State University Press, Ames, IA, 1972.

References IV

Tukey, J. W. Exploratory Data Analysis. Addison Wesley, Reading, MA, 1977.

van der Heijden, P. G. M. and de Leeuw, J. Correspondence analysis used complementary to loglinear analysis. *Psychometrika*, 50:429–447, 1985.