Visualizing Cat ical Data with SA dR L
isualizing Categorical Data with SAS an Part 2: Visualizing two-way and n-way tables

MiChael Friendly Sex: Male Unaided distant vision data Agreement Chart: Husband's and Wives Sexual Fun
I
York University %
8 H
s
¢z :
SCS Short Course, 2016 2 o8 i -
w 0 9
Web notes: datavis.ca/courses/VCD/ =z gz e
£ Eys 25
3 g ;.
f Low [I7iTTi77is :i .
40 Unaided distant vision data g 557 1278 High 2 3 Low 2 ooty vemvers oo e
s \ - ,i ] - Sex: Female Left Eye Grade Husband’s Rating
0 .
0 \ i Topics:
< g - 5 | .
32s \ 3 5 @ 2 X 2 tables and fourfold displays
02 I . .
$20 / s @ Sieve diagrams
2is / w
g ) : @ Observer agreement
T 10 2 < .
" / \ s E az E o Correspondence analysis
o= Low i ] 22 |
-5 High 2 3 Low _
° 2 Nufnbereof masles o 2 ° Left Eye Grade =
Black Brown Red Blond
L 2 /56
2 x 2 tables Examples
Two-way tables: Overview Two-way tables: Examples
Two-way contingency tables are a convenient and compact way to represent a 2 x 2 table: Admissions to graduate programs at U. C. Berkeley

data set cross-classified by two discrete variables, A and B.
Table: Admissions to Berkeley graduate programs

Special cases:

@ 2 x 2 tables: two binary factors (e.g., gender, admitted?, died?, ...) Admitted Rejected | Total % Admit Odds(Admit)

. st .~ fiod b h bl Males 1198 1493 | 2691 44 .52 0.802
@ 2 x 2 X k tables: a collection of 2 x 2s, stratified by another variable Females 557 1278 | 1835 30.35 0.437
@ r X c tables Total 1755 2771 | 4526 38.78 0.633

@ r X c tables, with ordered factors
Males were nearly twice as likely to be admitted.

Questions: @ Association between gender and admission?

@ Are A and B statistically independent? (vs. associated) @ If so, is this evidence for gender bias?

o If associated, what is the strength of association? @ How do characterise strength of association?
: - . _ 2 2 L

@ Measures: 2 x 2— odds ratio; r X ¢— Pearson X% I.'R G o How to test for significance?

@ How to understand the pattern or nature of association?

@ How to visualize?



2 x 2 tables: UCB data

In R, the data is contained in UCBAdmissions, a 2 X 2 x 6 table for 6
departments. Collapse over department:

Is this evidence for gender bias in admission?

data(UCBAdmissions)

UCB <- margin.table(UCBAdmissions, 2:1)
UCB

## Admit

## Gender Admitted Rejected

## Male 1198 1493

## Female 557 1278

Association between gender and admit can be measured by the odds ratio, the
ratio of odds of admission for males vs. females. Details later.

oddsratio(UCB, log=FALSE)

T T L RIBING s Tiong ## [1] 1.8411
confint (oddsratio(UCB, log=FALSE))
@ How to analyse these data?
@ How to visualize & interpret the results? #i# lwr upr
@ Does it matter that we collapsed over Department? ## [1,] 1.6244 2.0867

2 x 2 tables  Standard analysis: SAS 2 x 2 tables Fourfold displays

Standard analysis: PROC FREQ Fourfold displays for 2 x 2 tables

® Quarter circles: radius ~ ,/n;; = area ~ frequency
PROC FREQ gives the standard Pearson and LR X2 tests: ° Independ.ence: .Adjomlng qua(?rants ~ align .
e Odds ratio: ratio of areas of diagonally opposite cells
1| proc freq data=berkeley; @ Confidence rings: Visual test of Hy : # = 1 < adjoining rings overlap
2 weight freq; Sex: Male
3 tables gender*admit / chisq; :
1198 1493
Output:
Statistics for Table of gender by admit
Statistic DF Value Prob ® °
—————————————————————————————————————————————————————— () zZ
Chi-Square 1 92.2083  <.0001 . &
Likelihood Ratio Chi-Square 1 93.4494 <.0001 = €
Continuity Adj. Chi-Square 1 91.6096 <.0001 5 2
Mantel-Haenszel Chi-Square 1 92.1849 <.0001 <
Phi Coefficient 0.1427

How to visualize and interpret?

Sex: Female

e Confidence rings do not overlap: 6 # 1 (reject Hp)
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2 x 2 tables Fourfold displays

Fourfold displays for 2 x 2 x k tables

@ Data in Table 2 had been pooled over departments

o Stratified analysis: one fourfold display for each department
@ Each 2 x 2 table standardized to equate marginal frequencies
@ Shading: highlight departments for which H, : 0; # 1

Department: A Department: B Department: C
Sex: Male Sex: Male Sex: Male
120 205

512 313 353

Admit?: Yes

Admit?: No

Admit?: Yes

Admit?: No

Admit?: Yes
8 &/
©

Admit?: No

89 19 17 202 1
Sex: Female Sex: Female Sex: Female

Department: D Department: E Department: F
Sex: Male Sex: Sex: Male

138 279 53 22 351

aY;
)

131 1 244 94
Sex: Female Sex: Female Sex: Female

Admit?: Yes

Admit?: No
Admit?: Yes
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o
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Admit?: No
Admit?: Yes
Admit?: No

24 317

@ Only one department (A) shows association; 64 = 0.349 — women

(0.349)~! = 2.86 times as likely as men to be admitted.

2 x 2 tables Fourfold displays

The FOURFOLD program and the FFOLD macro

@ The FOURFOLD program is written in SAS/IML.
@ The FFOLD macro provides a simpler interface.

e Printed output: (a) significance tests for individual odds ratios, (b) tests of
homogeneity of association (here, over departments) and (c) conditional

association (controlling for department).

Pl :
ot by department

%include catdata(berkeley);

%ffold(data=berkeley,
var=Admit Gender, /* panel wvartables  */
by=Dept, /* stratify by dept */
down=2, across=3, /* panel arrangement */
htext=2); /* font size */

Aggregate data: first sum over departments, using the TABLE macro:

%table(data=berkeley, out=berk2,
var=Admit Gender, /* omit dept */
weight=count, /* frequency variable */
order=data) ;

%ffold(data=berk2, var=Admit Gender);

Fourfold displays

What happened here?

Why do the results collapsed over department disagree with the results by
department?

Simpson's paradox

o Aggregate data are misleading because they falsely assume men and women
apply equally in each field.
e But:

o Large differences in admission rates across departments.
o Men and women apply to these departments differentially.
o Women applied in large numbers to departments with low admission rates.

@ Other graphical methods can show these effects.

@ (This ignores possibility of structural bias against women: differential funding
of fields to which women are more likely to apply.)

2 x 2 tables ~ Odds ratio plots

Odds ratio plots

> library(ved)
> oddsratio(UCBAdmissions, log=FALSE)

A B C D E F
0.349 0.803 1.133 0.921 1.222 0.828
> lor <- oddsratio(UCBAdmissions) # capture log odds ratios
> plot(lor)

log odds ratios for Admit and Gender by Dept

05

-05

LOR(Admit / Gender)

-15 4

Department 12 /56



Two-way frequency tables

Two-way tables

Table: Hair-color eye-color data

Eye Hair Color

Color | Black Brown Red Blond | Total
Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220
Total 108 286 71 127 592

o With a X2 test (PROC FREQ) we can tell that hair-color and eye-color are

associated.

@ The more important problem is to understand how they are associated.

@ Some graphical methods:
o Sieve diagrams
o Agreement charts (for square tables)
o Mosaic displays

Two-way tables ~ Sieve diagrams

Sieve diagrams

Height/width ~ marginal frequencies, niy, n.;
Area ~ expected frequency, Mjj ~ njyng;

°
@ Shading ~ observed frequency, njj, color: sign(n; — ;).
°

Independence: Shown when density of shading is uniform.
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Two-way tables

Sieve diagrams

Two-way frequency tables: Sieve diagrams

e count ~ area

o When row/col variables are independent, nj ~ Mjj ~ nj;ny;
o = each cell can be represented as a rectangle, with area = height x width ~
frequency, nj (under independence)

Hazel

Eye Color
@
c
]

Brown

Expected frequencies: Hair Eye Color Data

Green’ 117 H a0 " 137 l 64
17.0 | 449 Coll11.2]] 2000 | 93
1392 1039 |25:8| 1 46.1 1| 215
401 106.3 26.4| i 47.2 | 220
108 286 7 127 592
Black Brown Red Blond
Hair Color

Sieve diagrams
o Effect ordering: Reorder rows/cols to make the pattern coherent

Two-way tables

Sieve diagrams

@ This display shows expected
frequencies, assuming independence,
as # boxes within each cell

@ The boxes are all of the same size
(equal density)

@ Real sieve diagrams use # boxes =
observed frequencies, nj;
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Sieve diagrams

Two-way tables ~ Sieve diagrams

@ Vision classification data for 7477 women

High

N

Right Eye Grade
w

Low

Unaided distant vision data

High

2 3
Left Eye Grade

Low

Two-way tables ~ Sieve diagrams

Sieve diagrams: n-way tables in R
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Two-way tables ~ Sieve diagrams

Sieve diagrams: SAS Example

sievem.sas

data vision;
do Left='High', '2', '3', 'Low';
do Right='High', '2', '3', 'Low';
input count @@; output;
end;
end;
label left='Left Eye Grade' right='Right Eye Grade';
datalines;

1520 266 124 66
234 1512 432 78
117 362 1772 205

36 82 179 492

%sieveplot(data=vision, var=Left Right,
title=Unaided distant vision data);

Online weblet: http://datavis.ca/online/sieve/

Two-way tables ~ Sieve diagrams

Sieve diagrams: n-way tables in R

> sieve(UCBAdmissions, sievetype='expected')

> sieve(UCBAdmissions, shade=TRUE)

Berkeley Data: Mutual Independence (exp)

Gender
Male Female
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Berkeley data: Mutual independence (obs)
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Observer Agreement

Observer Agreement

o Inter-observer agreement often used as to assess reliability of a subjective
classification or assessment procedure

e — square table, Rater 1 x Rater 2
o Levels: diagnostic categories (normal, mildly impaired, severely impaired)
o Agreement vs. Association: Ratings can be strongly associated without
strong agreement

@ Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement
o Measures of Agreement:

o Intraclass correlation: ANOVA framework— multiple raters!
e Cohen's k: compares the observed agreement, P, = Y pji, to agreement
expected by chance if the two observer's ratings were independent,

Pc =3 pit p+i.
P, — P.

1- P

kK =

Observer Agreement Cohen'’s kappa

Cohen's k: Example

The table below summarizes responses of 91 married couples to a questionnaire
item,
Sex is fun for me and my partner (a) Never or occasionally, (b) fairly
often, (c) very often, (d) almost always.

————————— Wife's Rating --------
Husband's Never Fairly Very Almost
Rating fun often Often  always | SuM
__________________________________________________ +_______
Never fun 7 7 2 3 | 19
Fairly often 2 8 3 7 | 20
Very often 1 5 4 9 | 19
Almost always 2 8 9 14 | 33
__________________________________________________ F——_————
SUM 12 28 18 33 | 91

Observer Agreement Cohen'’s kappa

Cohen’s &

Properties of Cohen’s k:

@ perfect agreement: k =1
@ minimum k may be < 0; lower bound depends on marginal totals

o Unweighted k: counts only diagonal cells (same category assigned by both

observers).

@ Weighted «: allows partial credit for near agreement. (Makes sense only

when the categories are ordered.)

Weights:

@ Cicchetti-Alison (inverse integer spacing)
@ Fleiss-Cohen (inverse square spacing)

Integer Weights Fleiss-Cohen Weights

1 2/3 1/3 0 1 8/9 5/9 0
2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1

Observer Agreement Cohen'’s kappa

Cohen's k: R Example

The Kappa () function in vcd calculates unweighted and weighted &, using
equal-spacing weights by default.

data(SexualFun, package="vcd")
Kappa (SexualFun)

## value ASE z
## Unweighted 0.129 0.0686 1.89
## Weighted 0.237 0.0783 3.03

Kappa(SexualFun, weights="Fleiss-Cohen")
## value ASE z

## Unweighted 0.129 0.0686 1.89
## Weighted 0.332 0.0973 3.41

Unweighted « is not significant, but both weighted versions are.
You can obtain confidence intervals with the confint () method

22 /56
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Observer Agreement Cohen'’s kappa

Computing x with SAS

o PROC FREQ: Use AGREE option on TABLES statement

o Gives both unweighted and weighted r (default: CA weights)
o AGREE (wt=FC) uses Fleiss-Cohen weights
o Bowker's (Bowker, 1948) test of symmetry: Hp : pj = pji

kappa3.sas

title 'Kappa for Agreement';
data fun;
do Husband = 1 to 4;
do Wife =1 to 4;
input count @Q;
output;
end; end;
datalines;
7 7 2 3
2 8 3 7
1 5 4 9
2 8 9 14
proc freq;
weight count;
tables Husband * Wife / noprint agree; /* default: CA weights*/
tables Husband * Wife / noprint agree(wt=FC);

Observer Agreement Cohen'’s kappa

Observer agreement: Multiple strata

@ When the individuals rated fall into multiple groups, one can test for:

o Agreement within each group
o Overall agreement (controlling for group)
o Homogeneity: Equal agreement across groups

Example: Diagnostic classification of mulitiple sclerosis by two neurologists, for
two populations (Landis and Koch, 1977)

Winnipeg patients New Orleans patients
NO rater:

Cert Prob Pos Doubt

Cert Prob Pos Doubt

Winnipeg rater:

Certain MS 38 5 0 1 5 3 0 0
Probable 33 11 3 0 3 11 4 0
Possible 10 14 5 6 2 13 3 4
Doubtful MS 3 7 3 10 1 2 4 14

Analysis:

N
&

@
=)

proc freq;
tables strata * raterl * rater2 / agree;

00N O Ok WN -

NN NN R R R R R
A ONRO©ONTO TR WNR OO
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Observer Agreement Cohen'’s kappa

Computing x with SAS

Output (CA weights):

Statistics for Table of Husband by Wife

Test of Symmetry

Statistic (8) 3.8778
DF 6
Pr > S 0.6932

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
Simple Kappa 0.1293 0.0686 -0.0051 0.2638
Weighted Kappa 0.2374 0.0783 0.0839 0.3909
Sample Size = 91
Using Fleiss-Cohen weights:
Weighted Kappa 0.3320 0.0973 0.1413 0.5227
26
Observer Agreement Cohen'’s kappa
Observer agreement: Multiple strata
data msdiag;
do patients='Winnipeg ', 'New Orleans';
do N_rating = 1 to 4;
do W_rating = 1 to 4;
input count Q;
output;
end;
end;
end;
label N_rating = 'New Orleans neurologist'
W_rating = 'Winnipeg neurologist';
datalines;
38 5 0 1
3311 3 0
10 14 5 6
3 7 310
5 3 0 0
311 4 0
213 3 4
1 2 414
*-- Agreement, separately, and controlling for Patients;
proc freq data=msdiag;
weight count;
tables patients * N_rating * W_rating / norow nocol nopct agree;




Observer Agreement Cohen'’s kappa

Observer agreement: Multiple strata

Output, strata 1: (New Orleans patients):

Observer Agreement Cohen'’s kappa

Observer agreement: Multiple strata

Output, strata 2: (Winnipeg patients):

Statistics for Table 1 of N_rating by W_rating
Controlling for patients=New Orleans

Test of Symmetry

Statistic (S) 9.7647
DF 6
Pr > S 0.1349

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
Simple Kappa 0.2965 0.0785 0.1427 0.4504
Weighted Kappa 0.4773 0.0730 0.3341 0.6204

Sample Size = 69

Statistics for Table 2 of N_rating by W_rating
Controlling for patients=Winnipeg

Test of Symmetry

Statistic (8) 46.7492
DF 6
Pr > S <.0001

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
Simple Kappa 0.2079 0.0505 0.1091 0.3068
Weighted Kappa 0.3797 0.0517 0.2785 0.4810

Sample Size = 149

Observer Agreement Cohen'’s kappa

Observer agreement: Multiple strata

Overall test:
Summary Statistics for N_rating by W_rating
Controlling for patients
Overall Kappa Coefficients
Statistic Value ASE 95% Confidence Limits
Simple Kappa 0.2338 0.0424 0.1506 0.3170
Weighted Kappa 0.4123 0.0422 0.3296 0.4949
Homogeneity test: Hy : k1 = kp = -+ = Ki
Tests for Equal Kappa Coefficients
Statistic Chi-Square DF Pr > ChiSq
Simple Kappa 0.9009 1 0.3425
Weighted Kappa 1.1889 1 0.2756
Total Sample Size = 218

Observer Agreement ~ Observer Agreement Chart

Bangdiwala's Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides

@ a simple graphic representation of the strength of agreement, and
@ a measure of strength of agreement with an intuitive interpretation.

56

@ n X n square, n=total sample size

o Black squares, each of size n;; x n;; — observed agreement

o Positioned within larger rectangles, each of size njy x nij — maximum
possible agreement

@ = visual impression of the strength of agreement is B:

f
> n/?i

= ok
doi Ny Ny

area of dark squares

area of rectangles

@ = Perfect agreement: B = 1, all rectangles are completely filled.

56



Observer Agreement ~ Observer Agreement Chart Observer Agreement ~ Observer Agreement Chart

Weighted Agreement Chart: Partial agreement Husbands and wives: B = 0.146, B* = 0.498
Partial agreement: include weighted contribution from off-diagonal cells, b steps agreementplot (SexualFun, main="Unweighted", weights=1)
from the main diagonal, using weights 1 > wy > wy > - --. agreementplot (SexualFun, main="Weighted")
Ri-b,i W Unweighted Weighted
- 12 28 .18 33 12 28 Rt 33
Wi
Niji—b =+ Niji =+ DNijyp we wr 1 ow owp 2 2
2 33 2 33
Wi 2 H
< <
w2
Ni—b,i s o5
5t S 1 :
@ Add shaded rectangles, size ~ sum of frequencies, Ap;, within b steps of main % ﬁ - %’ﬁ
diagonal 2 -/ 20 S 20
@ = weighted measure of agreement, "2 " §
5 19 5 19

weighted sum of agreement 1 Zf‘ [niynyi — n3 — i whAp

B w — Never Fun Fairly Often  Very Often Always fun Never Fun Fairly Often  Very Often Always fun
area of rectangles Zf‘ iy N Wife Wife
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Observer Agreement Marginal homogeneity Correspondence analysis Basic ideas
Marginal homogeneity and Observer bias Correspondence analysis

o Different raters may consistently use higher or lower response categories
@ Test— marginal homogeneity: Hp : niy = ny;

@ Shows as departures of the squares from the diagonal line Correspondence analysis (CA)

Winnipeg patients New Orleans patients Analog of PCA for frequency data:
84 L8711 ) 29 11 18

17 1 : @ account for maximum % of x? in few (2-3) dimensions

3 2 3 o finds scores for row (x,) and column (y;m) categories on these dimensions
=0 = 5 . .. . -
B e 23 “ @ uses Singular Value Decomposition of residuals from independence,
oL (@]
2% 3 o o = (i — B =
o8 ° - dj = (nij — myj)/~/mj
= | =1 M
(0] (TR d::
Z Z3 22 ’J_E:)\ Xim i
2 0 e - m Aim Yjm
53 a7 S V]
QLo Qo F
(; i C; £ e @ optimal scaling: each pair of scores for rows (Xjm,) and columns (yj,) have
[} s 1 1 H —
2 u o< ] highest possible correlation (= Ap,).
8 6 e plots of the row (Xjm,) and column (yjm) scores show associations
Certain ProbablePossiBeubtfu] ° Certain Probable Possible  Doubtful
Winnipeg Neurologist Winnipeg Neurologist

@ Winnipeg neurologist tends to use more severe categories



Correspondence analysis Basic ideas

Hair color, Eye color data:

* Eye color *HAIR COLOR
0.51
RED Green
;\? Hazel
0
e BROW
= 0.0 NI
£ Brown Blue BLOND
o
BLACK
-0.51 . . . ; . , . ;
-1.0 -0.5 0.0 0.5 1.0

Dim 1 (89.4%)

@ Interpretation: row/column points “near” each other are positively associated
e Dim 1: 89.4% of x? (dark « light)
e Dim 2: 9.5% of x? (RED/Green vs. others)
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Correspondence analysis Basic ideas

Software: PROC CORRESP, CORRESP macro & R

e PROC CORRESP

Handles 2-way CA, extensions to n-way tables, and MCA

Many options for scaling row/column coordinates and output statistics
0UTC= option — output dataset for plotting

SAS V9.1+: PROC CORRESP uses ODS Graphics

o CORRESP macro

Uses PROC CORRESP for analysis

Produces labeled plots of the category points in either 2 or 3 dimensions
Many graphic options; can equate axes automatically

See: http://datavis.ca/sasmac/corresp.html

The ca package provides 2-way CA, MCA and more

e plot(ca(data)) gives reasonably useful plots
o Other R packages: vegan, ade4, FactoMiner, ...
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Correspondence analysis

PROC CORRESP and the CORRESP macro

@ Two forms of input dataset:
o dataset in contingency table form — column variables are levels of one factor,
observations (rows) are levels of the other.

Basic ideas

Obs

D WN -

Eye

Brown
Blue

Hazel
Green

BLACK

68
20
15

5

BRI

1

OWN RED BLOND
19 26 7
84 17 94
54 14 10
29 14 16

e Raw category responses (case form), or cell frequencies (frequency form),
classified by 2 or more factors (e.g., output from PROC FREQ)

Obs

W

15

Eye

Brown
Brown
Brown
Brown

Green
Green

HAIR

BLACK
BROWN
RED

BLOND

RED
BLOND

C

ount

68
119
26
7

14
16

Correspondence analysis

Example: Hair and Eye Color

38 /56

Basic ideas

e Input the data in contingency table form

[ I e Ve

data haireye;

input EYE $ BLACK BROWN RED BLOND ;

datalines;

Brown
Blue

Hazel
Green

68
20
15

5

corresp2a.sas ---

119
84
54
29

26
17
14
14

7
94
10
16
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http://datavis.ca/sasmac/corresp.html

Correspondence analysis Basic ideas Correspondence analysis Basic ideas

Example: Hair and Eye Color Example: Hair and Eye Color

Printed output:

The Correspondence Analysis Procedure

(] USlng PROC CORRESP dll’ect|y— OoDS graphics (V91+) Inertia and Chi-Square Decomposition
ods rtf; /* ODS destination: rtf, html, latez, ... */ Singular Principal Chi-
ods graphics on; Values Inertias Squares Percents___EE___?E___?ﬁ_“z%“_?g_"
proc corresp data=haireye short; 0.45692 0.20877 123.593  89.37Y *xkkkkskokkkkkokkkkokokkkokokkkk
id eye; /* row wvariable */ 0.14909 0.02223 13.158 9.51% *xx
var black brown red blond; /* col variables */ 0.05097 9_99%?9 __}f:f? 1.11%
ods graphics off; 0.23360 138.29 (Degrees of Freedom = 9)
ods rtf close; Row Coordinates
Dim1 Dim2
° Usmg the CORRESP macro— labeled high-res plot Brown _ 492158 088322
o s Blue 0.547414 -.082954
heorresp (data=haireye, Hazel - 212597 0.167391
id=eye, /* row variable */ Green 0.161753 0.339040
ve.1r=b1acll{ brown red blond, /* col .var'l}ables */ Column Coordinates
dimlab=Dim) ; /* options */ Diml Dim2
BLACK -.504562 -.214820
BROWN -.148253 0.032666
RED -.129523 0.319642
BLOND 0.835348 -.069579
41 /56 42 /56
Correspondence analysis Basic ideas Correspondence analysis Basic ideas
Example: Hair and Eye Color Example: Hair and Eye Color
Graphic output from CORRESP macro:
* Eye color *HAIR COLOR
Output dataset(selected variables): 057
Obs _TYPE_ EYE DIM1 DIM2 RED Green
1 INERTIA . .
2 0BS Brown -0.49216 -0.08832 = Hazel
3 0BS Blue 0.54741 -0.08295 N
4 0BS Hazel  -0.21260 0.16739 2
5 0BS Green 0.16175 0.33904 = 00 BROWN_|>
6 VAR BLACK -0.50456 -0.21482 N
7 VAR BROWN ~ -0.14825 0.03267 £ Brown Blue BLOND
8 VAR RED -0.12952 0.31964 [a)
9 VAR BLOND 0.83535  -0.06958 BLACK
Row and column points are distinguished by the _TYPE_ variable: 0BS vs. VAR
'0.57| T T T T
-1.0 -0.5 0.0 0.5 1.0

Dim 1 (89.4%)
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Correspondence analysis CAinR

CA in R: the ca

> HairEye <- margin.table(HairEyeColor, c(1, 2))
> library(ca)
> ca(HairEye)

Principal inertias (eigenvalues):

1 2 3
0.208773 0.022227 0.002598
9.52%  1.11%

Value
Percentage 89.37/

Plot the ca object:

> plot(ca(HairEye), main="Hair Color and Eye Color")

Hair Color and Eye Color

02 04
|

00

-04

—0.4 —0.2 0.0 0.2 0.4 0.6 0.8
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Multi-way tables: Stacking

e Stacking approach: van der Heijden and de Leeuw (1985)—

o three-way table, of size | X J x K can be sliced and stacked as a two-way
table, of size (I x J) x K

(1J )x K table
@ The variables combined are treated

“interactively”
o Each way of stacking corresponds

I x J x K table J

! to a loglinear model
= J o (I x J)x K — [AB][C]
J > o I x (Jx K) — [A][BC]
7 o Jx (I x K) = [B][AC]
K J @ Only the associations in separate ]|

terms are analyzed and displayed
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Multi-way tables

Correspondence analysis can be extended to n-way tables in several ways:
o Multiple correspondence analysis (MCA)
o Extends CA to n-way tables
o only uses bivariate associations
o Stacking approach

e n-way table flattened to a 2-way table, combining several variables
“interactively”

o Each way of stacking corresponds to a loglinear model

o Ordinary CA of the flattened table — visualization of that model

o Associations among stacked variables are not visualized

@ Here, | only describe the stacking approach, and only with SAS

o In SAS 9.3, the MCA option with PROC CORRESP provides some reasonable
plots.
o For R, see the ca— the mjca() function is much more general
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Multi-way tables: Stacking

e PROC CORRESP: Use TABLES statement and option CROSS=ROW or
CROSS=COL. E.g., for model [A B] [C],

Proc corresp Cross=row;
tables A B, C;
weight count;

o CORRESP macro: Can use / instead of ,

%hecorresp(
options=cross=row,
tables=A B/ C,
weight count);
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Example: Suicide Rates Example: Suicide Rates

‘ suicideb.sas - - ‘

Suicide rates in West Germany, by Age, Sex and Method of suicide [ %include catdata(suicide);
Sex Age POISON GAS HANG  DROWN GUN JUMP 2 *-- equate ages!;
3| axisl order=(-.7 to .7 by .7) length=6.5 in label=(a=90 r=0);
M 10-20 1160 335 1524 67 512 189 4| axis2 order=(-.7 to .7 by .7) length=6.5 in;
M 925-35 2823 883 2751 213 852 366 5| hcorresp(data=suicide, weight=count,
M 40-50 2465 625 3936 247 875 244 6 tables=kstr(age sex, method),
M b55-65 1531 201 3581 207 477 273 7 opt:.Lons=<.:ross=rov.J shox.‘t,
M 70-90 938 45 2948 212 229 268 8 vaxis=axisl, haxis=axis2);
F 10-20 921 40 212 30 25 131 Output:
F 25-35 1672 113 575 139 64 276 - - —
F  40-50 2924 91 1481 354 52 397 Inertia and Chi-Square Decomposition
F 55-65 2283 45 2014 679 29 388 Singular Principal Chi-
F 70-90 1548 29 1355 501 3 383 Values Inertias Squares Percents 12 24 36 48 60
B s A
0.32138 0.10328 5056.91  60.41Y% skskskskokokskskkokokokokokskokokokk sk kokokok
. 0.23736 0.05634 2758.41 32.95], skkskkkokkokkokkokk
o CA of the [Age Sex] by [Method] table: 0.09378  0.00879  430.55  5.14% **
o Shows associations between the Age-Sex combinations and Method 0.04171  0.00174 85.17  1.02]
o Ignores association between Age and Sex 0.02867 (_)'00082 40.24  0.48)%
0.17098 8371.28 (Degrees of Freedom = 45)
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CA Graph: Looking forward— Loglinear models and mosaic displays:
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Summary: Part 2 References |
e Fourfold displays

e Odds ratio: ratio of areas of diagonally opposite quadrants
o Confidence rings: visual test of Hy : 0 =1

Bangdiwala, S. I. Using SAS software graphical procedures for the observer
agreement chart. Proceedings of the SAS User’s Group International

o Shading: highlight strata for which H, : 6 # 1 Conference, 12:1083-1088, 1987.
e Sieve diagrams Bickel, P. J., Hammel, J. W., and O'Connell, J. W. Sex bias in graduate
o Rows and columns ~ marginal frequencies — area ~ expected admissions: Data from Berkeley. Science, 187:398-403, 1975.
o Shading ~ observed frequencies Bowker, A. H. Bowker's test for symmetry. Journal of the American Statistical
o Simple visualization of pattern of association Association, 43:572-574, 1948.

e SAS: sieveplot macro; R: sieve()
e Agreement
o Cohen's k: strength of agreement

Friendly, M. Conceptual and visual models for categorical data. The American
Statistician, 49:153-160, 1995.

o Agreement chart: visualize weighted & unweighted agreement, marginal Friendly, M. Multidimensional arrays in SAS/IML. In Proceedings of the SAS
homogeneity User’s Group International Conference, volume 25, pp. 1420-1427. SAS
e SAS: agreeplot macro; R: agreementplot () Institute, 2000.
o Correspondence analysis Friendly, M. Corrgrams: Exploratory displays for correlation matrices. The
o Decompose x? for association into 1 or more dimensions American Statistician, 56(4):316-324, 2002.

e — scores for row/col categories
o CA plots: Interpretation of how the variables are related
e SAS: corresp macro; R: ca()

Friendly, M. and Kwan, E. Effect ordering for data displays. Computational
Statistics and Data Analysis, 43(4):509-539, 2003.
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