Visualizing Categorical Data with SAS and R

Michael Friendly

York University

SCS Short Course, 2016 Web notes: datavis.ca/courses/VCD/

Part 2: Visualizing two-way and *n*-way tables

Topics:

- 2 × 2 tables and fourfold displays
- Sieve diagrams
- Observer agreement
- Correspondence analysis

2 x 2 tables Examples

Two-way tables: Overview

Two-way contingency tables are a convenient and compact way to represent a data set cross-classified by two discrete variables, A and B.

Special cases:

- 2 × 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
- $2 \times 2 \times k$ tables: a collection of $2 \times 2s$, stratified by another variable
- $r \times c$ tables
- $r \times c$ tables, with ordered factors

Questions:

- Are A and B statistically independent? (vs. associated)
- If associated, what is the strength of association?
- Measures: 2×2 odds ratio; $r \times c$ Pearson χ^2 , LR G^2
- How to understand the pattern or nature of association?

Two-way tables: Examples

2 × 2 table: Admissions to graduate programs at U. C. Berkeley

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	% Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

Males were nearly twice as likely to be admitted.

- Association between gender and admission?
- If so, is this evidence for gender bias?
- How do characterise strength of association?
- How to test for significance?
- How to visualize?

Is this evidence for gender bias in admission?

- How to analyse these data?
- How to visualize & interpret the results?
- Does it matter that we collapsed over Department?

2 x 2 tables Standard analysis: SAS

Standard analysis: PROC FREQ

PROC FREQ gives the standard Pearson and LR χ^2 tests:

```
proc freq data=berkeley;
  weight freq;
  tables gender*admit / chisq;
```

Output:

2

Statistics for Table	of ge	ender by admit	;
Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient	1 1 1 1	92.2053 93.4494 91.6096 92.1849 0.1427	<.0001 <.0001 <.0001 <.0001

How to visualize and interpret?

2×2 tables: UCB data

In R, the data is contained in UCBAdmissions, a $2 \times 2 \times 6$ table for 6 departments. Collapse over department:

```
data(UCBAdmissions)
UCB <- margin.table(UCBAdmissions, 2:1)
UCB

## Admit
## Gender Admitted Rejected
## Male 1198 1493
## Female 557 1278
```

Association between gender and admit can be measured by the odds ratio, the ratio of odds of admission for males vs. females. Details later.

```
oddsratio(UCB, log=FALSE)
## [1] 1.8411
confint(oddsratio(UCB, log=FALSE))
## lwr upr
## [1,] 1.6244 2.0867
```

6 / 56

2 x 2 tables Fourfold displays

Fourfold displays for 2×2 tables

- Quarter circles: radius $\sim \sqrt{n_{ij}} \Rightarrow$ area \sim frequency
- Independence: Adjoining quadrants ≈ align
- Odds ratio: ratio of areas of diagonally opposite cells
- Confidence rings: Visual test of $H_0: \theta = 1 \leftrightarrow \text{adjoining rings overlap}$

• Confidence rings do not overlap: $\theta \neq 1$ (reject H_0)

7/56 8/56

Fourfold displays for $2 \times 2 \times k$ tables

- Data in Table 2 had been pooled over departments
- Stratified analysis: one fourfold display for each department
- Each 2 × 2 table standardized to equate marginal frequencies
- Shading: highlight departments for which H_a : $\theta_i \neq 1$

• Only one department (A) shows association; $\theta_A = 0.349 \rightarrow$ women $(0.349)^{-1} = 2.86$ times as likely as men to be admitted.

What happened here?

Why do the results collapsed over department disagree with the results by department?

Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
 - Large differences in admission rates across departments.
 - Men and women apply to these departments differentially.
 - Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of *structural bias* against women: differential funding of fields to which women are more likely to apply.)

10 / 56

2 x 2 tables Odds ratio plots

2 x 2 tables Fourfold displays

9 / 56

Odds ratio plots

> library(vcd) > oddsratio(UCBAdmissions, log=FALSE)

0.349 0.803 1.133 0.921 1.222 0.828

> lor <- oddsratio(UCBAdmissions) # capture log odds ratios > plot(lor)

The FOURFOLD program and the FFOLD macro

- The FOURFOLD program is written in SAS/IML.
- The FFOLD macro provides a simpler interface.
- Printed output: (a) significance tests for individual odds ratios, (b) tests of homogeneity of association (here, over departments) and (c) conditional association (controlling for department).

Plot by department:

berk4f.sas %include catdata(berkeley); %ffold(data=berkeley, /* panel variables var=Admit Gender. by=Dept. /* stratify by dept /* panel arrangement */ down=2, across=3, htext=2); /* font size

Aggregate data: first sum over departments, using the TABLE macro:

```
%table(data=berkeley, out=berk2,
   var=Admit Gender,
                            /* omit dept
   weight=count,
                           /* frequency variable */
   order=data);
%ffold(data=berk2, var=Admit Gender);
```

log odds ratios for Admit and Gender by Dept

11/56 Department 12 / 56

Two-way frequency tables

Table: Hair-color eye-color data

Eye		Hair C	Color		
Color	Black	Brown	Red	Blond	Total
Green	5	29	14	16	64
Hazel	15	54	14	10	93
Blue	20	84	17	94	215
Brown	68	119	26	7	220
Total	108	286	71	127	592

• With a χ^2 test (PROC FREQ) we can tell that hair-color and eye-color are associated.

Two-way tables Sieve diagrams

- The more important problem is to understand how they are associated.
- Some graphical methods:
 - Sieve diagrams
 - Agreement charts (for square tables)
 - Mosaic displays

Two-way frequency tables: Sieve diagrams

ullet count \sim area

- When row/col variables are independent, $n_{ii} \approx \hat{m}_{ii} \sim n_{i+} n_{+i}$
- ullet each cell can be represented as a rectangle, with area = height imes width \sim frequency, n_{ii} (under independence)

- This display shows expected frequencies, assuming independence, as # boxes within each cell
- The boxes are all of the same size (equal density)
- Real sieve diagrams use # boxes = observed frequencies, nii

14 / 56

Two-way tables Sieve diagrams

Sieve diagrams

- Height/width \sim marginal frequencies, n_{i+} , n_{+i}
- Area \sim expected frequency, $\hat{m}_{ij} \sim n_{i+} n_{+i}$
- Shading \sim observed frequency, n_{ij} , color: $sign(n_{ij} \hat{m}_{ij})$.
- Independence: Shown when density of shading is uniform.

Sieve diagrams

13 / 56

• **Effect ordering**: Reorder rows/cols to make the pattern coherent

15 / 56 16 / 56

Two-way tables Sieve diagrams Two-way tables Sieve diagrams

Sieve diagrams

• Vision classification data for 7477 women

Sieve diagrams: SAS Example

Online weblet: http://datavis.ca/online/sieve/

17 / 56

Two-way tables Sieve diagrams

Two-way tables Sieve diagrams

18 / 56

Sieve diagrams: n-way tables in R

> sieve(UCBAdmissions, sievetype='expected')

Sieve diagrams: n-way tables in R

> sieve(UCBAdmissions, shade=TRUE)

Berkeley Data: Mutual Independence (exp)

Berkeley data: Mutual independence (obs)

19 / 56 20 / 56 Observer Agreement Observer Agreement Cohen's kappa

Observer Agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
 - \bullet \rightarrow square table, Rater 1 x Rater 2
 - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
 - Intraclass correlation: ANOVA framework— multiple raters!
 - Cohen's κ : compares the observed agreement, $P_o = \sum p_{ii}$, to agreement expected by chance if the two observer's ratings were independent, $P_c = \sum p_{i+} p_{+i}$.

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

Cohen's κ

Properties of Cohen's κ :

- perfect agreement: $\kappa = 1$
- ullet minimum κ may be < 0; lower bound depends on marginal totals
- Unweighted κ : counts only diagonal cells (same category assigned by both observers).
- Weighted κ : allows partial credit for near agreement. (Makes sense only when the categories are ordered.)

Weights:

- Cicchetti-Alison (inverse integer spacing)
- Fleiss-Cohen (inverse square spacing)

Integ	ger Weigl	nts		Fleiss-C	Cohen We	ights		
1	2/3	1/3	0	1	8/9	5/9	0	
2/3	1	2/3	1/3	8/9	1	8/9	5/9	
1/3	2/3	1	2/3	5/9	8/9	1	8/9	
0	1/3	2/3	1	0	5/9	8/9	1	

21 / 56 22 / 56

Observer Agreement Cohen's kappa

Observer Agreement Cohen's kappa

Cohen's κ : Example

The table below summarizes responses of 91 married couples to a questionnaire item.

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

Husband's Rating	Never	Wife's Fairly often	Rating - Very Often	Almost always	SUM
Never fun	7	7	2	3	19
Fairly often	2	8	3	7	20
Very often	1	5	4	9	19
Almost always	2	8	9	14	33
SUM	12	28	18	33	91

Cohen's κ : R Example

The Kappa () function in vcd calculates unweighted and weighted κ , using equal-spacing weights by default.

```
data(SexualFun, package="vcd")
Kappa(SexualFun)
              value
## Unweighted 0.129 0.0686 1.89
## Weighted 0.237 0.0783 3.03
Kappa (SexualFun, weights="Fleiss-Cohen")
              value
## Unweighted 0.129 0.0686 1.89
## Weighted 0.332 0.0973 3.41
```

Unweighted κ is not significant, but both weighted versions are. You can obtain confidence intervals with the confint() method

Observer Agreement Cohen's kappa Observer Agreement Cohen's kappa

Computing κ with SAS

- PROC FREQ: Use AGREE option on TABLES statement
 - Gives both unweighted and weighted κ (default: CA weights)
 - AGREE (wt=FC) uses Fleiss-Cohen weights
 - Bowker's (Bowker, 1948) test of symmetry: $H_0: p_{ii} = p_{ii}$

```
kappa3.sas
  title 'Kappa for Agreement';
  data fun;
      do Husband = 1 to 4;
     do Wife
                 = 1 to 4;
         input count @@;
         output;
         end; end;
8
  datalines;
   7
         7
                       3
   2
         8
                3
                       7
   1
         5
                4
                       9
         8
                      14
12
13
  proc freq;
14
    weight count;
15
    tables Husband * Wife / noprint agree;
                                                  /* default: CA weights*/
16
    tables Husband * Wife / noprint agree(wt=FC);
```

Computing κ with SAS

Output (CA weights):

```
Statistics for Table of Husband by Wife
                      Test of Symmetry
                  Statistic (S)
                                    3.8778
                  DF
                  Pr > S
                                    0.6932
                       Kappa Statistics
                                        95% Confidence Limits
Statistic
                   Value
                                ASE
                  0.1293
                             0.0686
Simple Kappa
                                          -0.0051
                                                        0.2638
Weighted Kappa
                  0.2374
                             0.0783
                                          0.0839
                                                        0.3909
                       Sample Size = 91
```

Using Fleiss-Cohen weights:

25 / 56 26 / 56

Observer Agreement Cohen's kappa

Observer Agreement Cohen's kappa

Observer agreement: Multiple strata

- When the individuals rated fall into multiple groups, one can test for:
 - Agreement within each group
 - Overall agreement (controlling for group)
 - Homogeneity: Equal agreement across groups

Example: Diagnostic classification of mulitiple sclerosis by two neurologists, for two populations (Landis and Koch, 1977)

NO rater:	Winn	nipeg	patie	ents	New C	rlear	ıs pat	ients	
NU latel.	Cert	Prob	Pos	Doubt	Cert	Prob	Pos	Doubt	
Winnipeg rater:									
Certain MS	38	5	0	1	5	3	0	0	
Probable	33	11	3	0	3	11	4	0	
Possible	10	14	5	6	2	13	3	4	
Doubtful MS	3	7	3	10	1	2	4	14	
Analysis:									

```
proc freq;
  tables strata * rater1 * rater2 / agree;
```

Observer agreement: Multiple strata

```
msdiag.sas
data msdiag;
  do patients='Winnipeg ', 'New Orleans';
     do N_rating = 1 to 4;
        do W_rating = 1 to 4;
           input count 0;
           output;
           end;
        end;
     end;
 label N_rating = 'New Orleans neurologist'
       W_rating = 'Winnipeg neurologist';
datalines;
38 5
      0
33 11
      3
10 14
      5
         6
   7
      3 10
 5 3 0 0
3 11
      4 0
2 13 3 4
1 2 4 14
*-- Agreement, separately, and controlling for Patients;
proc freq data=msdiag;
   weight count;
   tables patients * N_rating * W_rating / norow nocol nopct agree;
```

27 / 56 28 / 56

Observer agreement: Multiple strata

Output, strata 1: (New Orleans patients):

Statistics for Table 1 of N_rating by W_rating Controlling for patients=New Orleans

> Test of Symmetry 9.7647 Statistic (S)

Pr > S0.1349

Kappa Statistics

Statistic ASE 95% Confidence Limits Value 0.2965 0.0785 0.4504 Simple Kappa 0.1427 0.3341 Weighted Kappa 0.4773 0.0730 0.6204

Sample Size = 69

Observer agreement: Multiple strata

Output, strata 2: (Winnipeg patients):

Statistics for Table 2 of N_rating by W_rating Controlling for patients=Winnipeg

Test of Symmetry

Statistic (S) 46.7492 Pr > S<.0001

Kappa Statistics

ASE 95% Confidence Limits Statistic Value 0.2079 0.0505 0.3068 Simple Kappa 0.1091 Weighted Kappa 0.3797 0.0517 0.2785 0.4810

Sample Size = 149

29 / 56

Observer Agreement Cohen's kappa

Observer Agreement Observer Agreement Chart

30 / 56

Observer agreement: Multiple strata

Overall test:

Summary Statistics for N_rating by W_rating Controlling for patients

Overall Kappa Coefficients

Statistic	Value	ASE	95% Confidence	ce Limits
Simple Kappa	0.2338	0.0424	0.1506	0.3170
Weighted Kappa	0.4123	0.0422	0.3296	0.4949

Homogeneity test: $H_0: \kappa_1 = \kappa_2 = \cdots = \kappa_k$

Tests for Equal Kappa Coefficients

Statistic	Chi-Square	DF	Pr > ChiSq
Simple Kappa	0.9009	1	0.3425
Weighted Kappa	1.1889		0.2756

Total Sample Size = 218

Bangdiwala's Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides

- a simple graphic representation of the strength of agreement, and
- a measure of strength of agreement with an intuitive interpretation.

Construction:

- $n \times n$ square, n=total sample size
- Black squares, each of size $n_{ii} \times n_{ii} \rightarrow$ observed agreement
- Positioned within larger rectangles, each of size $n_{i+} \times n_{+i} \to \text{maximum}$ possible agreement
- $\bullet \Rightarrow$ visual impression of the strength of agreement is B:

$$B = \frac{\text{area of dark squares}}{\text{area of rectangles}} = \frac{\sum_{i=1}^{k} n_{ii}^2}{\sum_{i=1}^{k} n_{i+1} n_{+i}}$$

 $\bullet \Rightarrow$ Perfect agreement: B=1, all rectangles are completely filled.

31 / 56 32 / 56

Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b steps from the main diagonal, using weights $1 > w_1 > w_2 > \cdots$.

- Add shaded rectangles, size \sim sum of frequencies, A_{bi} , within b steps of main diagonal
- ⇒ weighted measure of agreement,

$$B^{w} = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_{i}^{k} \left[n_{i+} n_{+i} - n_{ii}^{2} - \sum_{b=1}^{q} w_{b} A_{bi} \right]}{\sum_{i}^{k} n_{i+} n_{+i}}$$

Husbands and wives: B = 0.146, $B^w = 0.498$

agreementplot(SexualFun, main="Unweighted", weights=1) agreementplot(SexualFun, main="Weighted")

33 / 56 34 / 56

Observer Agreement Marginal homogeneity

Correspondence analysis

Basic ideas

Marginal homogeneity and Observer bias

- Different raters may consistently use higher or lower response categories
- Test- marginal homogeneity: $H_0: n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line

Correspondence analysis

Correspondence analysis (CA)

Analog of PCA for frequency data:

- account for maximum % of χ^2 in few (2-3) dimensions
- finds scores for row (x_{im}) and column (y_{im}) categories on these dimensions
- uses Singular Value Decomposition of residuals from independence, $d_{ii} = (n_{ii} - \widehat{m}_{ii})/\sqrt{\widehat{m}_{ii}}$

$$\frac{d_{ij}}{\sqrt{n}} = \sum_{m=1}^{M} \lambda_m x_{im} y_{jm}$$

- optimal scaling: each pair of scores for rows (x_{im}) and columns (y_{im}) have highest possible correlation (= λ_m).
- plots of the row (x_{im}) and column (y_{im}) scores show associations

Winnipeg neurologist tends to use more severe categories

Correspondence analysis Basic ideas Correspondence analysis Basic ideas

37 / 56

39 / 56

Hair color, Eye color data:

- Interpretation: row/column points "near" each other are positively associated
- Dim 1: 89.4% of χ^2 (dark \leftrightarrow light)
- Dim 2: 9.5% of χ^2 (RED/Green vs. others)

PROC CORRESP and the CORRESP macro

- Two forms of input dataset:
 - dataset in contingency table form column variables are levels of one factor, observations (rows) are levels of the other.

0bs	Eye	BLACK	BROWN	RED	BLOND	
1	Brown	68	119	26	7	
2	Blue	20	84	17	94	
3	Hazel	15	54	14	10	
4	Green	5	29	14	16	

• Raw category responses (case form), or cell frequencies (frequency form), classified by 2 or more factors (e.g., output from PROC FREQ)

Obs	Eye	HAIR	Count		
1	Brown	BLACK	68		
2	Brown	BROWN	119		
3	Brown	RED	26		
4	Brown	BLOND	7		
15	Green	RED	14		
16	Green	BLOND	16		

38 / 56

Correspondence analysis Basic ideas

Correspondence analysis Basic ideas

Software: PROC CORRESP. CORRESP macro & R

PROC CORRESP

- Handles 2-way CA, extensions to n-way tables, and MCA
- Many options for scaling row/column coordinates and output statistics
- ullet OUTC= option o output dataset for plotting
- SAS V9.1+: PROC CORRESP uses ODS Graphics

CORRESP macro

- Uses PROC CORRESP for analysis
- Produces labeled plots of the category points in either 2 or 3 dimensions
- Many graphic options; can equate axes automatically
- See: http://datavis.ca/sasmac/corresp.html

R

- The ca package provides 2-way CA, MCA and more
- plot(ca(data)) gives reasonably useful plots
- Other R packages: vegan, ade4, FactoMiner, ...

Example: Hair and Eye Color

• Input the data in contingency table form

```
corresp2a.sas ·
data haireye;
 input EYE $ BLACK BROWN RED BLOND;
 datalines;
                                      7
        Brown
                 68
                       119
                              26
        Blue
                  20
                        84
                              17
                                     94
        Hazel
                 15
                        54
                              14
                                     10
                        29
        Green
                  5
                              14
                                     16
```

Correspondence analysis Basic ideas Correspondence analysis Basic ideas

Example: Hair and Eye Color

• Using PROC CORRESP directly— ODS graphics (V9.1+)

```
ods rtf; /* ODS destination: rtf, html, latex, ... */
ods graphics on;
proc corresp data=haireye short;
                                  /* row variable */
 var black brown red blond;
                                  /* col variables */
ods graphics off;
ods rtf close;
```

• Using the CORRESP macro— labeled high-res plot

```
%corresp (data=haireye,
   id=eye,
                                /* row variable */
   var=black brown red blond, /* col variables */
   dimlab=Dim):
                                /* options
```

Example: Hair and Eye Color

Printed output:

```
The Correspondence Analysis Procedure
             Inertia and Chi-Square Decomposition
Singular
         Principal Chi-
                   Squares Percents 18
                                         36
                                                54
Values
          Inertias
0.45692
          0.20877
                    123.593
                            89.37% **************
0.14909
         0.02223
                    13.158
                             9.51% ***
0.05097
         0.00260
                     1.538
                             1.11%
         0.23360
                    138.29 (Degrees of Freedom = 9)
                        Row Coordinates
                             Dim1
                                            Dim2
                                        -.088322
               Brown
                          -.492158
                                        -.082954
               Blue
                          0.547414
              Hazel
                          -.212597
                                        0.167391
               Green
                          0.161753
                                        0.339040
                       Column Coordinates
                                            Dim2
                             Dim1
               BLACK
                          -.504562
                                        -.214820
               BROWN
                          -.148253
                                        0.032666
                          -.129523
               RED
                                        0.319642
               BLOND
                                        -.069579
                          0.835348
```

41 / 56 42 / 56

Correspondence analysis Basic ideas

Correspondence analysis Basic ideas

Example: Hair and Eye Color

Output dataset(selected variables):

0bs	_TYPE_	EYE	DIM1	DIM2
1	INERTIA			
2	OBS	Brown	-0.49216	-0.08832
3	OBS	Blue	0.54741	-0.08295
4	OBS	Hazel	-0.21260	0.16739
5	OBS	Green	0.16175	0.33904
6	VAR	BLACK	-0.50456	-0.21482
7	VAR	BROWN	-0.14825	0.03267
8	VAR	RED	-0.12952	0.31964
9	VAR	BLOND	0.83535	-0.06958

Row and column points are distinguished by the _TYPE_ variable: OBS vs. VAR

Example: Hair and Eye Color

Graphic output from CORRESP macro:

Correspondence analysis CA in R Correspondence analysis Multi-way tables

CA in R: the ca

```
> HairEye <- margin.table(HairEyeColor, c(1, 2))
> library(ca)
> ca(HairEye)
```

 Principal inertias
 (eigenvalues):

 1
 2
 3

 Value
 0.208773
 0.022227
 0.002598

 Percentage
 89.37%
 9.52%
 1.11%

Plot the ca object:

> plot(ca(HairEye), main="Hair Color and Eye Color")

Hair Color and Eye Color Black Brown Hazel Green Green -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Multi-way tables

Correspondence analysis can be extended to *n*-way tables in several ways:

- Multiple correspondence analysis (MCA)
 - Extends CA to *n*-way tables
 - only uses bivariate associations
- Stacking approach
 - *n*-way table flattened to a 2-way table, combining several variables "interactively"
 - Each way of stacking corresponds to a loglinear model
 - ullet Ordinary CA of the flattened table o visualization of that model
 - Associations among stacked variables are not visualized
- Here, I only describe the stacking approach, and only with SAS
 - In SAS 9.3, the MCA option with PROC CORRESP provides some reasonable plots.
 - For R, see the ca- the mjca() function is much more general

45 / 56

47 / 56

Correspondence analysis

Multi-way tables

Correspondence analysis

Multi-way tables

46 / 56

Multi-way tables: Stacking

- Stacking approach: van der Heijden and de Leeuw (1985)—
 - three-way table, of size $I \times J \times K$ can be sliced and stacked as a two-way table, of size $(I \times J) \times K$

- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
 - $(I \times J) \times K \rightarrow [AB][C]$
 - $I \times (J \times K) \rightarrow [A][BC]$
 - $J \times (I \times K) \rightarrow [B][AC]$
- Only the associations in separate [] terms are analyzed and displayed

Multi-way tables: Stacking

 PROC CORRESP: Use TABLES statement and option CROSS=ROW or CROSS=COL. E.g., for model [A B] [C],

```
proc corresp cross=row;
  tables A B, C;
  weight count;
```

• CORRESP macro: Can use / instead of ,

```
%corresp(
   options=cross=row,
   tables=A B/ C,
   weight count);
```

Correspondence analysis Multi-way tables Correspondence analysis Multi-way tables

Example: Suicide Rates

Suicide rates in West Germany, by Age, Sex and Method of suicide

Sex	Age	POISON	GAS	HANG	DROWN	GUN	JUMP	
М	10-20	1160	335	1524	67	512	189	
M	25-35	2823	883	2751	213	852	366	
M	40-50	2465	625	3936	247	875	244	
M	55-65	1531	201	3581	207	477	273	
M	70-90	938	45	2948	212	229	268	
F	10-20	921	40	212	30	25	131	
F	25-35	1672	113	575	139	64	276	
F	40-50	2224	91	1481	354	52	327	
F	55-65	2283	45	2014	679	29	388	
F	70-90	1548	29	1355	501	3	383	

- CA of the [Age Sex] by [Method] table:
 - Shows associations between the Age-Sex combinations and Method
 - Ignores association between Age and Sex

Example: Suicide Rates

```
suicide5.sas ···
%include catdata(suicide);
    *-- equate axes!;
axis1 order=(-.7 \text{ to } .7 \text{ by } .7) length=6.5 \text{ in label}=(a=90 \text{ r=0});
axis2 order=(-.7 \text{ to } .7 \text{ by } .7) length=6.5 \text{ in};
%corresp(data=suicide, weight=count,
     tables=%str(age sex, method),
     options=cross=row short,
     vaxis=axis1, haxis=axis2);
```

Output:

```
Inertia and Chi-Square Decomposition
Singular Principal Chi-
          Inertias Squares Percents
Values
0.32138
         0.10328
                   5056.91
                           60.41%
0.23736
         0.05634
                   2758.41
                            32.95%
                                   ********
0.09378
         0.00879
                    430.55
                             5.14% **
                             1.02%
0.04171
         0.00174
                     85.17
                             0.48%
0.02867
         0.00082
                     40.24
                   8371.28 (Degrees of Freedom = 45)
         0.17098
```

49 / 56 50 / 56

Correspondence analysis Multi-way tables

Correspondence analysis Multi-way tables

CA Graph:

Looking forward— Loglinear models and mosaic displays:

51 / 56 52 / 56 Summary: Part 2 Summary: Part 2

53 / 56

Summary: Part 2

Fourfold displays

- Odds ratio: ratio of areas of diagonally opposite quadrants
- Confidence rings: visual test of $H_0: \theta = 1$
- ullet Shading: highlight strata for which $H_a: heta
 eq 1$

Sieve diagrams

- ullet Rows and columns \sim marginal frequencies o area \sim expected
- ullet Shading \sim observed frequencies
- Simple visualization of pattern of association
- SAS: sieveplot macro; R: sieve()

Agreement

- Cohen's κ : strength of agreement
- Agreement chart: visualize weighted & unweighted agreement, marginal homogeneity
- SAS: agreeplot macro; R: agreementplot()

Correspondence analysis

- Decompose χ^2 for association into 1 or more dimensions
- ullet \to scores for row/col categories
- CA plots: Interpretation of how the variables are related
- SAS: corresp macro; R: ca()

References I

- Bangdiwala, S. I. Using SAS software graphical procedures for the observer agreement chart. *Proceedings of the SAS User's Group International Conference*, 12:1083–1088, 1987.
- Bickel, P. J., Hammel, J. W., and O'Connell, J. W. Sex bias in graduate admissions: Data from Berkeley. *Science*, 187:398–403, 1975.
- Bowker, A. H. Bowker's test for symmetry. *Journal of the American Statistical Association*, 43:572–574, 1948.
- Friendly, M. Conceptual and visual models for categorical data. *The American Statistician*, 49:153–160, 1995.
- Friendly, M. Multidimensional arrays in SAS/IML. In *Proceedings of the SAS User's Group International Conference*, volume 25, pp. 1420–1427. SAS Institute, 2000.
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. *The American Statistician*, 56(4):316–324, 2002.
- Friendly, M. and Kwan, E. Effect ordering for data displays. *Computational Statistics and Data Analysis*, 43(4):509–539, 2003.

Summary: Part 2

54 / 56

Summary: Part 2

References II

- Hoaglin, D. C. and Tukey, J. W. Checking the shape of discrete distributions. In Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors, *Exploring Data Tables*, *Trends and Shapes*, chapter 9. John Wiley and Sons, New York, 1985.
- Koch, G. and Edwards, S. Clinical efficiency trials with categorical data. In Peace, K. E., editor, *Biopharmaceutical Statistics for Drug Development*, pp. 403–451. Marcel Dekker, New York, 1988.
- Landis, J. R. and Koch, G. G. The measurement of observer agreement for categorical data. *Biometrics*, 33:159–174., 1977.
- Mosteller, F. and Wallace, D. L. Applied Bayesian and Classical Inference: The Case of the Federalist Papers. Springer-Verlag, New York, NY, 1984.
- Ord, J. K. Graphical methods for a class of discrete distributions. *Journal of the Royal Statistical Society, Series A*, 130:232–238, 1967.
- Tufte, E. R. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, CT, 1983.
- Tukey, J. W. Some graphic and semigraphic displays. In Bancroft, T. A., editor, *Statistical Papers in Honor of George W. Snedecor*, pp. 292–316. lowa State University Press, Ames, IA, 1972.

References III

Tukey, J. W. Exploratory Data Analysis. Addison Wesley, Reading, MA, 1977.

van der Heijden, P. G. M. and de Leeuw, J. Correspondence analysis used complementary to loglinear analysis. *Psychometrika*, 50:429–447, 1985.

55 / 56 56 56 / 56