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Resources: Books 

2 

Hadley Wickham, ggplot2: Elegant graphics for data analysis, 2nd Ed. 
1st Ed: Online, http://ggplot2.org/book/  
ggplot2 Quick Reference: http://sape.inf.usi.ch/quick-reference/ggplot2/  
Complete ggplot2 documentation: http://docs.ggplot2.org/current/  

Winston Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data 
Cookbook format, covering common graphing tasks; the main focus is on ggplot2 
R code from book: http://www.cookbook-r.com/Graphs/  
Download from: http://ase.tufts.edu/bugs/guide/assets/R%20Graphics%20Cookbook.pdf  

Antony Unwin, Graphical Data Analysis with R 
R code: http://www.gradaanwr.net/  
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Resources: Cheat sheets 
• Data visualization with ggplot2: 

https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-
cheatsheet-2.1.pdf  

• Data transformation with dplyr: 
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-
transformation-cheatsheet.pdf  
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What is ggplot2? 

• ggplot2 is Hadley Wickham’s R package for 
producing “elegant graphics for data analysis” 
 It is an implementation of many of the ideas for graphics 

introduced in Lee Wilkinson’s Grammar of Graphics 
 These ideas and the syntax of ggplot2 help to think of 

graphs in a new and more general way 
 Produces pleasing plots, taking care of many of the fiddly 

details (legends, axes, colors, …) 
 It is built upon the “grid” graphics system 
 It is open software, with a large number of gg_ extensions. 

See: http://www.ggplot2-exts.org/gallery/  
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Follow along 
• From the course web page, click on the script gg-cars.R, 

http://www.datavis.ca/courses/RGraphics/R/gg-cars.R  
• Select all (ctrl+A) and copy (ctrl+C) to the clipboard 
• In R Studio, open a new R script file (ctrl+shift+N) 
• Paste the contents (ctrl+V) 
• Run the lines (ctrl+Enter) to along with me 

http://www.datavis.ca/courses/RGraphics/R/gg-cars.R


ggplot2 vs base graphics 
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Some things that should be simple 
are harder than you’d like in base 
graphics 
 
Here, I’m plotting gas mileage (mpg) 
vs. horsepower and want to use 
color and shape for different # of 
cylinders. 
 
But I don’t quite get it right! 

mtcars$cyl <- as.factor(mtcars$cyl) 
plot(mpg ~ hp , data=mtcars,  
       col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2) 
legend("topright", legend=levels(mtcars$cyl), 
              pch = c(4,6,8), 
              col=levels(mtcars$cyl)) 

colors and point symbols work 
differently in plot() and legend() 



ggplot2 vs base graphics 
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In ggplot2, just map the data variables 
to aesthetic attributes 
  aes(x, y, shape, color, size, …) 
 
ggplot() takes care of the rest 

library(ggplot2) 
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) + 
     geom_point(size=3) 

aes() mappings set in the call to 
ggplot() are passed to geom_point() 
here 



Grammar of Graphics 
• Every graph can be described as a combination of 

independent building blocks: 
 data: a data frame: quantitative, categorical; local or data base query 
 aesthetic mapping of variables into visual properties: size, color, x, y 
 geometric objects (“geom”): points, lines, areas, arrows, … 
 coordinate system (“coord”): Cartesian, log, polar, map,  
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ggplot2: data + geom -> graph 
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ggplot(data=mtcars,  
            aes(x=hp, y=mpg,  
                   color=cyl, shape=cyl)) + 
     geom_point(size=3) 

In this call, 
1. data=mtcars: data frame 
2. aes(x=hp, y=mpg):  plot variables 
3. aes(color, shape):  attributes 
4. geom_point(): what to plot 
• the coordinate system is taken to 

be the standard Cartesian (x,y) 

❶ 
❷ 
❸ 
❹ 



ggplot2: geoms 
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Wow! I can really see something there. 
 
How can I enhance this visualization? 
 
Easy:  add a geom_smooth() to fit linear 
regressions for each level of cyl 
 
More generally: think of adding new 
layers to make a plot more useful. 

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) + 
    geom_point(size=3) + 
    geom_smooth(method="lm", aes(fill=cyl))  



Grammar of Graphics 
• Other GoG building blocks: 
 statistical transformations (“stat”) -- data summaries: 

mean, sd, binning & counting, … 
 scales: legends, axes to allow reading data from a plot 

11 



Grammar of Graphics 
• Other GoG building blocks: 
 position adjustments: jitter, dodge, stack, … 
 faceting: small multiples or conditioning to break a plot 

into subsets. 
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ggplot2: GoG -> graphic language 
• The implementation of GoG ideas in ggplot2 for R 

created a more expressive language for data graphs 
 layers:  graph elements combined with “+” (read: “and”) 

 
 
 
 themes: change graphic elements consistently 
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ggplot(mtcars, aes(x=hp,  y=mpg)) + 
     geom_point(aes(color = cyl)) + 
     geom_smooth(method ="lm") + 



ggplot2: layers & aes() 
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ggplot(mtcars, aes(x=hp, y=mpg)) + 
    geom_point(size=3, aes(color=cyl, shape=cyl)) + 
    geom_smooth(method="lm", aes(color=cyl, fill=cyl)) + 
    geom_smooth(method="loess", color="black", se=FALSE) 

Aesthetic attributes in the ggplot() call are 
passed to geom_() layers 
 
Other attributes can be passed as 
constants (size=3, color=“black”) or 
with aes(color=, …) in different layers 
 
This plot adds an overall loess smooth to 
the previous plot 
Specifying color= overrides other layers 



ggplot2: themes 
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All the graphical attributes of ggplot2 are 
governed by themes – settings for all 
aspects of a plot 
 
A given plot can be rendered quite 
differently just by changing the theme 
 
If you haven’t saved the ggplot object, 
last_plot() gives you something to work 
with further 

 last_plot() + theme_bw() 



ggplot2: facets 
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plt <- 
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) + 
 geom_point(size=3) + 
 geom_smooth(method="lm", aes(fill=cyl))  
 
plt + facet_wrap(~cyl) 

Facets divide a plot into separate subplots based on one or more discrete variables 

Faceting is most useful with 
other variables, not used in 
the main plot 



labeling points: geom_text() 
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plt2 <- ggplot(mtcars, aes(x=wt, y=mpg)) + 
    geom_point(color = 'red', size=2) + 
    geom_smooth(method="loess") + 
    labs(y="Miles per gallon", x="Weight (1000 lbs.)") + 
    theme_classic(base_size = 16) 
 
plt2 + geom_text(aes(label = rownames(mtcars))) 

Sometimes it is useful to label 
points to show their identities. 
 
geom_text() usually gives messy, 
overlapping text 

Note the use of theme_classic() 
and better axis labels 



labeling points: geom_text_repel() 
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install.packages(“ggrepel”) 
library(ggrepel) 
plt2 +  
     geom_text_repel(aes(label = rownames(mtcars))) 

geom_text_repel() in the 
ggrepel package assigns 
repulsive forces among points 
and labels to assure no overlap 
 
Some lines are drawn to make 
the assignment clearer 



labeling points: selection 
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mod <- loess( mpg ~ wt, data=mtcars) 
resids <- residuals(mod) 
mtcars$label <- ifelse(abs(resids) > 2.5,  
                                       rownames(mtcars), "") 
 
plt2 + geom_text_repel(aes(label = mtcars$label))  

It is easy to label points selectively, using some criterion to assign labels to points 

Here, I:  
1. fit the smoothed loess curve,  
2. extract residuals, ri 
3. assign labels where |ri| > 2.5 
4. add the text layer 
 

❶ 
❷ 
❸ 
 
 
❹ 



ggplot2: coords 
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Coordinate systems, coord_*() functions,  handle conversion from geometric objects 
to what you see on a 2D plot.  
A pie chart is just a bar chart in polar coordinates! 

p <- ggplot(df, aes(x = "", y = value, fill = group)) + 
           geom_bar( stat = "identity") 

p + coord_polar("y", start = 0) 



Anatomy of a ggplot 
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Other details of ggplot 
concern scales 
You can control 
everything 



ggplot objects 

22 

Traditional R graphics just produce graphical output on a device 
However, ggplot() produces a “ggplot” object, a list of elements  

> names(plt) 
[1] "data"        "layers"      "scales"      "mapping"     "theme"       "coordinates" 
[7] "facet"       "plot_env"    "labels"      
> class(plt) 
[1] "gg"     "ggplot" 

What methods are available? 

> methods(class="gg") 
[1] + 
 
> methods(class="ggplot") 
[1] grid.draw     plot      print     summary   

This is what makes layers work with ‘+’ 

Normal methods for plot-type objects. 
summary() gives some useful info 



Playfair: Balance of trade charts 
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In the Commercial and Political Atlas, William Playfair used charts of imports and 
exports from England to its trading partners to ask “How are we doing”? 
 
Here is a re-creation of one example, using ggplot2.  How was it done? 

> data(EastIndiesTrade,package="GDAdata") 
> head(EastIndiesTrade) 
  Year Exports Imports 
1 1700     180     460 
2 1701     170     480 
3 1702     160     490 
4 1703     150     500 
5 1704     145     510 
6 1705     140     525 
    …         …       … 

ggplot thinking: 
• what are the elements of this graph? 
• how can I do them? 



ggplot thinking 
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I want to plot two time series, & fill the area between them 
 
• Start with a line plot of Exports vs. Year: geom_line() 
• Add a layer for the line plot of Imports vs. Year 

c1 <- 
ggplot(EastIndiesTrade, aes(x=Year, y=Exports)) +  
             ylim(0,2000) +  
             geom_line(colour="black", size=2) +  
             geom_line(aes(x=Year, y=Imports), colour="red", size=2)  

• Fill the area between the curves: geom_ribbon() 
• change the Y label 

c1 <- c1 + 
     geom_ribbon(aes(ymin=Exports, ymax=Imports), fill="pink") +  
     ylab("Exports and Imports")  



25 

c1 <- c1 +  
       annotate("text", x = 1710, y = 0, label = "Exports", size=4) + 
       annotate("text", x = 1770, y = 1620, label = "Imports", color="red", size=4) + 
       annotate("text", x = 1732, y = 1950, label = "Balance of Trade to the East Indies", color="black", size=5)              

This looks pretty good.   
Add some text labels using annotate() 

Finally, change the theme to b/w 

c1 <- c1 + theme_bw()  



Plot what you want to show 
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Playfair’s goal was to show the balance of trade with different countries. 
Why not plot Exports – Imports directly? 

c2 <-  
ggplot(EastIndiesTrade, aes(x=Year, y=Exports-Imports)) +  
     geom_line(colour="red", size=2) + 
      ylab("Balance = Exports - Imports") + 
      geom_ribbon(aes(ymin=Exports-Imports, ymax=0), fill="pink",alpha=0.5) +  
      annotate("text", x = 1710, y = -30, label = "Our Deficit", color="black", size=5) +              
      theme_bw() 

Questions: 
• what are the basic plot variables? 
• how did I make it shade above the 

curve? 



Composing several plots 
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ggplot objects use grid graphics for rendering 
The gridExtra package has functions for combining or manipulating grid-based graphs 

library(gridExtra) 
grid.arrange(c1, c2, nrow=1) 



Saving plots: ggsave() 
• If the plot is on the screen 

 ggsave(“path/filename.png”) 

• If you have a plot object 

 ggsave(myplot, file=“path/filename.png”) 

• Specify size: 

  ggsave(myplot, “path/filename.png”, width=6, height=4) 

• any plot format (pdf, png, eps, svg, jpg, …) 
 ggsave(myplot, file=“path/filename.jpg”) 
 ggsave(myplot, file=“path/filename.pdf”) 
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ggplot extensions 
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There are a large number of ggplot extensions.  See: http://www.ggplot2-exts.org/  

http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/


ggplot extensions: GGally 
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GGally contains a large number of functions that extend ggplot2 to multivariate data 

library(GGally) 
library(dplyr) 
library(ggplot2) 
library(gapminder) 
 
gapminder %>%  
    select(-country, -year) %>%  
    ggpairs(aes(color=continent)) 

ggpairs() produces generalized 
scatterplot matrices, with lots of options 



ggpubr 
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The ggpubr package provides some easy-to-use functions for creating and customizing 
publication ready plots. 

ggviolin(df, x = "dose", y = "len", fill = "dose", 
         palette = c("#00AFBB", "#E7B800", "#FC4E07"), 
         add = "boxplot", add.params = list(fill = "white"))  + 
  stat_compare_means(comparisons = my_comparisons, label = "p.signif") +   
  stat_compare_means(label.y = 50) 

see the examples at 
http://www.sthda.com/english/rpkgs/ggpubr/  

http://www.sthda.com/english/rpkgs/ggpubr/


ggthemes 
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+ theme_tufte()  

+ theme_economist()  

+ theme_fivethirtyeight()  

install.packages('ggthemes', dependencies = TRUE) 

ggthemes provides a large number of extra 
geoms, scales, and themes for ggplot 



Tables in R 
• Not a ggplot topic, but it is useful to know that you can also 

produce beautiful tables in R 
• There are many packages for this: See the CRAN Task View on 

Reproducible Research, https://cran.r-
project.org/web/views/ReproducibleResearch.html  
 xtable: Exports tables to LaTeX or HTML, with lots of control 
 stargazer: Well-formatted model summary tables, side-by-side 
 apaStyle: Generate APA Tables for MS Word 

• Every time you cut & paste …  
 … God kills a kitten 
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Tables in R: xtable 
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Just a few examples, stolen from xtable: vignette(“xtableGallery.pdf”) 

Too many decimals are 
used here, but you can 
control all that 



A larger view: Data science 
• Data science treats statistics & data visualization as parts of a larger 

process 
 Data import: text files, data bases, web scraping, … 
 Data cleaning → “tidy data” 
 Model building & visualization 
 Reproducible report writing 
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The tidyverse of R packages 
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Tidy tools: overview 
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Reshape data to be tidy Manipulate & summarize tidy data 

gather() 

spread() 

Visualize me! 

filter() 
select() %>% 



Data wrangling with dplyr & tidyr 

39 

What is Tidy Data? 
A dataset is said to be tidy if:  
• observations are in rows 
• variables are in columns 
• each value is in its own cell. 
 

A “messy” dataset: Survey of income by religion from Pew Research 
• Values of income are in separate columns 
• Column headers are values, not variable names 
• Cell values are frequencies--- implicit, not explicit 

This organization is 
easy in Excel 
But, this makes data 
analysis and graphing 
hard 



Tidying: reshaping wide to long 
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> pew <- read.delim( 
  file = "http://stat405.had.co.nz/data/pew.txt", 
  header = TRUE, 
  stringsAsFactors = FALSE, check.names = FALSE) 
 
> (pew1 <- pew[1:4, 1:6])  # small subset  
 
  religion <$10k $10-20k $20-30k $30-40k $40-50k 
1 Agnostic    27      34      60      81      76 
2  Atheist    12      27      37      52      35 
3 Buddhist    27      21      30      34      33 
4 Catholic   418     617     732     670     638 

>library(tidyr) 
> gather(pew1, "income", "frequency", 2:6) 
   religion  income frequency 
1  Agnostic   <$10k        27 
2   Atheist   <$10k        12 
3  Buddhist   <$10k        27 
4  Catholic   <$10k       418 
5  Agnostic $10-20k        34 
6   Atheist $10-20k        27 
7  Buddhist $10-20k        21 
8  Catholic $10-20k       617 
9  Agnostic $20-30k        60 
10  Atheist $20-30k        37 
11 Buddhist $20-30k        30 
12 Catholic $20-30k       732 
13 Agnostic $30-40k        81 
14  Atheist $30-40k        52 
15 Buddhist $30-40k        34 
16 Catholic $30-40k       670 
…  …        …             … 

We can tidy the data by reshaping from wide to long format using tidyr::gather() 

Another solution, using reshape2::melt() 

> library(reshape2) 
> pew_tidy <- melt( 
    data = pew1, 
    id = "religion", 
    variable.name = "income", 
    value.name = "frequency" 
) 

key value columns 

NB: income is a character variable; we might want 
to create an ordered factor or numeric version 



Using pipes: %>% 
• R is a functional language 

 This means that f(x) returns a value, as in y <- f(x) 
 That value can be passed to another function: g(f(x)) 
 And so on: h(g(f(x))) 

 
 

 
 

 This gets messy and hard to read, unless you break it down step by step 
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> x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142) 
> exp(diff(log(x))) 
[1] 3.29 1.75 1.58 0.52 0.28 

> # Compute the logarithm of `x`, calculate lagged differences,  
> # return the exponential function of the result 
> log(x) 
[1] -2.216 -1.024 -0.462 -0.004 -0.664 -1.952 
> diff(log(x)) 
[1]  1.19  0.56  0.46 -0.66 -1.29 
> exp(diff(log(x))) 
[1] 3.29 1.75 1.58 0.52 0.28 



Using pipes: %>% 
• Pipes (%>%) change the syntax to make this easier 
 
 
• Basic rules 
 x %>% f() passes object on left hand side as first argument (or . 

argument) of function on right hand side 
• x %>% f() is the same as f(x) 
• x %>% f(y) is the same as f(x, y) 
• y %>% f(x, ., z) is the same as f(x, y, z) 

 x %<>% f()does the same, but assigns the result to x 
• Shortcut for x <- x %>% f() 
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> # use pipes 
> x %>% log() %>% diff() %>% exp() 
[1] 3.29 1.75 1.58 0.52 0.28 



dplyr: Subset observations (rows) 
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dplyr implements a variety of verbs to select a subset of observations from a dataset 

In a pipe expression, omit the 
dataset name 

iris %>% filter(Sepal.Length >7) 
iris %>% filter(Species==“setosa”) 
 
iris %>% sample_n(10) 
iris %>% slice(1:50)   # setosa 



dplyr: Subset variables (columns) 
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Many helper functions in dplyr allow selection by a function of variable names: 



Faceting & tidy data 
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Here is a complex graph, showing 
distributions of solar radiation from 
NASA, by months of the year and latitude 
 
This is complicated, because the data 
structure is untidy--- months were in 
separate variables (wide format) 

> str(nasa) 
'data.frame':   64800 obs. of  15 variables: 
 $ Lat: int  -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ... 
 $ Lon: int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ... 
 $ Jan: num  9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 ... 
 $ Feb: num  5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ... 
 $ Mar: num  0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ... 
 $ Apr: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ May: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ Jun: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ Jul: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ Aug: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ Sep: num  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ... 
 $ Oct: num  3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 ... 
 $ Nov: num  8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ... 
 $ Dec: num  11 11 11 11 11 ... 
 $ Ann: num  3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 ... 

Each distribution is shown as a violin plot, 
a mirrored density plot 



tidying the data 
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In wide format, using lattice, I had to construct a plot formula to plot those columns 

> x <- paste(names(nasa)[3:14], collapse='+') 
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep=''))) 
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov +  
    Dec ~ cut(Lat, pretty(Lat, 20)) 

It is much easier to reshape the data to long format, so solar is all in one column 

library(tidyr) 
library(dplyr) 
library(ggplot2) 
 
nasa_long <- nasa %>% 
    select(-Ann) %>% 
    gather(month, solar, Jan:Dec, factor_key=TRUE) %>% 
    filter( abs(Lat) < 60 ) %>% 
    mutate( Lat_f = cut(Lat, pretty(Lat, 12))) 

%>% “pipes” data to the next 
stage 
 
select() extracts or drops 
columns 
gather() collapses columns into 
key-value pairs 
filter() subsets observations 
mutate() creates new variables 

Ugh! 



tidying the data 
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> str(nasa_long) 
'data.frame':   514080 obs. of  5 variables: 
 $ Lat  : int  -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 ... 
 $ Lon  : int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ... 
 $ month: Factor w/ 12 levels "Jan","Feb","Mar",..: 1 1 1 1 1 1 1 1 1 1 ... 
 $ solar: num  5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ... 
 $ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",..: 1 1 1 1 1 1 1 1 1 1 ... 
 
> head(nasa_long) 
  Lat  Lon month solar     Lat_f 
1 -59 -180   Jan  5.19 (-60,-50] 
2 -59 -179   Jan  5.19 (-60,-50] 
3 -59 -178   Jan  5.25 (-60,-50] 
4 -59 -177   Jan  5.25 (-60,-50] 
5 -59 -176   Jan  5.17 (-60,-50] 
6 -59 -175   Jan  5.17 (-60,-50] 
 

solar is now the single 
response variable 
 
For ease of plotting, I 
created a factor version of 
Lat with 12 levels 

The data are now in a form 
where I can plot solar against Lat 
or Lat_f and facet by month 



ggplot(nasa_long, aes(x=Lat_f, y=solar)) + 
    geom_violin(fill="pink") +  
    facet_wrap(~ month) + 
    theme_bw() + 
    theme(axis.text.x =  
              element_text(angle = 70,  
                                      hjust = 1)) 

plotting the tidy data 
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Using geom_violin() shows the shapes of the distributions for levels of Lat_f 

I had to adjust the x-axis labels for 
Lat_f to avoid overplotting 

facet_wrap(~month) does the right thing 



plotting the tidy data: smoothing 
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ggplot(nasa_long, aes(x=Lat, y=solar)) + 
    geom_smooth(color="blue" ) + 
    facet_wrap(~ month) + 
    theme_bw() 

Here I treat Lat as quantitative 
geom_smooth() uses method = 
“gam” here because of large n 
 
The variation in the smoothed 
trends over the year suggest 
quite lawful behavior 
 
 
 



build a model 
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library(mgcv) 
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long) 
summary(nasa.gam) 

Family: gaussian  
Link function: identity  
 
Formula: 
solar ~ Lon + month + s(Lat) 
 
Parametric coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.691e+00  6.833e-03 686.409  < 2e-16 *** 
Lon         -1.713e-04  1.898e-05  -9.022  < 2e-16 *** 
monthFeb     1.195e-01  9.664e-03  12.364  < 2e-16 *** 
  …            … 
monthDec    -8.046e-02  9.664e-03  -8.326  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
         edf Ref.df     F p-value     
s(Lat) 8.997      9 37285  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.398   Deviance explained = 39.8% 
GCV = 2.0006  Scale est. = 2.0005    n = 514080 

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat) 

The violin plots suggest that variance is not 
constant. I’m ignoring this here by using the 
default gaussian model.  (Good first start) 
 
Model terms: 
• Lon wasn’t included before 
• month is a factor, for the plots 
• s(Lat) fits a smoothed term in latitude, 

averaged over other factors 
 
There are other model choices, but it is 
useful to visualize what we have done so far 
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Effect plots show the fitted relationship between the response and model terms, 
averaged over other predictors. 
The mgcv package has its own versions of these. 

plot(nasa.gam, cex.lab=1.25) 
termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25) 
termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25) 

why the dip at the equator? effect of longitude is very 
small, but maybe 
interpretable 

month should be modeled 
as a time variable 



Summary 
• ggplot2 provides a new way of thinking about graphs 
 aes() – mapping data variables to visual properties 
 geom_() – drawing geometric objects (points, lines, …) 
 coord_() – transform coordinate systems 
 layers – add stuff to an existing plot with ‘+’ 
 themes – change the entire look of a graph 

• tidyr & dplyr provide a new way of thinking about 
data analysis 

• R Studio tools provide a way to organize your work, 
do analysis, and publish --- reproducible! 
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