
Data Visualization in R
4. ggplot2

Michael Friendly
SCS Short Course

Sep/Oct, 2018

http://www.datavis.ca/courses/RGraphics/

http://www.datavis.ca/courses/RGraphics/

Resources: Books

2

Hadley Wickham, ggplot2: Elegant graphics for data analysis, 2nd Ed.
1st Ed: Online, http://ggplot2.org/book/
ggplot2 Quick Reference: http://sape.inf.usi.ch/quick-reference/ggplot2/
Complete ggplot2 documentation: http://docs.ggplot2.org/current/

Winston Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data
Cookbook format, covering common graphing tasks; the main focus is on ggplot2
R code from book: http://www.cookbook-r.com/Graphs/
Download from: http://ase.tufts.edu/bugs/guide/assets/R%20Graphics%20Cookbook.pdf

Antony Unwin, Graphical Data Analysis with R
R code: http://www.gradaanwr.net/

http://ggplot2.org/book/
http://sape.inf.usi.ch/quick-reference/ggplot2/
http://docs.ggplot2.org/current/
http://www.cookbook-r.com/Graphs/
http://www.cookbook-r.com/Graphs/
http://www.cookbook-r.com/Graphs/
http://www.cookbook-r.com/Graphs/
http://ase.tufts.edu/bugs/guide/assets/R Graphics Cookbook.pdf
http://ase.tufts.edu/bugs/guide/assets/R Graphics Cookbook.pdf
http://www.gradaanwr.net/
http://www.gradaanwr.net/
http://www.gradaanwr.net/

Resources: Cheat sheets
• Data visualization with ggplot2:

https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-
cheatsheet-2.1.pdf

• Data transformation with dplyr:
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-
transformation-cheatsheet.pdf

3

https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf

What is ggplot2?

• ggplot2 is Hadley Wickham’s R package for
producing “elegant graphics for data analysis”
 It is an implementation of many of the ideas for graphics

introduced in Lee Wilkinson’s Grammar of Graphics
 These ideas and the syntax of ggplot2 help to think of

graphs in a new and more general way
 Produces pleasing plots, taking care of many of the fiddly

details (legends, axes, colors, …)
 It is built upon the “grid” graphics system
 It is open software, with a large number of gg_ extensions.

See: http://www.ggplot2-exts.org/gallery/

4

http://www.ggplot2-exts.org/gallery/

Follow along
• From the course web page, click on the script gg-cars.R,

http://www.datavis.ca/courses/RGraphics/R/gg-cars.R
• Select all (ctrl+A) and copy (ctrl+C) to the clipboard
• In R Studio, open a new R script file (ctrl+shift+N)
• Paste the contents (ctrl+V)
• Run the lines (ctrl+Enter) to along with me

http://www.datavis.ca/courses/RGraphics/R/gg-cars.R

ggplot2 vs base graphics

6

Some things that should be simple
are harder than you’d like in base
graphics

Here, I’m plotting gas mileage (mpg)
vs. horsepower and want to use
color and shape for different # of
cylinders.

But I don’t quite get it right!

mtcars$cyl <- as.factor(mtcars$cyl)
plot(mpg ~ hp , data=mtcars,
 col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2)
legend("topright", legend=levels(mtcars$cyl),
 pch = c(4,6,8),
 col=levels(mtcars$cyl))

colors and point symbols work
differently in plot() and legend()

ggplot2 vs base graphics

7

In ggplot2, just map the data variables
to aesthetic attributes
 aes(x, y, shape, color, size, …)

ggplot() takes care of the rest

library(ggplot2)
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3)

aes() mappings set in the call to
ggplot() are passed to geom_point()
here

Grammar of Graphics
• Every graph can be described as a combination of

independent building blocks:
 data: a data frame: quantitative, categorical; local or data base query
 aesthetic mapping of variables into visual properties: size, color, x, y
 geometric objects (“geom”): points, lines, areas, arrows, …
 coordinate system (“coord”): Cartesian, log, polar, map,

8

ggplot2: data + geom -> graph

9

ggplot(data=mtcars,
 aes(x=hp, y=mpg,
 color=cyl, shape=cyl)) +
 geom_point(size=3)

In this call,
1. data=mtcars: data frame
2. aes(x=hp, y=mpg): plot variables
3. aes(color, shape): attributes
4. geom_point(): what to plot
• the coordinate system is taken to

be the standard Cartesian (x,y)

❶
❷
❸
❹

ggplot2: geoms

10

Wow! I can really see something there.

How can I enhance this visualization?

Easy: add a geom_smooth() to fit linear
regressions for each level of cyl

More generally: think of adding new
layers to make a plot more useful.

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3) +
 geom_smooth(method="lm", aes(fill=cyl))

Grammar of Graphics
• Other GoG building blocks:
 statistical transformations (“stat”) -- data summaries:

mean, sd, binning & counting, …
 scales: legends, axes to allow reading data from a plot

11

Grammar of Graphics
• Other GoG building blocks:
 position adjustments: jitter, dodge, stack, …
 faceting: small multiples or conditioning to break a plot

into subsets.

12

ggplot2: GoG -> graphic language
• The implementation of GoG ideas in ggplot2 for R

created a more expressive language for data graphs
 layers: graph elements combined with “+” (read: “and”)

 themes: change graphic elements consistently

13

ggplot(mtcars, aes(x=hp, y=mpg)) +
 geom_point(aes(color = cyl)) +
 geom_smooth(method ="lm") +

ggplot2: layers & aes()

14

ggplot(mtcars, aes(x=hp, y=mpg)) +
 geom_point(size=3, aes(color=cyl, shape=cyl)) +
 geom_smooth(method="lm", aes(color=cyl, fill=cyl)) +
 geom_smooth(method="loess", color="black", se=FALSE)

Aesthetic attributes in the ggplot() call are
passed to geom_() layers

Other attributes can be passed as
constants (size=3, color=“black”) or
with aes(color=, …) in different layers

This plot adds an overall loess smooth to
the previous plot
Specifying color= overrides other layers

ggplot2: themes

15

All the graphical attributes of ggplot2 are
governed by themes – settings for all
aspects of a plot

A given plot can be rendered quite
differently just by changing the theme

If you haven’t saved the ggplot object,
last_plot() gives you something to work
with further

 last_plot() + theme_bw()

ggplot2: facets

16

plt <-
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3) +
 geom_smooth(method="lm", aes(fill=cyl))

plt + facet_wrap(~cyl)

Facets divide a plot into separate subplots based on one or more discrete variables

Faceting is most useful with
other variables, not used in
the main plot

labeling points: geom_text()

17

plt2 <- ggplot(mtcars, aes(x=wt, y=mpg)) +
 geom_point(color = 'red', size=2) +
 geom_smooth(method="loess") +
 labs(y="Miles per gallon", x="Weight (1000 lbs.)") +
 theme_classic(base_size = 16)

plt2 + geom_text(aes(label = rownames(mtcars)))

Sometimes it is useful to label
points to show their identities.

geom_text() usually gives messy,
overlapping text

Note the use of theme_classic()
and better axis labels

labeling points: geom_text_repel()

18

install.packages(“ggrepel”)
library(ggrepel)
plt2 +
 geom_text_repel(aes(label = rownames(mtcars)))

geom_text_repel() in the
ggrepel package assigns
repulsive forces among points
and labels to assure no overlap

Some lines are drawn to make
the assignment clearer

labeling points: selection

19

mod <- loess(mpg ~ wt, data=mtcars)
resids <- residuals(mod)
mtcars$label <- ifelse(abs(resids) > 2.5,
 rownames(mtcars), "")

plt2 + geom_text_repel(aes(label = mtcars$label))

It is easy to label points selectively, using some criterion to assign labels to points

Here, I:
1. fit the smoothed loess curve,
2. extract residuals, ri
3. assign labels where |ri| > 2.5
4. add the text layer

❶
❷
❸

❹

ggplot2: coords

20

Coordinate systems, coord_*() functions, handle conversion from geometric objects
to what you see on a 2D plot.
A pie chart is just a bar chart in polar coordinates!

p <- ggplot(df, aes(x = "", y = value, fill = group)) +
 geom_bar(stat = "identity")

p + coord_polar("y", start = 0)

Anatomy of a ggplot

21

Other details of ggplot
concern scales
You can control
everything

ggplot objects

22

Traditional R graphics just produce graphical output on a device
However, ggplot() produces a “ggplot” object, a list of elements

> names(plt)
[1] "data" "layers" "scales" "mapping" "theme" "coordinates"
[7] "facet" "plot_env" "labels"
> class(plt)
[1] "gg" "ggplot"

What methods are available?

> methods(class="gg")
[1] +

> methods(class="ggplot")
[1] grid.draw plot print summary

This is what makes layers work with ‘+’

Normal methods for plot-type objects.
summary() gives some useful info

Playfair: Balance of trade charts

23

In the Commercial and Political Atlas, William Playfair used charts of imports and
exports from England to its trading partners to ask “How are we doing”?

Here is a re-creation of one example, using ggplot2. How was it done?

> data(EastIndiesTrade,package="GDAdata")
> head(EastIndiesTrade)
 Year Exports Imports
1 1700 180 460
2 1701 170 480
3 1702 160 490
4 1703 150 500
5 1704 145 510
6 1705 140 525
 … … …

ggplot thinking:
• what are the elements of this graph?
• how can I do them?

ggplot thinking

24

I want to plot two time series, & fill the area between them

• Start with a line plot of Exports vs. Year: geom_line()
• Add a layer for the line plot of Imports vs. Year

c1 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports)) +
 ylim(0,2000) +
 geom_line(colour="black", size=2) +
 geom_line(aes(x=Year, y=Imports), colour="red", size=2)

• Fill the area between the curves: geom_ribbon()
• change the Y label

c1 <- c1 +
 geom_ribbon(aes(ymin=Exports, ymax=Imports), fill="pink") +
 ylab("Exports and Imports")

25

c1 <- c1 +
 annotate("text", x = 1710, y = 0, label = "Exports", size=4) +
 annotate("text", x = 1770, y = 1620, label = "Imports", color="red", size=4) +
 annotate("text", x = 1732, y = 1950, label = "Balance of Trade to the East Indies", color="black", size=5)

This looks pretty good.
Add some text labels using annotate()

Finally, change the theme to b/w

c1 <- c1 + theme_bw()

Plot what you want to show

26

Playfair’s goal was to show the balance of trade with different countries.
Why not plot Exports – Imports directly?

c2 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports-Imports)) +
 geom_line(colour="red", size=2) +
 ylab("Balance = Exports - Imports") +
 geom_ribbon(aes(ymin=Exports-Imports, ymax=0), fill="pink",alpha=0.5) +
 annotate("text", x = 1710, y = -30, label = "Our Deficit", color="black", size=5) +
 theme_bw()

Questions:
• what are the basic plot variables?
• how did I make it shade above the

curve?

Composing several plots

27

ggplot objects use grid graphics for rendering
The gridExtra package has functions for combining or manipulating grid-based graphs

library(gridExtra)
grid.arrange(c1, c2, nrow=1)

Saving plots: ggsave()
• If the plot is on the screen

 ggsave(“path/filename.png”)

• If you have a plot object

 ggsave(myplot, file=“path/filename.png”)

• Specify size:

 ggsave(myplot, “path/filename.png”, width=6, height=4)

• any plot format (pdf, png, eps, svg, jpg, …)
 ggsave(myplot, file=“path/filename.jpg”)
 ggsave(myplot, file=“path/filename.pdf”)

28

ggplot extensions

29

There are a large number of ggplot extensions. See: http://www.ggplot2-exts.org/

http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/
http://www.ggplot2-exts.org/

ggplot extensions: GGally

30

GGally contains a large number of functions that extend ggplot2 to multivariate data

library(GGally)
library(dplyr)
library(ggplot2)
library(gapminder)

gapminder %>%
 select(-country, -year) %>%
 ggpairs(aes(color=continent))

ggpairs() produces generalized
scatterplot matrices, with lots of options

ggpubr

31

The ggpubr package provides some easy-to-use functions for creating and customizing
publication ready plots.

ggviolin(df, x = "dose", y = "len", fill = "dose",
 palette = c("#00AFBB", "#E7B800", "#FC4E07"),
 add = "boxplot", add.params = list(fill = "white")) +
 stat_compare_means(comparisons = my_comparisons, label = "p.signif") +
 stat_compare_means(label.y = 50)

see the examples at
http://www.sthda.com/english/rpkgs/ggpubr/

http://www.sthda.com/english/rpkgs/ggpubr/

ggthemes

33

+ theme_tufte()

+ theme_economist()

+ theme_fivethirtyeight()

install.packages('ggthemes', dependencies = TRUE)

ggthemes provides a large number of extra
geoms, scales, and themes for ggplot

Tables in R
• Not a ggplot topic, but it is useful to know that you can also

produce beautiful tables in R
• There are many packages for this: See the CRAN Task View on

Reproducible Research, https://cran.r-
project.org/web/views/ReproducibleResearch.html
 xtable: Exports tables to LaTeX or HTML, with lots of control
 stargazer: Well-formatted model summary tables, side-by-side
 apaStyle: Generate APA Tables for MS Word

• Every time you cut & paste …
 … God kills a kitten

34

https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/ReproducibleResearch.html

Tables in R: xtable

35

Just a few examples, stolen from xtable: vignette(“xtableGallery.pdf”)

Too many decimals are
used here, but you can
control all that

A larger view: Data science
• Data science treats statistics & data visualization as parts of a larger

process
 Data import: text files, data bases, web scraping, …
 Data cleaning → “tidy data”
 Model building & visualization
 Reproducible report writing

36

The tidyverse of R packages

37

Tidy tools: overview

38

Reshape data to be tidy Manipulate & summarize tidy data

gather()

spread()

Visualize me!

filter()
select() %>%

Data wrangling with dplyr & tidyr

39

What is Tidy Data?
A dataset is said to be tidy if:
• observations are in rows
• variables are in columns
• each value is in its own cell.

A “messy” dataset: Survey of income by religion from Pew Research
• Values of income are in separate columns
• Column headers are values, not variable names
• Cell values are frequencies--- implicit, not explicit

This organization is
easy in Excel
But, this makes data
analysis and graphing
hard

Tidying: reshaping wide to long

40

> pew <- read.delim(
 file = "http://stat405.had.co.nz/data/pew.txt",
 header = TRUE,
 stringsAsFactors = FALSE, check.names = FALSE)

> (pew1 <- pew[1:4, 1:6]) # small subset

 religion <$10k $10-20k $20-30k $30-40k $40-50k
1 Agnostic 27 34 60 81 76
2 Atheist 12 27 37 52 35
3 Buddhist 27 21 30 34 33
4 Catholic 418 617 732 670 638

>library(tidyr)
> gather(pew1, "income", "frequency", 2:6)
 religion income frequency
1 Agnostic <$10k 27
2 Atheist <$10k 12
3 Buddhist <$10k 27
4 Catholic <$10k 418
5 Agnostic $10-20k 34
6 Atheist $10-20k 27
7 Buddhist $10-20k 21
8 Catholic $10-20k 617
9 Agnostic $20-30k 60
10 Atheist $20-30k 37
11 Buddhist $20-30k 30
12 Catholic $20-30k 732
13 Agnostic $30-40k 81
14 Atheist $30-40k 52
15 Buddhist $30-40k 34
16 Catholic $30-40k 670
… … … …

We can tidy the data by reshaping from wide to long format using tidyr::gather()

Another solution, using reshape2::melt()

> library(reshape2)
> pew_tidy <- melt(
 data = pew1,
 id = "religion",
 variable.name = "income",
 value.name = "frequency"
)

key value columns

NB: income is a character variable; we might want
to create an ordered factor or numeric version

Using pipes: %>%
• R is a functional language

 This means that f(x) returns a value, as in y <- f(x)
 That value can be passed to another function: g(f(x))
 And so on: h(g(f(x)))

 This gets messy and hard to read, unless you break it down step by step

41

> x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142)
> exp(diff(log(x)))
[1] 3.29 1.75 1.58 0.52 0.28

> # Compute the logarithm of `x`, calculate lagged differences,
> # return the exponential function of the result
> log(x)
[1] -2.216 -1.024 -0.462 -0.004 -0.664 -1.952
> diff(log(x))
[1] 1.19 0.56 0.46 -0.66 -1.29
> exp(diff(log(x)))
[1] 3.29 1.75 1.58 0.52 0.28

Using pipes: %>%
• Pipes (%>%) change the syntax to make this easier

• Basic rules
 x %>% f() passes object on left hand side as first argument (or .

argument) of function on right hand side
• x %>% f() is the same as f(x)
• x %>% f(y) is the same as f(x, y)
• y %>% f(x, ., z) is the same as f(x, y, z)

 x %<>% f()does the same, but assigns the result to x
• Shortcut for x <- x %>% f()

42

> # use pipes
> x %>% log() %>% diff() %>% exp()
[1] 3.29 1.75 1.58 0.52 0.28

dplyr: Subset observations (rows)

43

dplyr implements a variety of verbs to select a subset of observations from a dataset

In a pipe expression, omit the
dataset name

iris %>% filter(Sepal.Length >7)
iris %>% filter(Species==“setosa”)

iris %>% sample_n(10)
iris %>% slice(1:50) # setosa

dplyr: Subset variables (columns)

44

Many helper functions in dplyr allow selection by a function of variable names:

Faceting & tidy data

45

Here is a complex graph, showing
distributions of solar radiation from
NASA, by months of the year and latitude

This is complicated, because the data
structure is untidy--- months were in
separate variables (wide format)

> str(nasa)
'data.frame': 64800 obs. of 15 variables:
 $ Lat: int -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
 $ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
 $ Jan: num 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 ...
 $ Feb: num 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
 $ Mar: num 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
 $ Apr: num 0 0 0 0 0 0 0 0 0 0 ...
 $ May: num 0 0 0 0 0 0 0 0 0 0 ...
 $ Jun: num 0 0 0 0 0 0 0 0 0 0 ...
 $ Jul: num 0 0 0 0 0 0 0 0 0 0 ...
 $ Aug: num 0 0 0 0 0 0 0 0 0 0 ...
 $ Sep: num 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
 $ Oct: num 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 ...
 $ Nov: num 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
 $ Dec: num 11 11 11 11 11 ...
 $ Ann: num 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 ...

Each distribution is shown as a violin plot,
a mirrored density plot

tidying the data

46

In wide format, using lattice, I had to construct a plot formula to plot those columns

> x <- paste(names(nasa)[3:14], collapse='+')
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep='')))
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov +
 Dec ~ cut(Lat, pretty(Lat, 20))

It is much easier to reshape the data to long format, so solar is all in one column

library(tidyr)
library(dplyr)
library(ggplot2)

nasa_long <- nasa %>%
 select(-Ann) %>%
 gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
 filter(abs(Lat) < 60) %>%
 mutate(Lat_f = cut(Lat, pretty(Lat, 12)))

%>% “pipes” data to the next
stage

select() extracts or drops
columns
gather() collapses columns into
key-value pairs
filter() subsets observations
mutate() creates new variables

Ugh!

tidying the data

47

> str(nasa_long)
'data.frame': 514080 obs. of 5 variables:
 $ Lat : int -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 ...
 $ Lon : int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
 $ month: Factor w/ 12 levels "Jan","Feb","Mar",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ solar: num 5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ...
 $ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",..: 1 1 1 1 1 1 1 1 1 1 ...

> head(nasa_long)
 Lat Lon month solar Lat_f
1 -59 -180 Jan 5.19 (-60,-50]
2 -59 -179 Jan 5.19 (-60,-50]
3 -59 -178 Jan 5.25 (-60,-50]
4 -59 -177 Jan 5.25 (-60,-50]
5 -59 -176 Jan 5.17 (-60,-50]
6 -59 -175 Jan 5.17 (-60,-50]

solar is now the single
response variable

For ease of plotting, I
created a factor version of
Lat with 12 levels

The data are now in a form
where I can plot solar against Lat
or Lat_f and facet by month

ggplot(nasa_long, aes(x=Lat_f, y=solar)) +
 geom_violin(fill="pink") +
 facet_wrap(~ month) +
 theme_bw() +
 theme(axis.text.x =
 element_text(angle = 70,
 hjust = 1))

plotting the tidy data

48

Using geom_violin() shows the shapes of the distributions for levels of Lat_f

I had to adjust the x-axis labels for
Lat_f to avoid overplotting

facet_wrap(~month) does the right thing

plotting the tidy data: smoothing

49

ggplot(nasa_long, aes(x=Lat, y=solar)) +
 geom_smooth(color="blue") +
 facet_wrap(~ month) +
 theme_bw()

Here I treat Lat as quantitative
geom_smooth() uses method =
“gam” here because of large n

The variation in the smoothed
trends over the year suggest
quite lawful behavior

build a model

50

library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)

Family: gaussian
Link function: identity

Formula:
solar ~ Lon + month + s(Lat)

Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.691e+00 6.833e-03 686.409 < 2e-16 ***
Lon -1.713e-04 1.898e-05 -9.022 < 2e-16 ***
monthFeb 1.195e-01 9.664e-03 12.364 < 2e-16 ***
 … …
monthDec -8.046e-02 9.664e-03 -8.326 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df F p-value
s(Lat) 8.997 9 37285 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.398 Deviance explained = 39.8%
GCV = 2.0006 Scale est. = 2.0005 n = 514080

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat)

The violin plots suggest that variance is not
constant. I’m ignoring this here by using the
default gaussian model. (Good first start)

Model terms:
• Lon wasn’t included before
• month is a factor, for the plots
• s(Lat) fits a smoothed term in latitude,

averaged over other factors

There are other model choices, but it is
useful to visualize what we have done so far

visualize the model

51

Effect plots show the fitted relationship between the response and model terms,
averaged over other predictors.
The mgcv package has its own versions of these.

plot(nasa.gam, cex.lab=1.25)
termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)
termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)

why the dip at the equator? effect of longitude is very
small, but maybe
interpretable

month should be modeled
as a time variable

Summary
• ggplot2 provides a new way of thinking about graphs
 aes() – mapping data variables to visual properties
 geom_() – drawing geometric objects (points, lines, …)
 coord_() – transform coordinate systems
 layers – add stuff to an existing plot with ‘+’
 themes – change the entire look of a graph

• tidyr & dplyr provide a new way of thinking about
data analysis

• R Studio tools provide a way to organize your work,
do analysis, and publish --- reproducible!

	Data Visualization in R�4. ggplot2
	Resources: Books
	Resources: Cheat sheets
	What is ggplot2?
	Follow along
	ggplot2 vs base graphics
	ggplot2 vs base graphics
	Grammar of Graphics
	ggplot2: data + geom -> graph
	ggplot2: geoms
	Grammar of Graphics
	Grammar of Graphics
	ggplot2: GoG -> graphic language
	ggplot2: layers & aes()
	ggplot2: themes
	ggplot2: facets
	labeling points: geom_text()
	labeling points: geom_text_repel()
	labeling points: selection
	ggplot2: coords
	Anatomy of a ggplot
	ggplot objects
	Playfair: Balance of trade charts
	ggplot thinking
	Slide Number 25
	Plot what you want to show
	Composing several plots
	Saving plots: ggsave()
	ggplot extensions
	ggplot extensions: GGally
	ggpubr
	ggthemes
	Tables in R
	Tables in R: xtable
	A larger view: Data science
	The tidyverse of R packages
	Tidy tools: overview
	Data wrangling with dplyr & tidyr
	Tidying: reshaping wide to long
	Using pipes: %>%
	Using pipes: %>%
	dplyr: Subset observations (rows)
	dplyr: Subset variables (columns)
	Faceting & tidy data
	tidying the data
	tidying the data
	plotting the tidy data
	plotting the tidy data: smoothing
	build a model
	visualize the model
	Summary

