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The full SEMty

Overview: The full SEM

Path analysis models:
We started here, with models for observed variables only
With exogenous variables (x) and endogenous variables (y), these have
the form

y = By + Γx + ζ

These models do not allow for measurement error in the x or y variables
The only errors are the disturbance terms ζ (“errors in equations”),
allowing for unmeasured or omitted predictors
e.g., the simple mediation model:

y1i = γ11xi + ζ1i

y2i = γ21xi + β21y1i + ζ2i
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The full SEMty

Overview: The full SEM

Confirmatory factor analysis (CFA) models:
We next considered CFA measurement models, allowing for observed
indicators to be expressed as regressions on unobserved, latent
variables.
For a set of observed variables (x), there can be one or more factors, ξ
and the error terms δ can reflect both specific variance and unreliability

x = Λxξ + δ

the one-factor congeneric model:

xi = λiξ + δi

Σ = λλT + Θ
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The full SEMty LISREL form

The complete SEM model: LISREL form
Now imagine that we have q observed exogenous variables, x , and p
endogenous variables, y
We can allow for errors of measurement with measurement models for
each:

x = Λxξ + δ

y = Λyη + ε

Measurement error is accounted for in the (co)variances of δ (Θδ) and ε (Θε)
Errors of measurement can be allowed to be correlated— Θδ and Θε need
not be diagonal

These are connected by the structural model,

η = Bη + Γξ + ζ

The coefficients in B and Γ represent the linear regressions for the true,
latent constructs
These are not biased by measurement error
ζ now reflects the pure errors in equations.
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The full SEMty LISREL form

The Eight LISREL matrices

The main matrices of regression coefficients in this general model are:
Λx

(q×n)
(”lambda-x”): factor loadings of the observed exogenous

variables x on their latent variables ξ

Λy
(p×m)

(”lambda-y”): factor loadings of the observed endogenous

variables y on their latent variables η

B
(m×n)

(”beta”): Coefficients for the regressions of η on η. (B must

have zeros on the diagonal, and is usually lower (upper)
triangular.)

Γ
(m×n)

(”gamma”): Coefficients for the regressions of η on ξ

5 / 61



The full SEMty LISREL form

The Eight LISREL matrices

In addition, there are four variance-covariance matrices:
Θδ
(q×q)

(”theta-delta”): residual variances (and possibly covariances) for

exogenous observed variables
Θε

(q×q)
(”theta-epsilon”): residual variances (and possibly covariances)

for endogenous observed variables

Φ
(n×n)

(”phi”): covariance matrix for exogenous latent variables, ξ

Ψ
(m×m)

(”psi”): covariance matrix of residual terms, ζ, from the

structural regression model
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The full SEMty LISREL form

The complete SEM model: Σ

In this form, the relationship between the population covariance matrix Σ and
the parameters is

Σ
(q+p × q+p)

= Σ

(
x
y

)
=

 Σxx
(q×q)

Σxy
(q×p)

Σyx
(p×q)

Σpy
(p×p)


where

Σxx = ΛxΦΛT
x + Θδ

Σxy = ΛxΦΓT(I − B)−1TΛT
y

Σyy = Λy (I − B)−1[ΓΦΓT + Ψ](I − B)−1TΛT
y + Θε
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The full SEMty Examples

Example: General SEM Model

SEM model for measures of Math Self-Concept (MSC) and MATH
achievement:

This model has:
3 observed indicators in a measurement model for MSC (x)
2 observed indicators in a model for MATH achievement (y)
A structural equation predicting MATH achievement from MSC
Correlated errors for two MSC variables
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The full SEMty Examples

Example: General SEM Model
Measurement sub-models for x and y

Structural model, relating ξ to η
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The full SEMty Examples

Example: General SEM Model

Here is another example, with 6 x variables and 6 y variables
What are the measurement models for x and y?
What is the structural part of the model?
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The full SEMty Examples

Example: General SEM Model
Measurement models for x and y :

The x variables are assumed to measure correlated factors, in two
congeneric sets
Same for the y variables
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The full SEMty Examples

Example: General SEM Model

Structural model:

η2 is predicted only by ξ1
η1 is predicted only by ξ2 and η2

η1 = β21η2 + γ12ξ2 + ζ1

η2 = γ21ξ1 + ζ2
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Example: Health care utilization

Example: Health care utilization

A study1 was carried out to address these questions:
Do age, stress and poor sense of self predict perceived ill health and
health care utilization?
Does perceived ill health directly predict health care utilization?
Does perceived ill health serve as in intervening variable between age,
life stress, poor sense of self, and health care utilization?

Raw data is available for a sample of N=445. We can (and should!) also
examine the following:

Is there evidence of serious departure from univariate and multivariate
normality?
More important: Are the relationships among the variables at least
approximately linear?
Are there possible multivariate outliers that might affect the results?

The MVN package provides some useful tools for these questions.

1This example taken from Flora (2014)
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Example: Health care utilization

Variables

The variables are:
Age (x1)
Stress (x2)
Sense of self: latent variable measured by three indicators

Self-esteem (x3);
Marital satisfaction (x4)
Locus of conrol (x5)

Perceived ill health: latent variable measured by
number of mental health problems (y1)
number of physical health problems (y2)

Health care utilization: latent variable measured by
frequency of prescription drug use (y3)
number of visits to health professionals (y4)
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Example: Health care utilization

The path diagram for the proposed model:
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Example: Health care utilization Data screening

Data screening

At a minimum,
Make univariate QQ plots to assess univariate normality
Make a χ2 QQ plot to assess multivariate normality
You can also use uni- (Shapiro-Wilks) and multivariate (Mardia) tests

library(MVN)
#healthdat <- read.table("R/healthutil.txt")
MVN::mvn(healthdat, univariateTest = "SW")$univariateNormality

## Test Variable Statistic p value Normality
## 1 Shapiro-Wilk age 0.9376 <0.001 NO
## 2 Shapiro-Wilk stress 0.9522 <0.001 NO
## 3 Shapiro-Wilk esteem 0.9761 <0.001 NO
## 4 Shapiro-Wilk marriage 0.9478 <0.001 NO
## 5 Shapiro-Wilk control 0.9120 <0.001 NO
## 6 Shapiro-Wilk physical 0.9144 <0.001 NO
## 7 Shapiro-Wilk mental 0.9531 <0.001 NO
## 8 Shapiro-Wilk druguse 0.8512 <0.001 NO
## 9 Shapiro-Wilk drvisits 0.9750 <0.001 NO
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Example: Health care utilization Data screening

Univariate normal QQ plots:

uniPlot(healthdat)
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Example: Health care utilization Data screening

Multivariate tests:

mardiaTest(healthdat, qqplot=TRUE)
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Univariate and multivariate tests show strong evidence of non-normality
The χ2 QQ plot shows that there may be some multivariate outliers
Possible actions:

Transform variables
Use robust SEM methods for tests
Use bootstrap methods for tests
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Example: Health care utilization Data screening

Assessing linearity

library(car)
scatterplotMatrix(healthdat[,6:9], cex=0.8,

ellipse=TRUE, levels=0.68, col=c("blue", "red", "black"))
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Non-linear relationships are a
more serious problem for SEM
A simple way to assess this is a
scatterplot matrix, showing
non-parametric smooth curves
These plots show some slight
non-linearities, but perhaps not
too serious
The diagonal panels show
generally skewed distributions
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Example: Health care utilization Fitting models

What’s wrong with multivariate regression?

Rather than SEM, you might consider fitting two multivariate linear models
(MLM):

(y3, y4) ∼ x1 + x2 + x3 + x4 + y1 + y2

(y1, y2, y3, y4) ∼ x1 + x2 + x3 + x4

For example,

health.mlm1 <- lm(cbind(druguse, drvisits) ˜
age + stress + esteem + marriage + control + physical + mental,
data=healthdat)

health.mlm2 <- lm(cbind(physical, mental, druguse, drvisits) ˜
age + stress + esteem + marriage + control, data=healthdat)
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Example: Health care utilization Fitting models

What’s wrong with multivariate regression?

library(car)
Anova(health.mlm1)

##
## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## age 1 0.0011 0.2 2 436 0.786
## stress 1 0.0445 10.2 2 436 4.9e-05 ***
## esteem 1 0.0137 3.0 2 436 0.050 *
## marriage 1 0.0022 0.5 2 436 0.612
## control 1 0.0008 0.2 2 436 0.837
## physical 1 0.2446 70.6 2 436 < 2e-16 ***
## mental 1 0.0280 6.3 2 436 0.002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Problems with this approach:
Doesn’t provide a single, overall model
Doesn’t allow for errors of measurement in x or y
All predictors in each model are included for all responses

21 / 61



Example: Health care utilization Fitting models

Nevertheless, the MLM provides some useful graphical displays not available
for SEMs

−20 −10 0 10 20 30

−
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3

HE plot for druguse & drvisits

druguse

dr
vi

si
ts

+

Error

age

stress

esteem

marriagecontrol

physical

mental

Hypothesis-Error (HE) plots show
relations of xs to ys
Significant predictors project
outside the Error ellipse
Directions show their relations to
the ys
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Example: Health care utilization Fitting models

Fitting the SEM model

Using lavaan, the model can be specified as follows:

library(lavaan)
health.mod1 <- '

# latent variables
Self =˜ esteem + marriage + control
Ill =˜ physical + mental
Util =˜ druguse + drvisits

# structural regressions
Ill ˜ age + stress + Self
Util ˜ age + stress + Ill

# covariances (Phi)
Self ˜˜ age + stress
age ˜˜ stress
'

Fit the model using lavaan::sem()

health.sem1 <- lavaan::sem(health.mod1, data=healthdat,
estimator="ML", fixed.x=F)
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Example: Health care utilization Fitting models

Assessing model fit
Quick look at fit indices:

fitMeasures(health.sem1, c("chisq", "df", "pvalue", "cfi", "rmsea"))

## chisq df pvalue cfi rmsea
## 111.521 20.000 0.000 0.878 0.101

This model doesn’t fit very well. Examine modification indices to see why not:

modindices(health.sem1, minimum.value=20)

## lhs op rhs mi epc sepc.lv sepc.all sepc.nox
## 30 Self =˜ mental 38.710 0.581 1.482 0.353 0.353
## 66 physical ˜˜ drvisits 35.327 0.278 0.278 0.666 0.666
## 70 mental ˜˜ drvisits 21.326 -0.341 -0.341 -0.360 -0.360

Be cautious of revising a model just based on modification indices
Any changes should make sense substantively— it makes no sense to
add mental as an indicator of Self
The largest covariance MI is for the error covariance between physical
(y2) and visits to health professionals, drvisits (y4)
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Example: Health care utilization Fitting models

Revised model
Add a covariance betweeen physical and drvisits:

health.mod2 <- paste(health.mod1,
'physical ˜˜ drvisits
')

Fit the new model:

health.sem2 <- lavaan::sem(health.mod2, data=healthdat, estimator="ML", fixed.x=F)
fitMeasures(health.sem2, c("chisq", "df", "pvalue", "cfi", "rmsea"))

## chisq df pvalue cfi rmsea
## 68.568 19.000 0.000 0.934 0.077

Test whether this is a significant improvement:

anova(health.sem1, health.sem2)

## Chi Square Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## health.sem2 19 18249 18356 68.6
## health.sem1 20 18290 18393 111.5 43 1 5.6e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Example: Health care utilization Fitting models

Model interpretation

Examine the standardized estimates in the path diagram (only γ̂ and β̂ shown
here)

Age has only a tiny effect on
Util — remove/ignore it
Stress and Self strongly
predict (perceived) Ill health
Stress and Ill strongly predict
health utilization
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Longitudinal data Two-wave models

Two-wave longitudinal models

SEM is also very useful when the same variables are measured on two
(or more) occasions in a longitudinal design
In general, longitudinal studies seek to:

assess changes in outcomes over time
relate these to background variables or intervening treatment interventions

Assume we have two observed measures, used on two occasions: y1
and y2 measure the latent variable η1 on occasion 1; y3 and y4 measure
the latent variable η2 on occasion 2.
The measurement model (with reference variables) is

y1 = 1η1 + ε1

y2 = λ1η1 + ε2

y3 = 1η2 + ε3

y4 = λ2η2 + ε4
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Longitudinal data Two-wave models

Two-wave longitudinal models

Main interest is in the stability of η over time. This gives the structural
equation

η2 = βη1 + ζ

If the same latent construct is measured on both equations, we should
have β̂ ≈ 1 and var(ζ) small
One wrinkle is that the errors of measurement, εi are likely to be
correlated for the same measure given on multiple occasions.
This can be allowed for by allowing Θε to be non-diagonal, e.g.,
θ31 6= 0, θ42 6= 0
Let Ω be the covariance matrix of (η1, η2). Then, the correlation between
η1 and η2 is

ρ = Corr(η1, η2) =

[
ω21

ω11ω22

]1/2

=

[
σ32σ41

σ21σ43

]1/2
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Longitudinal data Stability of alienation

Example: Stability of Alienation

Data from Wheaton et. al (1997)

Attitude measurements of N=932 people in rural Illinois were collected in
1967 and 1971
Scales of anomia and powerless were both taken as indicators of a latent
variable,alienation
Background variables are

Respondent’s education (of schooling)
Duncan’s Socioeconomic status index (SEI)
These are taken as indicators of a latent SES variable
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Longitudinal data Stability of alienation

Model A

Model A from Jöreskog & Sörbom (1984)

Endogenous latent variables:
Alienation67 (η1) and Alienation71
(η2);
SES (exogenous latent)
influences both Alienation67 and
Alienation71
NB: ε1, ε2 . . . represent not only
errors of measurement, but also
specificity
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Longitudinal data Stability of alienation

Data

The data set is given as the 6× 6 covariance matrix:

library(sem)
S.wheaton <- readMoments(

names=c('Anomia67','Powerless67','Anomia71',
'Powerless71','Education','SEI'),

text="
11.834
6.947 9.364
6.819 5.091 12.532
4.783 5.028 7.495 9.986
-3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831 -21.748 -18.775 35.522 450.288

")

There are 6× 7/2 = 21 sample moments (6 variances and 15 covariances)
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Longitudinal data Stability of alienation

Specifying the model

The model in the path diagram has the following form for the measurement
models: 

y1
y2
y3
y4

 =


1 0
λ1 0
0 1
0 λ2

( η1
η2

)
+


ε1
ε2
ε3
ε4


(

x1
x2

)
=

(
1
λ3

)(
δ1
δ2

)
The structural model for η1 and η2 is:(

η1
η2

)
=

[
0 0
β1 0

](
η1
η2

)
+

(
γ1
γ2

)
ξ +

(
ζ1
ζ2

)

This model has 15 parameters (6 regression weights, 9 variances)
This leaves 21− 15 = 6 df
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Longitudinal data Stability of alienation

Fitting the model
Translating this into linear equations and variances, we have:

wh.model.A <- specifyEquations(text="
Anomia67 = 1*Alienation67
Powerless67 = lamy1*Alienation67
Anomia71 = 1*Alienation71
Powerless71 = lamy2*Alienation71
Education = 1*SES
SEI = lamx*SES
Alienation67 = gam1*SES
Alienation71 = gam2*SES + beta*Alienation67
V(Anomia67) = the1
V(Anomia71) = the2
V(Powerless67) = the3
V(Powerless71) = the4
V(SES) = phi
")

Fit the model using sem():

sem.wh.A <- sem(wh.model.A, S.wheaton, 932)
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Longitudinal data Stability of alienation

Assessing model fit
Model A does not fit particularly well by conventional criteria:

summary(sem.wh.A, fit.indices = c("RMSEA", "NNFI", "CFI"))

##
## Model Chisquare = 71.47 Df = 6 Pr(>Chisq) = 2.0417e-13
## RMSEA index = 0.10826 90% CI: (0.086585, 0.13145)
## Tucker-Lewis NNFI = 0.92266
## Bentler CFI = 0.96907
##
...

Examine modification indices (A: regression coef.; P: covariances)

print(modIndices(sem.wh.A), n.largest=3)

##
## 3 largest modification indices, A matrix (regression coefficients):
## Anomia71<-Anomia67 Anomia67<-Anomia71 Powerless71<-Anomia67
## 58.724 51.912 46.156
##
## 3 largest modification indices, P matrix (variances/covariances):
## Anomia71<->Anomia67 Powerless71<->Anomia67 Anomia71<->Powerless67
## 63.706 49.829 49.752
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Longitudinal data Stability of alienation

Model B

The largest MI is the covariance for Anomia71<->Anomia67– set it free

Add covariance between ε1 and ε2
Could also add a covariance between
ε2 and ε4 (Model C)
There are often equivalent models
that improve fit equally, but in different
ways.
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Longitudinal data Stability of alienation

Model B

The update() function makes it easy to add (or remove) parameters. “<->”
specifies a covariance

wh.model.B <- update(wh.model.A, text="
add, Anomia67 <-> Anomia71, the13"
)

Fit model B:

sem.wh.B <- sem(wh.model.B, S.wheaton, 932)
summary(sem.wh.B, fit.indices = c("RMSEA", "NNFI", "CFI"))

##
## Model Chisquare = 6.3307 Df = 5 Pr(>Chisq) = 0.27536
## RMSEA index = 0.016908 90% CI: (NA, 0.050905)
## Tucker-Lewis NNFI = 0.99811
## Bentler CFI = 0.99937
...

This fits very well!
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Longitudinal data Stability of alienation

Model interpretation
Path diagram with (standardized) coefficient estimates:

pathDiagram(sem.wh.B,
same.rank=c("Alienation67, Alienation71"),
min.rank=c("Education", "SEI"),
edge.labels = "values", edge.colors = c("blue", "red"),
node.colors = c("pink", "lightblue1"),
edge.weight="proportional", standardize=TRUE)

Education

SEI

Alienation67

Alienation71

0.58

Anomia67
0.76

Powerless67
0.87

Anomia710.79

Powerless71

0.86

SES

0.85

0.64

-0.55

-0.2
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Longitudinal data Stability of alienation

Other models

Given a model that fits reasonably well, it is often useful to ask if we can make
the model simpler in some ways

Are there non-significant paths or latent variables that could be
eliminated from the model?
Are there free parameters that could be constrained to be equal?

e.g., perhaps we could set λ1 = λ2?

coef(sem.wh.B)[1:2]

## lamy1 lamy2
## 1.02653 0.97092

could test whether the scales are τ -equivalent, i.e., λ1 = 1 and/or λ2 = 1
could test whether the variances of errors are equal (var(ε1) = var(ε3);
var(ε2) = var(ε4))

What happens if we remove the effects of SES?
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Power and sample size

Power and Sample Size for CFA and SEM

Bad news Determining the required sample size, or the power of a
hypothesis test are far more complex in CFA and SEM than in
other statistical applications (correlation, ANOVA, etc.)

SEM involves both measurement and structural
sub-models
There are often many parameters involved
Hard to tell where lack of fit comes from
Logic of hypothesis tests is reversed from usual NHST

Good news There are a few things you can do to choose a sample size
intelligently.

Rules of thumb for EFA models
Using desired standard errors
Overall approach based on RMSEA
Some useful methods for individual parameters
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Power and sample size Rules of thumb

Power and Sample Size for CFA and SEM

Rules of thumb for EFA
For EFA, there is little statistical basis for determining the appropriate sample
size, and little basis for determining power (but the overall approach of CFA
can be used).
Some traditional “rules of thumb” for EFA:

The more the better!
Reliability and replicability increase directly with

√
N.

More reliable factors can be extracted with larger sample sizes.

Absolute minimum– N = 5p, but you should have N > 100 for any
non-trivial factor analysis. Minimum applies only when communalities are
high and p/k is high.
Most EFA and CFA studies use N > 200, some as high as 500-600.
Safer to use at least N > 10p.
The lower the reliabilities, the larger N should be.
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Power and sample size Standard errors

Using desired standard errors

An alternative approach for EFA/CFA/SEM considers the standard errors
of correlations, in relation to sample size.
This usually provides more informed guidance than the rules of thumb.
It can be shown that,

σ(ρ) =
1− ρ2
√

N
+O(N−1)

so, we could determine the sample size to make the standard error of a
“typical” correlation smaller than some given value.

√
N >

1− ρ2

σ(ρ)
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Power and sample size Standard errors

Using desired standard errors

Sample size
ρ 50 100 200 400 800

0.1 0.140 0.099 0.070 0.050 0.035
0.3 0.129 0.091 0.064 0.046 0.032
0.5 0.106 0.075 0.053 0.038 0.027
0.7 0.072 0.051 0.036 0.026 0.018

Standard error decreases as |ρ| increases.
So, if you want to keep the standard error less than 0.05, you need
N = 400 when the “typical” correlation is only 0.1, but N = 100 when the
“typical” correlation is 0.7.
In many behavioural and psychology studies, correlations among
different scales are modest, at best (0.1 ≤ ρ ≤ 0.3).
For typical scale analysis, one should expect the correlations among
items on the same scale to be much higher (0.7 ≤ ρ ≤ 0.9),⇒ smaller
required sample size for the same standard error.
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Power and sample size More general methods

Power analysis

Recall the basis for power analysis using χ2 tests:

Under H0 (perfect fit) the test statistic
X 2 = (N − 1)Fmin ∼ χ2(df )
Reject H0 if X 2 > χ2

1−α(df )

Under H1, X 2 gives larger values, a non-central
χ2(df , λ > 0) distribution
Power = Pr(X 2 > χ2

1−α |H1)
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Power and sample size More general methods

Power and Sample size for CFA and SEM

Problems: The situation in CFA wrt power analysis is typically reversed
compared with other forms of hypothesis tests—

X 2 = (N − 1)Fmin, so large N ⇒ reject H0.
With small specification errors, large sample size will magnify their effects⇒
reject H0.
With large specification errors, small sample size will mask their effects⇒
accept H0.

Solutions:
Use an interpretable statistic that maps directly to the χ2 non-centrality
parameter, λ
Turn the test around, so rather than testing H0 : λ = 0 (perfect fit) we can
test H0 : λ < λ0 (acceptable fit)
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Power and sample size More general methods

Power and Sample size for CFA and SEM

Overall RMSEA approach:
MacCallum, Browne and Sugawara (1996) approach allows for testing a
null hypothesis of ’not-good-fit’, so that a significant result provides
support for good fit.

Effect size is defined in terms of a null hypothesis and alternative hypothesis
value of the root-mean-square error of approximation (RMSEA) index.
Typical values for RMSEA:

≤ .05 close fit
.05− .08 fair
.08− .10 mediocre
> .10 poor

These values, together with the df for the model being fitted, sample size
(N), and error rate (α), allow power to be calculated.
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Power and sample size More general methods

Power and Sample size for CFA and SEM

The CSMPOWER macro
See: http://datavis.ca/sasmac/csmpower.html
Retrospective power analysis— uses the RMSEA values from the
OUTRAM= data set from PROC CALIS for the model fitted.
Prospective power analysis— values of RMSEA, DF and N must be provided
through the macro arguments.
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Power and sample size More general methods

Example: Retrospective power analysis

Here, we examine the power for the test of Lord’s two-factor model for
speeded and unspeeded vocabulary tests, where N = 649.

1 title "Power analysis: Lord's Vocabulary Data";
2 title2 "Lord's data: H1- X1 and X2 parallel,
3 Y1 and Y2 parallel, rho=1";
4 proc calis data=lord cov summary outram=ram1;
5 lineqs x1 = betax F1 + e1,
6 x2 = betax F1 + e2,
7 y1 = betay F2 + e3,
8 y2 = betay F2 + e4;
9 std F1 F2 = 1 1,

10 e1 e2 e3 e4 = vex vex vey vey;
11 cov F1 F2 = 1;
12 run;
13

14 *-- Power analysis from RMSEA statistics in this model;
15 title 'Retrospective power analysis';
16 %csmpower(data=ram1);
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Power and sample size More general methods

Example: Retrospective power analysis

Results include:
1 Name of H0 Ha
2 Alpha df Variable N fit value fit value Power
3

4 0.05 6 RMSEAEST 649 0.05 0.08977 0.75385
5 RMSEALOB 649 0.05 0.06349 0.19282
6 RMSEAUPB 649 0.05 0.11839 0.99202

With this sample size, we have power of 0.75 to distinguish between a fit with
RMSEA=0.05 and one with RMSEA=0.09.
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Power and sample size More general methods

Example: Prospective power analysis
For prospective power analysis, we specify the RMSEA for alternative
hypotheses of ’not good fit’ with the RMSEAA= parameter (for Ha).

1 *--; title 'Prospective power analysis';
2 %csmpower(df=6, rmseaa=%str(.08 to .12 by .02),
3 plot=%str(power*n =rmseaa));

Results include a listing:
1 H0 Ha
2 Alpha df N fit value fit value Power
3

4 0.05 6 40 0.05 0.08 0.08438
5 40 0.05 0.10 0.12243
6 40 0.05 0.12 0.17575
7 60 0.05 0.08 0.10168
8 60 0.05 0.10 0.16214
9 60 0.05 0.12 0.24802

10 80 0.05 0.08 0.11883
11 80 0.05 0.10 0.20262
12 80 0.05 0.12 0.32093
13 100 0.05 0.08 0.13585
14 100 0.05 0.10 0.24333
15 100 0.05 0.12 0.39214
16 ... ... ... ...
17 400 0.05 0.08 0.37545
18 400 0.05 0.10 0.72599
19 400 0.05 0.12 0.93738
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Power and sample size More general methods

Plot of Power by N for each level of RMSEAA:

Ha fit 0.08 0.10 0.12

P
ow

er
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Sample size
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For the most stringent test of H0 : RMSEA = 0.05 vs.
Ha : RMSEA = 0.08, the largest sample size, N = 400 only provides a
power of 0.375.
Good thing they used N = 649!
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Power and sample size More general methods

Online RMSEA power calculator
Several online web applications use R with a forms interface, e.g., Preacher &
Coffman, http://www.quantpsy.org/rmsea/rmsea.htm

Enter α, df, sample size
range, RMSEA
Click “Generate R Code”
Click “Submit above to
Rweb”
Can also copy/paste R
code to your own R
window
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Power and sample size More general methods

semTools package
The semTools package contains functions for these purposes:

plotRMSEApower(): plot power based on population RMSEA given
sample size range
findRMSEApower(): find power based on population RMSEA given a
sample size
findRMSEAsamplesize(): find minium sample size for given power
based on population RMSEA

What sample size is required for power = (0.8, 0.9) to detect difference
bewtween RMSEA0=0.025 and RMSEAA=0.08 with df=23?

library(semTools)
findRMSEAsamplesize(rmsea0=0.025, rmseaA=0.08, df=23, power=0.80)

## [1] 183

findRMSEAsamplesize(rmsea0=0.025, rmseaA=0.08, df=23, power=0.90)

## [1] 230

52 / 61



Power and sample size More general methods

semTools package
Plot the power curve:
plotRMSEApower(rmsea0=.025, rmseaA=.08, df=23, 100, 350, 10, cex.lab=1.25, lwd=3)
abline(h=c(0.8, 0.9), col=c("red", "blue"), lty=4:5, lwd=2)
abline(v=c(183, 230), col=c("red", "blue"), lty=4:5, lwd=2)
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Power and sample size More general methods

Individual model specifications

The overall approach evaluates power or required sample size for the
whole model.
It does not distinguish among the a priori specifications of free and fixed
parameters implied by the model being tested.
Things become more difficult when the focus is on power for deciding on
some one or a few specifications (parameters) in a model.

In a mediation model, how to determine sample size to test the mediator
effect?
In a higher-order CFA model, what sample size do I need to distinguish
among competing models for 2nd -order factors?
In a complex SEM, how to distinguish among competing models?
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Power and sample size More general methods

Individual model specifications

There are some promising results:

Satorra (1989): modification indices— ∆χ2 for fixed parameters— in a
model approximate the χ2 non-centrality parameters required to
determine power for a specific fixed parameter.
Similarly, Wald tests, χ2

1 = (par/s(par))2 approximate the χ2

non-centrality parameters required to determine power for free
parameters.
These χ2 values should be studied in relation to the estimated change in
the parameter (ECP).

A large ∆χ2 with a small ECP simply reflects the high power to detect small
differences which comes with large N.
Similarly, a small ∆χ2 with a large ECP reflects low power for large
differences with small N.

See Kaplan, “Statistical power in structural equation models”,
www.gsu.edu/˜mkteer/power.html for further discussion and
references on these issues.
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Power and sample size More general methods

Comparing nested models

A simpler method was suggested by McCallum, Browne & Cai (2006) to find
sample size or compute power in the comparison of two nested models

Recall that difference between two nested models, A ⊂ B, with degrees
of freedom dfA and dfB can be tested with the likelihood ratio test

∆X 2 = X 2
A − X 2

B = (N − 1)(F A
min − F B

min) ∼ χ2 with df = dfA − dfB

Under H0 : Models A and B do not differ in fit, ∆X 2 ∼ χ2(dfA − dfB)
Under H1 : Model B fits better, ∆X 2 is a non-central χ2 with non-centrality
λ = (N − 1)(F A

min − F B
min)

This can be specified in terms of (the population) RMSEA as

RMSEA ≡ ε =
√

Fmin/df =⇒ λ = (N − 1)(dfAε2A − dfBε2B)

Thus, you can find the power or sample size needed to detect a
difference between two models
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The semTools package contains functions for these purposes:
plotRMSEApowernested(): plot power of nested model RMSEA,
given sample size range
findRMSEApowernested(): find the power for a given sample size in
nested model comparison
findRMSEAsamplesizenested(): find minium sample size for given
power in nested model comparison

Examples: Model A has 22 df, model B has 20 df. What sample size do I need
to detect a difference between RMSEAA = 0.075 and RMSEAB = 0.05 with
power=0.9?

findRMSEAsamplesizenested(rmsea1A = 0.075, rmsea1B = 0.05,
dfA = 22, dfB = 20, power=0.9)

## [1] 173

What is the power if I only have N=100?

findRMSEApowernested(rmsea1A = 0.075, rmsea1B = 0.05,
dfA = 22, dfB = 20, n = 100)

## [1] 0.67513
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Extensions and Summary

SEM Extensions I

A variety of methods handle non-normal distributions
Robust ML (Satorra-Bentler) corrects the χ2 statistic and standard errors for
excess kurtosis
Asymptotically distribution-free (ADF) methods do something similar
Bootstrap methods avoid normality assumptions by re-sampling from the
data— data-based standard errors

categorical variables
Likert scales with > 5 ordered categories can usually be treated as
continuous, applying robust ML
Otherwise, one can use polychoric correlations rather than Pearson
correlations
Usually this is done via a form of weighted least squares rather than ML
estimation

missing data is readily handled using multiple imputation methods
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Extensions and Summary

SEM Extensions II
latent growth models extend the SEM approach to longitudinal data,
allowing for measurement error

Can be used to investigate systematic change, or growth, and
inter-individual variability in this change
Can incorporate time-invariant or time-varying exogenous covariates
(Alternatives are: repeated measure ANOVA/MANOVA, mixed-models)
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Extensions and Summary

SEM Extensions III

structural equation mixture models (SEMM):
Supposes latent class variables that partition the data into subgroups
Correlations arise from a mixture of multivariate normal distributions
Subgroup models are linear, but overall model can allow nonlinear relations

structural equation model trees (semtree):
Combine strengths of SEM and recursive-partitioning decision trees
(“CART”)
Partitions dataset recursively into subsets with significantly different
parameter estimates in SEM
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Extensions and Summary

Summary

The general SEM allows measurement models for exogenous (x) and
endogenous (y) variables in terms of latent variables ξ and η

x = Λxξ + δ y = Λyη + ε

This allows for treating errors of measurement and reduces bias
These are connected by a structural model

η = Bη + Γξ + ζ

Path analysis models are the special case of no latent variables
CFA models are the special case of only one set of observed variables
When raw data are available, data screening is an important prelude to
SEM modeling
SEM methods have been extended to handle a wide variety of data
structures and new model types!
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