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Measurement models Measurement error

Measurement error

Path analysis models assume that all exogenous predictors (x) are
measured without error

The only error terms are the residuals ζ (errors-in-equations) for the
endogenous (y ) variables

This is often (at least approximately) true for variables like age, height,
income, occupational status, etc.
It is less likely to be true for constructs of interest in the social sciences:
intelligence, depression, mathematical aptitude, need for achievement,
etc.

Measurement error has severe consequences— reduced precision, but
much worse: bias
CFA & SEM handle this by introducing a measurement model, using latent
variables
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Measurement models Measurement error

Measurement error: Example
Data on the relationship between Heart (y ) damage and Stress (x)

Heart = β0 + β1Stress

What happens if we add random error, N (0, δ × SDStress) to each x-value
(δ = {0.75,1.0,1.5})?
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The grey ellipse and the regression
line “0” show the original data
Increasing measurement error makes
the data ellipses wider
Increasing measurement error biases
β1 towards zero!
NB: Adding random error to Heart (y )
would decrease precision but not
introduce bias.
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Measurement models Measurement error

Measurement error: Example

These effects can also be seen in parameter (β) space
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β1 decreases with increasing error
the intercept, β0 increases
The increasing size of confidence
ellipses shows decreased precision of
the estimates
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Measurement models Measurement error

Measurement error: Example
Now, consider a multiple regression model, with coffee as an additional
predictor

Heart = β0 + β1Stress + β2Coffee

What is the effect of measurement error in Stress on both coefficients, (β1, β2)
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The coefficient β1 for Stress goes
towards 0, as before
The coefficient β2 for Coffee
decreases towards its marginal value
(Stress not included in the model)
Thus, measurement error in even one
x variable has effects throughout the
model
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Measurement models Latent variables

Latent variables
In EFA, CFA & SEM, measurement error in observed variables is handled by
positing an underlying latent variable (“factor”) responsible for producing the
observed score x

xi = λξi + δi

ξ (“ksi” or “xi”) is the true latent variable measured by x
λ is the regression coefficient (“factor loading”) of x on ξ
δ is the error of measurement
x is called an indicator of the latent variable ξ

There there are usually multiple observed indicators, x1, x2, . . . measuring a
given (latent) construct

x1i = λ1ξi + δ1i

x2i = λ2ξi + δ2i

x3i = λ3ξi + δ3i
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Measurement models Latent variables

Latent variables

The observed variables can also be considered as measures of two (or
more) latent variables
The latent variables (factors) can be correlated
There can also be correlations among the error terms

x1 = λ11ξ1 + λ12ξ1 + δ1

x2 = λ21ξ1 + λ22ξ2 + δ2

x3 = λ31ξ1 + λ32ξ2 + δ3

... =
...
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Measurement models Latent variables

The General CFA model

The general CFA measurement model is

x = Λξ + δ

where
x is the q × 1 vector of observed or measured variables
Λ is the q × k matrix of factor loadings
ξ is the vector of latent variables
i.e., λij is the partial regression coefficient for xi on ξj in the regression of
xi on ξ1, ξ2, . . . , ξk
δ is the vector of errors of measurement or disturbance terms

This model, together with assumptions implies that the covariance matrix of x
is

Σ = ΛΦΛT + Θ

where Φ is the covariance matrix of the factors, ξ, and Θ is the covariance
matrix of the errors, δ

8 / 1



Test theory models

Testing Equivalence of Measures with CFA

Test theory is concerned with ideas of reliability, validity and equivalence of
measures.

The same ideas apply to other constructs (e.g., anxiety scales or
experimental measures of conservation).
Test theory defines several degrees of “equivalence”.
Each kind may be specified as a confirmatory factor model with a single
common factor.
The CFA approach allows a more nuanced approach to these issues.

Σ =


λ1
λ2
λ3
λ4

( λ1 λ2 λ3 λ4
)

+


θ11

θ22
θ33

θ44


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Test theory models

Testing Equivalence of Measures with CFA
One-factor model:

Σ = λλT + Θ =


λ2

1 + θ11
λ2λ1 λ2

2 + θ22
λ3λ1 λ3λ2 λ2

3 + θ33
λ4λ1 λ4λ2 λ4λ3 λ2

4 + θ44


Path diagram:
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Test theory models

Congeneric measurement model

The single factor model is called the congeneric measurement model
It implies that the true scores, τi = λiξ are perfectly correlated
The true score variance in xi is λ2

i — also called comunality in EFA lingo
The reliability of xi is

ρi =
λ2

i
var(xi )

=
λ2

i

λ2
i + θii

= 1− θii

λ2
i + θii

Strictly speaking, the error term δi (“unique factor”) is considered to be
the sum of two uncorrelated components

δi = si + ei

unique = specific + error

ρi is a lower bound on true reliability
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Test theory models

Kinds of equivalence

Parallel tests: Measure the same thing with equal precision. The
strongest form of “equivalence”.
Tau-equivalent tests: Have equal true score variances (λ2

i ), but may
differ in error variance (θii ).
Like parallel tests, this requires tests of the same length & time limits.
E.g., short forms cannot be τ -equivalent.
Congeneric tests: The weakest form of equivalence: All tests measure a
single common factor, but the loadings & error variances may vary.

These hypotheses may be tested with CFA/SEM by testing equality of the
factor loadings (λi ) and unique variances (θii ).

τ equivalent︷ ︸︸ ︷
λ1 = λ2 = λ3 = λ4 θ11 = θ22 = θ33 = θ44︸ ︷︷ ︸

Parallel
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Test theory models Example: Votaw data

Example: Reliability in essay scoring

Essay exams present a challenge for standardized testing (SAT, LSAT,
etc.)
An early study by Votaw (1948) analyzed scores for N=126 examinees
given a 3-part English composition test

x1: score on an original copy of the part 1 essay
x2: score on a hand-written copy of the part 1 essay
x3: score on a carbon-copy of the hand-written part 1 essay
x4: score on an original copy of the part 2 essay

Questions:
Can these scores be used interchangeably– as strictly parallel or
τ -equivalent tests?
If not, are the scores on original copies more reliable than those on copies?
Are the scores for part 1 and part 2 originals equally reliable?
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Test theory models Example: Votaw data

Example: Reliability in essay scoring
Read the covariance matrix:

library(sem)
votaw <- readMoments(diag=TRUE,

names=c('orig1', 'hcpy1', 'ccpy1', 'orig2'), text="
25.0704
12.4363 28.2021
11.7257 9.2281 22.7390
20.7510 11.9732 12.0692 21.8707
")

Fit the congeneric model:

votaw.mod1 <- specifyEquations(text="
orig1 = lam1 * Ability
hcpy1 = lam2 * Ability
ccpy1 = lam3 * Ability
orig2 = lam4 * Ability
V(Ability) = 1
")
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Test theory models Example: Votaw data

Other models

More restrictive models are specified simply by using the same parameter
names for equal parameters.
τ -equivalent model

votaw.mod2 <- specifyEquations(
text="

orig1 = lam * Ability
hcpy1 = lam * Ability
ccpy1 = lam * Ability
orig2 = lam * Ability
V(Ability) = 1
")

parallel model

votaw.mod3 <- specifyEquations(
text="

orig1 = lam * Ability
hcpy1 = lam * Ability
ccpy1 = lam * Ability
orig2 = lam * Ability
V(Ability) = 1
V(orig1) = error
V(hcpy1) = error
V(ccpy1) = error
V(orig2) = error
")

An intermediate “semi-parallel” model specified two sets of equal loadings λ1

for orig1 and orig2, λ1 for hcpy1 and ccpy1
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Test theory models Example: Votaw data

Example: Reliability in essay scoring

Summary of analyses:

Model Hypothesis df χ2 p
1 congeneric 2 2.28 0.32
2 tau-equivalent 5 40.42 0.00
3 parallel 8 109.12 0.00
4 semi-parallel 6 8.99 0.17

Results for congeneric model:

Variable λ̂i s.e.(λ̂i ) ρ̂i
orig1 4.57 0.36 0.83
hcpy1 2.68 0.45 0.25
ccpy1 2.65 0.40 0.31
orig2 4.54 0.33 0.94

However, semi-parallel model is simpler, and fits well.
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Test theory models Several Sets of Congeneric Tests

Several Sets of Congeneric Tests

For several sets of measures, the test theory ideas of congeneric tests can be
extended to test the equivalence of each set.
If each set is congeneric, the estimated correlations among the latent factors
measure the strength of relations among the underlying “true scores”.

Example: Correcting for Unreliability
Given two measures, x and y , the correlation between them is limited by
the reliability of each.
CFA can be used to estimate the correlation between the true scores, τx ,
τy , or to test the hypothesis that the true scores are perfectly correlated:

H0 : ρ(τx , τy ) = 1

The estimated true-score correlation, ρ̂(τx , τy ) is called the correlation of
x , y corrected for attenuation.
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Test theory models Several Sets of Congeneric Tests

Several Sets of Congeneric Tests
The analysis requires two “parallel” forms of each test, x1, x2, y1, y2. Tests are
carried out with the model:

x1
x2
y1
y2

 =


β1 0
β2 0
0 β3
0 β4

[ τx
τy

]
+


e1
e2
e3
e4

 = Λτ + e

with corr(τ ) = ρ, and var(e) = diag {θ2
1, θ

2
2, θ

2
3, θ

2
4}. The model is shown in this

path diagram:

18 / 1

Test theory models Several Sets of Congeneric Tests

Several Sets of Congeneric Tests

Hypotheses
The following hypotheses can be tested. The difference in χ2 for H1 vs. H2, or
H3 vs. H4 provides a test of the hypothesis that ρ = 1.

H1 : ρ = 1 and H2

H2 :

{
β1 = β2 θ2

1 = θ2
2

β3 = β4 θ2
3 = θ2

4

H3 : ρ = 1, all other parameters free
H4 : all parameters free

H1 and H2 assume the measures x1, x2 and y1, y2 are parallel. H3 and H4
assume they are merely congeneric.
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Test theory models Several Sets of Congeneric Tests

Several Sets of Congeneric Tests

These four hypotheses actually form a 2× 2 factorial
parallel vs. congeneric: H1 and H2 vs. H3 and H4 and
ρ = 1 vs. ρ 6= 1.

For nested models, model comparisons can be done by testing the difference
in χ2, or by comparing other fit statistics (AIC, BIC, RMSEA, etc.)

LISREL can fit multiple models, but you have to do the model comparison
tests “by hand.”
AMOS can fit multiple models, and does the model comparisons for you.
With PROC CALIS, the CALISCMP macro provides a flexible summary of
multiple-model comparisons.
sem() provides an anova() method
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Test theory models Example: Lord’s data

Example: Lord’s data

Lord’s vocabulary test data:
x1, x2: two 15-item tests, liberal time limits
y1, y2: two 75-item tests, highly speeded

Analyses of these data give the following results:

Free
Hypothesis Parameters df χ2 p-value AIC
H1: par, ρ = 1 4 6 37.33 0.00 25.34
H2: par 5 5 1.93 0.86 -8.07
H3: cong, ρ = 1 8 2 36.21 0.00 32.27
H4: cong 9 1 0.70 0.70 -1.30

Models H2 and H4 are acceptable, by χ2 tests
Model H2 is “best” by AIC
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Test theory models Example: Lord’s data

Lord’s data

The tests of ρ = 1 can be obtained by taking the differences in χ2,

Parallel Congeneric
χ2 df χ2 df

ρ = 1 37.33 6 36.21 2
ρ 6= 1 1.93 5 0.70 1

35.40 1 35.51 1

Both tests reject the hypothesis that ρ = 1,
Under model H2, the ML estimate is ρ̂ = 0.889.
⇒ speeded and unspeeded vocab. tests do not measure exactly the
same thing.
NB: The CFA/SEM approach is far more rigorous than usually applied to
social measurements like anxiety, depression, etc.
SAS example: datavis.ca/courses/factor/sas/calis1c.sas
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Test theory models Example: Lord’s data

Lord’s data: PROC CALIS
1 data lord(type=cov);
2 input _type_ $ _name_ $ x1 x2 y1 y2;
3 datalines;
4 n . 649 649 649 649
5 cov x1 86.3937 . . .
6 cov x2 57.7751 86.2632 . .
7 cov y1 56.8651 59.3177 97.2850 .
8 cov y2 58.8986 59.6683 73.8201 97.8192
9 mean . 0 0 0 0

10 ;

Model H4:β1, β2, β3, β4 . . . ρ=free
1 title "Lord's data: H4- unconstrained two-factor model";
2 proc calis data=lord
3 cov
4 summary outram=M4;
5 lineqs x1 = beta1 F1 + e1,
6 x2 = beta2 F1 + e2,
7 y1 = beta3 F2 + e3,
8 y2 = beta4 F2 + e4;
9 std F1 F2 = 1 1,

10 e1 e2 e3 e4 = ve1 ve2 ve3 ve4;
11 cov F1 F2 = rho;
12 run;
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Test theory models Example: Lord’s data

Lord’s data: PROC CALIS

The SUMMARY output contains many fit indices:
1 Lord's data: H4- unconstrained two-factor model
2

3 Covariance Structure Analysis: Maximum Likelihood Estimation
4

5 Fit criterion . . . . . . . . . . . . . . . . . . 0.0011
6 Goodness of Fit Index (GFI) . . . . . . . . . . . 0.9995
7 GFI Adjusted for Degrees of Freedom (AGFI) . . . 0.9946
8 Root Mean Square Residual (RMR) . . . . . . . . . 0.2715
9 Chi-square = 0.7033 df = 1 Prob>chi**2 = 0.4017

10 Null Model Chi-square: df = 6 1466.5884
11 Bentler's Comparative Fit Index . . . . . . . . . 1.0000
12 Normal Theory Reweighted LS Chi-square . . . . . 0.7028
13 Akaike's Information Criterion . . . . . . . . . -1.2967
14 Consistent Information Criterion . . . . . . . . -6.7722
15 Schwarz's Bayesian Criterion . . . . . . . . . . -5.7722
16 McDonald's (1989) Centrality. . . . . . . . . . . 1.0002
17 Bentler & Bonett's (1980) Non-normed Index. . . . 1.0012
18 Bentler & Bonett's (1980) Normed Index. . . . . . 0.9995
19 James, Mulaik, & Brett (1982) Parsimonious Index. 0.1666
20 ...
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Test theory models Example: Lord’s data

Lord’s data: PROC CALIS
Model H3: H4, with ρ = 1

1 title "Lord's data: H3- rho=1, one-congeneric factor";
2 proc calis data=lord
3 cov summary outram=M3;
4 lineqs x1 = beta1 F1 + e1,
5 x2 = beta2 F1 + e2,
6 y1 = beta3 F2 + e3,
7 y2 = beta4 F2 + e4;
8 std F1 F2 = 1 1,
9 e1 e2 e3 e4 = ve1 ve2 ve3 ve4;

10 cov F1 F2 = 1;
11 run;

Model H2: β1 = β2, β3 = β4 ..., ρ=free
1 title "Lord's data: H2- X1 and X2 parallel, Y1 and Y2 parallel";
2 proc calis data=lord
3 cov summary outram=M2;
4 lineqs x1 = betax F1 + e1,
5 x2 = betax F1 + e2,
6 y1 = betay F2 + e3,
7 y2 = betay F2 + e4;
8 std F1 F2 = 1 1,
9 e1 e2 e3 e4 = vex vex vey vey;

10 cov F1 F2 = rho;
11 run;
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Test theory models Example: Lord’s data

Lord’s data: CALISCMP macro

Model comparisons using CALISCMP macro and the OUTRAM= data sets
1 %caliscmp(ram=M1 M2 M3 M4,
2 models=%str(H1 par rho=1/H2 par/H3 con rho=1/H4 con),
3 compare=1 2 / 3 4 /1 3/ 2 4);

1 Model Comparison Statistics from 4 RAM data sets
2
3 RMS
4 Model Parameters df Chi-Square P>ChiSq Residual GFI AIC
5
6 H1 par rho=1 4 6 37.3412 0.00000 2.53409 0.97048 25.3412
7 H2 par 5 5 1.9320 0.85847 0.69829 0.99849 -8.0680
8 H3 con rho=1 8 2 36.2723 0.00000 2.43656 0.97122 32.2723
9 H4 con 9 1 0.7033 0.40168 0.27150 0.99946 -1.2967

(more fit statistics are compared than shown here.)
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Test theory models Example: Lord’s data

Lord’s data: CALISCMP macro

1 %caliscmp(ram=M1 M2 M3 M4,
2 models=%str(H1 par rho=1/H2 par/H3 con rho=1/H4 con),
3 compare=1 2 / 3 4 /1 3/ 2 4);

1 Model Comparison Statistics from 4 RAM data sets
2 Model Comparison ChiSq df p-value
3 ---------------------------------------------------------
4 H1 par rho=1 vs. H2 par 35.4092 1 0.00000 ****
5 H3 con rho=1 vs. H4 con 35.5690 1 0.00000 ****
6 H1 par rho=1 vs. H3 con rho=1 1.0689 4 0.89918
7 H2 par vs. H4 con 1.2287 4 0.87335
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Multi-factor models

Multi-factor congeneric models
Multi-factor models are at the heart of CFA
An important special case is when there are G sets of (assumed)
congeneric variables, each of which are indicators of a latent variable
In EFA lingo, these are called non-overlapping factors
The measurement models for the variables xg in set g are of the form

xg = λgξg + δg

Then, the loadings Λ for all variables can be represented as

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λG


The 0s, of course, are fixed parameters. If this model does not fit, some
of these can be set free (if there are good reasons!)
More constrained models can be fit by imposing equality constraints to
test stricter parallel or τ -equivalent models
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Multi-factor models

Multi-factor congeneric models

The covariance matrix Σ of x is again

Σ = ΛΦΛT + Θ

where Φ is the covariance matrix of the factors, ξ, and Θ is the
covariance matrix of the errors, δ
In congeneric models, errors usually assumed to be uncorrelated: Θ =
diagonal
(Some CFA models can allow correlated errors.)
Model identification: in addition to the t rule,

It is necessary to set the scale for the latent ξ variables
Standardized solution: Set the diagonal entries of Φ to 1, so Φ is a
correlation matrix
Reference variable solution: Set the loading λij = 1 for one variable i in each
column j
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Multi-factor models Example: Ability and Aspiration

Example: Ability and Aspiration

Calsyn & Kenny (1971) studied the relation of perceived ability and
educational aspiration in 556 white eigth-grade students. Their measures
were:

x1: self-concept of ability
x2: perceived parental evaluation
x3: perceived teacher evaluation
x4: perceived friend’s evaluation
x5: educational aspiration
x6: college plans

Their interest was primarily in estimating the correlation between “true
(perceived) ability” and “true apsiration”.
There is also interest in determining which is the most reliable indicator of
each latent variable.
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Multi-factor models Example: Ability and Aspiration

The correlation matrix is shown below:

S-C Par Tch Frnd Educ Col
S-C Abil 1.00
Par Eval 0.73 1.00
Tch Eval 0.70 0.68 1.00
FrndEval 0.58 0.61 0.57 1.00
Educ Asp 0.46 0.43 0.40 0.37 1.00
Col Plan 0.56 0.52 0.48 0.41 0.72 1.00

x1 x2 x3 x4 x5 x6

The model to be tested is that
x1-x4 measure only the latent “ability” factor and
x5-x6 measure only the “aspiration” factor.
i.e., two congeneric factors
If so, are the two factors correlated?
i.e., what is the true correlation φ12 between the latent factors?
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Multi-factor models Example: Ability and Aspiration

Specifying the model
The model can be shown as a path diagram:

z1X1
Self

z2X2
Parent

z3X3
Teacher

z4X4
Friend

z5X5
Educ Asp

z6X6
Col Plan

ξ1

Ability

λ11

λ21

λ31

λ41

ξ2

Aspiration

φ12

λ52

λ62
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Multi-factor models Example: Ability and Aspiration

Specifying the model

This can be cast as the congeneric CFA model:
x1
x2
x3
x4
x5
x6

 =


λ11 0
λ21 0
λ31 0
λ41 0
0 λ52
0 λ62


(
ξ1
ξ2

)
+


z1
z2
z3
z4
z5
z6


If this model fits, the questions of interest can be answered in terms of the
estimated parameters of the model:

Correlation of latent variables: The estimated value of φ12 = r(ξ1, ξ2).
Reliabilities of indicators: The communality, e.g., h2

i = λ2
i1 is the estimated

reliability of each measure.
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Multi-factor models Example: Ability and Aspiration

The solution (found with LISREL and PROC CALIS) has an acceptable fit:

χ2 = 9.26 df = 8 (p = 0.321)

The estimated parameters (standardized solution) are:
LAMBDA X Communality Uniqueness

Ability Aspiratn
S-C Abil 0.863 0 0.745 0.255
Par Eval 0.849 0 0.721 0.279
Tch Eval 0.805 0 0.648 0.352
FrndEval 0.695 0 0.483 0.517
Educ Asp 0 0.775 0.601 0.399
Col Plan 0 0.929 0.863 0.137

Thus,
Self-Concept of Ability is the most reliable measure of ξ1, and College
Plans is the most reliable measure of ξ2.
The correlation between the latent variables is φ12 = .67. Note that this is
higher than any of the individual between-set correlations.
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Multi-factor models Using PROC CALIS & sem()

Using PROC CALIS

For SAS, a correlation matrix can be input as follows:
1 data calken(TYPE=CORR);
2 _TYPE_ = 'CORR'; input _NAME_ $ V1-V6; % $
3 label V1='Self-concept of ability'
4 V2='Perceived parental evaluation'
5 V3='Perceived teacher evaluation'
6 V4='Perceived friends evaluation'
7 V5='Educational aspiration'
8 V6='College plans';
9 datalines;

10 V1 1. . . . . .
11 V2 .73 1. . . . .
12 V3 .70 .68 1. . . .
13 V4 .58 .61 .57 1. . .
14 V5 .46 .43 .40 .37 1. .
15 V6 .56 .52 .48 .41 .72 1.
16 ;
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Multi-factor models Using PROC CALIS & sem()

Using PROC CALIS

The CFA model can be specified in several ways:
With the FACTOR statement, specify names for the free parameters in Λ
(MATRIX _F_) and Φ(MATRIX _P_)

1 proc calis data=calken method=max edf=555 short mod;
2 FACTOR n=2;
3 MATRIX _F_ /* loadings */
4 [ ,1] = lam1-lam4 , /* factor 1 */
5 [ ,2] = 4 * 0 lam5 lam6 ; /* factor 2 */
6 MATRIX _P_
7 [1,1] = 2 * 1. ,
8 [1,2] = COR; /* factor correlation */
9 run;
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Multi-factor models Using PROC CALIS & sem()

Using PROC CALIS
With the LINEQS statement, specify linear equations for the observed
variables, using F1, F2, . . . for common factors and E1, E2, . . . for
unique factors.
STD statement specifies variances of the factors and errors
COV statement specifies covariances

1 proc calis data=calken method=max edf=555;
2 LINEQS
3 V1 = lam1 F1 + E1 ,
4 V2 = lam2 F1 + E2 ,
5 V3 = lam3 F1 + E3 ,
6 V4 = lam4 F1 + E4 ,
7 V5 = lam5 F2 + E5 ,
8 V6 = lam6 F2 + E6 ;
9 STD

10 E1-E6 = EPS: ,
11 F1-F2 = 2 * 1. ;
12 COV
13 F1 F2 = COR ;
14 run;
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Multi-factor models Using PROC CALIS & sem()

Using cfa() in the sem package

In addition to specifyEquations(), in the sem package, CFA models are
even easier to specify using the cfa() function.

1 library(sem)
2 mod.calken <- cfa()
3 F1: v1, v2, v3, v4
4 F2: v5, v6
5

6 fit.calken <- sem(mod.calken, R.calken, N=556)

Options allow you to specify reference indicators, and to specify
covariances among the factors, allowing the factors to be correlated or
uncorrelated.
By default, all factors in CFA models are allowed to be correlated,
simplifying model specification.
sem includes edit() and update() functions, allowing you to delete,
add, replace, fix, or free a path or parameter in a semmod object.
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Multi-factor models Speeded and non-speeded tests

Example: Speeded and Non-speeded tests

If the measures are cross-classified in two or more ways, it is possible to test
equivalence at the level of each way of classification.
Lord (1956) examined the correlations among 15 tests of three types:

Vocabulary, Figural Intersections, and Arithmetic Reasoning.
Each test given in two versions: Unspeeded (liberal time limits) and
Speeded.

The goal was to identify factors of performance on speeded tests:
Is speed on cognitive tests a unitary trait?
If there are several type of speed factors, how are they correlated?
How highly correlated are speed and power factors on the same test?
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Multi-factor models Speeded and non-speeded tests

Example: Speeded and Non-speeded tests

Hypothesized factor patterns (Λ):
(1) 3 congeneric sets

Λ15×3 =

V I R[ ]
β1 0 0
0 β2 0
0 0 β3

(2) 3 congeneric sets + speed factor

Λ15×4 =

V I R Sp



x
x
x x
x x
x x

x
x
x x
x x
x x

x
x
x x
x x
x x
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Multi-factor models Speeded and non-speeded tests

Example: Speeded and Non-speeded tests

Hypothesized factor patterns (Λ): Separate unspeeded and speeded factors

Λ15×6 =

V I R V I R



x
x

x
x
x

x
x

x
x
x

x
x

x
x
x

Unspeeded Speeded

Models:
(3) parallel: equal λ & θ for each
factor
(4) τ -equivalent: equal λ in each
col
(5) congeneric: no equality
constraints
(6) six factors: 3 content, 3 speed
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Multi-factor models Speeded and non-speeded tests

Results:

Hypothesis Parameters df χ2 ∆χ2 (df)
1: 3 congeneric sets 33 87 264.35
2: 3 sets + speed factor 42 78 140.50 123.85 (9)
3: 6 sets, parallel 27 93 210.10
4: 6 sets, τ -equiv. 36 84 138.72 71.45 (9)
5: 6 sets, congeneric 45 75 120.57 18.15 (9)
6: 6 factors 45 75 108.37 12.20 (0)

Notes:
Significant improvement from (1) to (2)→ speeded tests measure
something the unspeeded tests do not.
χ2 for (2) still large→ perhaps there are different kinds of speed factors.
Big improvement from (3) to (4)→ not parallel

42 / 1

2nd Order models

Higher-order factor analysis
In EFA & CFA, we often have a model that allows the factors to be
correlated (Φ 6= I)
If there are more than a few factors, it sometimes makes sense to
consider a 2nd-order model, that describes the correlations among the
1st-order factors.
In EFA, this was done simply by doing another factor analysis of the
estimated factor correlations Φ̂ from the 1st-order analysis (after an
oblique rotation)
The second stage of development of CFA models was to combine these
steps into a single model, and allow different hypotheses to be compared.
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2nd Order models

Second-order factor analysis: ACOVS model

Start with a first-order CFA model for the observed variables, y with
factors η

y = Λyη + ε

Now, consider a 2nd -order model for the correlations among the factors η

η = Γξ + ζ

Combining these equations, we get

y = Λy (Γξ + ζ) + ε

This is called the ACOVS model, for “analysis of covariance structures”
Jöreskog (1970, 1974)
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2nd Order models

Second-order factor analysis: ACOVS model

This gives the following model for the covariance matrix Σ:

Σ = Λy (ΓΦΓT + Ψ)ΛT
y + Θε

= ΛyΩΛT
y + Θε

where:
Λy (p×k) = loadings of observed variables on k 1st -order factors.
Ω(k×k) = correlations among 1st -order factors.
Θ(p×p) = diagonal matrix of unique variances of 1st -order factors.
Γ(k×r) = loadings of 1st -order factors on r second-order factors.
Φ(r×r) = correlations among 2nd -order factors.
Ψ = diagonal matrix of unique variances of 2nd -order factors.

The model is thus a nesting of a 2nd -order model for Γ within the 1st -order
model for Λy .
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2nd Order models

Example: 2nd Order Analysis of Self-Concept Scales

A theoretical model of self-concept by Shavelson & Bolus (1976) describes
facets of an individual’s self-concept and presents a hierarchical model of how
those facets are arranged.
To test this theory, Marsh & Hocevar (1985) analyzed measures of
self-concept obtained from 251 fifth grade children with a Self-Description
Questionnaire (SDQ). 28 subscales (consisting of two items each) of the SDQ
were determined to tap four non-academic and three academic facets of
self-concept:

physical ability
physical appearance
relations with peers
relations with parents
reading
mathematics
general school
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2nd Order models

Example: 2nd Order Analysis of Self-Concept Scales
The subscales of the SDQ were determined by a first-order exploratory factor
analysis. A second-order analysis was carried out examining the correlations
among the first-order factors to examine predictions from the Shavelson
model(s).
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2nd Order models Thurstone data

sem package: Second-order CFA, Thurstone data

Data on 9 ability variables:
1 R.thur <- readMoments(diag=FALSE, names=c(
2 'Sentences', 'Vocabulary', 'Sent.Completion', # verbal
3 'First.Letters', '4.Letter.Words','Suffixes', # fluency
4 'Letter.Series','Pedigrees', 'Letter.Group')) # reasoning
5 .828
6 .776 .779
7 .439 .493 .46
8 .432 .464 .425 .674
9 .447 .489 .443 .59 .541

10 .447 .432 .401 .381 .402 .288
11 .541 .537 .534 .35 .367 .32 .555
12 .38 .358 .359 .424 .446 .325 .598 .452

Thurstone & Thurstone (1941) considered these to measure three factors:
Verbal Comprehension,
Word Fluency,
Reasoning
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2nd Order models Thurstone data

sem package: Second-order CFA, Thurstone data

Using the specifyEquations() syntax:
1 mod.thur.eq <- specifyEquations()
2 Sentences = lam11*F1
3 Vocabulary = lam21*F1
4 Sent.Completion = lam31*F1
5 First.Letters = lam42*F2
6 4.Letter.Words = lam52*F2
7 Suffixes = lam62*F2
8 Letter.Series = lam73*F3
9 Pedigrees = lam83*F3

10 Letter.Group = lam93*F3
11 F1 = gam1*F4 # factor correlations
12 F2 = gam2*F4
13 F3 = gam3*F4
14 V(F1) = 1 # factor variances
15 V(F2) = 1
16 V(F3) = 1
17 V(F4) = 1

Each line gives a regression equation or the specification of a factor variance
(V) or covariance (C)
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Fit the model using sem():
1 (fit.thur <- sem(mod.thur.eq, R.thur, 213))

1 Model Chisquare = 38.2 Df = 24
2

3 lam11 lam21 lam31 lam41 lam52 lam62 lam73 lam83 lam93 gam1
4 0.5151 0.5203 0.4874 0.5211 0.4971 0.4381 0.4524 0.4173 0.4076 1.4438
5 gam2 gam3 th1 th2 th3 th4 th5 th6 th7 th8
6 1.2538 1.4066 0.1815 0.1649 0.2671 0.3015 0.3645 0.5064 0.3903 0.4814
7 th9
8 0.5051

More detailed output is provided by summary():
1 summary(sem.thur)

1 Model Chisquare = 38.196 Df = 24 Pr(>Chisq) = 0.033101
2 Chisquare (null model) = 1101.9 Df = 36
3 Goodness-of-fit index = 0.95957
4 Adjusted goodness-of-fit index = 0.9242
5 RMSEA index = 0.052822 90% CI: (0.015262, 0.083067)
6 Bentler-Bonnett NFI = 0.96534
7 Tucker-Lewis NNFI = 0.98002
8 Bentler CFI = 0.98668
9 SRMR = 0.043595

10 BIC = -90.475
11 ...

2nd Order models Thurstone data

sem package: Second-order CFA, Thurstone data

The same model can be specified using cfa(), designed specially for
confirmatory factor models
Each line lists the variables that load on a given factor.

1 mod.thur.cfa <- cfa(reference.indicators=FALSE,
2 covs=c("F1", "F2", "F3", "F4"))
3 F1: Sentences, Vocabulary, Sent.Completion
4 F2: First.Letters, 4.Letter.Words, Suffixes
5 F3: Letter.Series, Pedigrees, Letter.Group
6 F4: F1, F2, F3
7

8 sem.thur.cfa <- sem(mod.thur.cfa, R.thur, 213)
9
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2nd Order models Thurstone data

Path diagram:
1 pathDiagram(sem.thur, file="sem-thurstone", edge.labels="both")

1 Running dot -Tpdf -o sem-thurstone.pdf sem-thurstone.dot
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2nd Order models Thurstone data

sem package: Other features

With raw data input, sem provides robust estimates of standard errors
and robust tests
Can accommodate missing data, via full-information maximum likelihood
(FIML)
miSem() generates multiple imputations of missing data using the mi
package
bootSem() provides nonparametric bootstrap estimates by independent
random sampling
A given model can be easily modified via edit() and update()
methods
Multiple-group analyses and tests of factorial invariance:
multigroupModel().
Related: semPlot: lovely, flexible, pub. quality path diagrams
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2nd Order models Thurstone data

Path diagram from semPlot
1 library(semPlot)
2 semPaths(sem.thur, what="std", color=list(man="lightblue", lat="pink"),
3 nCharNodes=6, sizeMan=6, edge.color="black")
4 title("Thurstone 2nd Order Model, Standardized estimates", cex=1.5)

0.160.18 0.2 0.3

0.32 0.34

0.36

0.39

0.39 0.4 0.50.5

0.7 0.70.720.78

0.78

0.8

0.820.82

0.840.860.9 0.91

1

Sntncs Vcblry Snt.Cm Frst.L 4.Lt.W Suffxs Lttr.S Pedgrs Lttr.G

F1 F2 F3

F4

Thurstone 2nd Order Model, Standardized estimates
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Factorial invariance

Factorial Invariance

Multi-sample analyses:

When a set of measures have been obtained from samples from several
populations, we often wish to study the similarities in factor structure
across groups.
The CFA/SEM model allows any parameter to be assigned an arbitrary
fixed value, or constrained to be equal to some other parameter.
Constraints across groups provide the way to test these models.
We can test any degree of invariance from totally separate factor
structures to completely invariant ones.
Model
Let xg be the vector of tests administered to group g,g = 1,2, . . . ,m, and
assume that a factor analysis model holds in each population with some
number of common factors, kg .

Σg = ΛgΦgΛT
g + Ψg
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Factorial invariance

Factorial Invariance: Examples

Arguably among the most important recent development in personality
psychology is the idea that individual differences in personality
characteristics is organized into five main trait domains:
Extraversion, Agreeableness, Conscientiousness, Neuroticism, and
Openness

One widely used instrument is the 60-item NEO-Five factor inventory (Costa
& McCrae, 1992), developed and analyzed for a North American,
English-speaking population
To what extent does the same factor structure apply across gender?
To what extent does the same factor structure applies in other cultural and
language goups?

The emerging field of cross-cultural psychology offers many similar
examples.
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Factorial invariance Hypotheses

Factorial Invariance: Hypotheses

We can examine a number of different hypotheses about how “similar” the
covariance structure is across groups.

Hypotheses

Can we simply pool the data over groups?
If not, can we say that the same number of factors apply in all groups?
If so, are the factor loadings equal over groups?
What about factor correlations and unique variances?

Software
LISREL, AMOS, and M Plus all provide convenient ways to do
multi-sample analysis.
PROC CALIS in SAS 9.3 does too.
In R, the lavaan package provides multi-sample analysis and the
measurementInvariance() function. The sem package includes a
multigroupModel() for such models
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Factorial invariance Hypotheses

Equality of Covariance Matrices

H=Σ : Σ1 = Σ2 = · · · = Σm

If this hypothesis is tenable, there is no need to analyse each group
separately or test further for differences among them: Simply pool all the
data, and do one analysis!
If we reject H=Σ, we may wish to test a less restrictive hypothesis that posits
some form of invariance.
The test statistic for H=Σ is Box’s test,

χ2
=Σ = n log |S| −

m∑
g=1

ng log |Sg |

which is distributed approx. as χ2 with d=Σ = (m − 1)p(p − 1)/2 df.

(This test can be carried out in SAS with PROC DISCRIM using the
POOL=TEST option)
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Factorial invariance Hypotheses

Same number of factors (Configural invariance)
The least restrictive form of “invariance” is simply that the number of
factors is the same in each population:

Hk : k1 = k2 = · · · = km = a specified value, k

This can be tested by doing an unrestricted factor analysis for k factors on
each group separately, and summing the χ2’s and degrees of freedom,

χ2
k =

m∑
g

χ2
k (g) dk = m × [(p − k)2 − (p + k)]/2

If this hypothesis is rejected, there is no sense in testing more restrictive
models
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Factorial invariance Hypotheses

Same factor pattern (Weak invariance)
If the hypothesis of a common number of factors is tenable, one may
proceed to test the hypothesis of an invariant factor pattern:

HΛ : Λ1 = Λ2 = · · · = Λm

The common factor pattern Λ may be either completely unspecified, or be
specified to have zeros in certain positions.
To obtain a χ2 for this hypothesis, estimate Λ (common to all groups), plus
Φ1,Φ2, . . . ,Φm, and Ψ1,Ψ2, . . . ,Ψm, yielding a minimum value of the
function, F . Then, χ2

Λ = 2× Fmin.
To test the hypothesis HΛ, given that the number of factors is the same in all
groups, use

χ2
Λ|k = χ2

Λ − χ2
k with dΛ|k = dΛ − dk degrees of freedom
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Factorial invariance Hypotheses

Same factor pattern and unique variances (Strong invariance)
A stronger hypothesis is that the unique variances, as well as the factor
pattern, are invariant across groups:

HΛΨ :

{
Λ1 = Λ2 = · · · = Λm
Ψ1 = Ψ2 = · · · = Ψm

Same factor pattern, means and unique variances (Strict invariance)
The strongest hypothesis is that the factor means are also equal across
groups as well as the factor patterns and unique variances:

HΛΨµ :

 Λ1 = Λ2 = · · · = Λm
Ψ1 = Ψ2 = · · · = Ψm
µ1 = µ2 = · · · = µm
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Factorial invariance Example: Academic and Non-academic boys

Example: Academic and Non-Academic Boys

Sorbom (1976) analyzed STEP tests of reading and writing given in grade 5
and grade 7 to samples of boys in Academic and Non-Academic programs.

Data
Academic (N = 373) Non-Acad (N = 249)

Read Gr5 281.35 174.48

Writ Gr5 184.22 182.82 134.47 161.87

Read Gr7 216.74 171.70 283.29 129.84 118.84 228.45

Writ Gr7 198.38 153.20 208.84 246.07 102.19 97.77 136.06 180.46
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Factorial invariance Example: Academic and Non-academic boys

Hypotheses
The following hypotheses were tested:

Hypothesis Model specifications

A. H=Σ : Σ1 = Σ2

 Λ1 = Λ2 = I(4×4)

Ψ1 = Ψ2 = 0(4×4)

Φ1 = Φ2 constrained, free

B. Hk=2 : Σ1,Σ2 both fit with
k = 2 correlated factors

 Λ1 = Λ2 =

[
x 0
x 0
0 x
0 x

]
Φ1,Φ2,Ψ1,Ψ2 free

C. HΛ : Hk=2 & Λ1 = Λ2 Λ1 = Λ2 (constrained)

D. HΛ,Θ : HΛ & Ψ1 = Ψ2

{
Ψ1 = Ψ2 (constrained)
Λ1 = Λ2

E. HΛ,Θ,Φ : HΛ,Θ & Φ1 = Φ2

 Φ1 = Φ2 (constrained)
Ψ1 = Ψ2
Λ1 = Λ2
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Factorial invariance Example: Academic and Non-academic boys

Analysis
The analysis was carried out with both LISREL and AMOS. AMOS is
particularly convenient for multi-sample analysis, and for testing a series of
nested hypotheses.

Summary of Hypothesis Tests for Factorial Invariance

Hypothesis Overall fit Group A Group N-A
χ2 df prob AIC GFI RMSR GFI RMSR

A: H=Σ 38.08 10 .000 55.10 .982 28.17 .958 42.26
B: Hk=2 1.52 2 .468 37.52 .999 0.73 .999 0.78
C: HΛ 8.77 4 .067 40.65 .996 5.17 .989 7.83
D: HΛ,Ψ 21.55 8 .006 44.55 .990 7.33 .975 11.06
E: HΛ,Ψ,Φ 38.22 11 .000 53.36 .981 28.18 .958 42.26

The hypothesis of equal factor loadings (HΛ) in both samples is tenable.
Unique variances appear to differ in the two samples.
The factor correlation (φ12) appears to be greater in the Academic sample
than in the non-Academic sample.
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Factorial invariance lavaan package: Factorial invariance tests

lavaan package: Factorial invariance tests
Data

Data for Academic and Non-academic boys:
1 library(sem)
2 Sorbom.acad <- read.moments(diag=TRUE,
3 names=c('Read.Gr5', 'Writ.Gr5', 'Read.Gr7', 'Writ.Gr7'))
4 281.349
5 184.219 182.821
6 216.739 171.699 283.289
7 198.376 153.201 208.837 246.069
8

9 Sorbom.nonacad <- read.moments(diag=TRUE,
10 names=c('Read.Gr5', 'Writ.Gr5', 'Read.Gr7', 'Writ.Gr7'))
11 174.485
12 134.468 161.869
13 129.840 118.836 228.449
14 102.194 97.767 136.058 180.460
15

16 # make the two matrices into a list
17 Sorbom <- list(acad=Sorbom.acad, nonacad=Sorbom.nonacad)
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Factorial invariance lavaan package: Factorial invariance tests

lavaan package: Factorial invariance tests I
Model

Specify lavaan model for 2 correlated, non-overlapping factors:
1 library(lavaan)
2 Sorbom.model <-
3 'G5 =˜ Read.Gr5 + Writ.Gr5
4 G7 =˜ Read.Gr7 + Writ.Gr7 '

Run a cfa model (testing k=2 for each group):
1 (Sorbom.cfa <- cfa(Sorbom.model, sample.cov=Sorbom, sample.nobs=c(373,249)))

1 Lavaan (0.4-7) converged normally after 240 iterations
2 Number of observations per group
3 acad 373
4 nonacad 249
5
6 Estimator ML
7 Minimum Function Chi-square 1.525
8 Degrees of freedom 2
9 P-value 0.467

10
11 Chi-square for each group:
12 acad 0.863
13 nonacad 0.662
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Factorial invariance lavaan package: Factorial invariance tests

Tests of measurement invariance I

Test all models of measurement invariance:
1 library(semTools)
2 measurementInvariance(Sorbom.model, sample.cov=Sorbom,
3 sample.nobs=c(373,249))

1 Measurement invariance tests:
2

3 Model 1: configural invariance:
4 chisq df pvalue cfi rmsea bic
5 1.525 2.000 0.467 1.000 0.000 18788.554
6

7 Model 2: weak invariance (equal loadings):
8 chisq df pvalue cfi rmsea bic
9 8.806 4.000 0.066 0.997 0.062 18782.970

10

11 [Model 1 versus model 2]
12 delta.chisq delta.df delta.p.value delta.cfi
13 7.282 2.000 0.026 0.003

67 / 1

Factorial invariance lavaan package: Factorial invariance tests

Tests of measurement invariance II

1 Model 3: strong invariance (equal loadings + intercepts):
2 chisq df pvalue cfi rmsea bic
3 8.806 6.000 0.185 0.998 0.039 18821.567
4

5 [Model 1 versus model 3]
6 delta.chisq delta.df delta.p.value delta.cfi
7 7.282 4.000 0.122 0.002
8

9 [Model 2 versus model 3]
10 delta.chisq delta.df delta.p.value delta.cfi
11 0.000 2.000 1.000 -0.001
12 ...

A fourth model also tests equality of means, but means are not available for
this example.
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Summary

Summary

measurement error reduces precision, but worse— introduces bias
CFA & SEM use latent variables in a measurement model to allow for this

x = Λξ + δ =⇒ Σ = ΛΦΛT + Θ

One-factor models allow for testing various forms of “equivalence” within
the SEM framework

An essential idea in CFA is allowing for free and fixed parameters and
equality contraints
These ideas extend directly to more complex models, with multiple factors of
possibly different types

Higher-order CFA models take this a step further, allowing a factor
structure for the 1st -order factors
Multiple-group models allow for testing a variety of measurement
invariance models
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