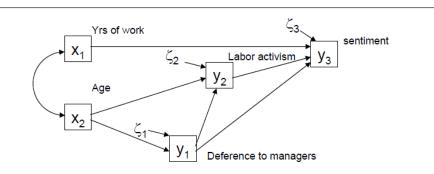
Confirmatory Factor Analysis & Structural Equation Models

Lecture 1: Overview & Path Analysis

Michael Friendly

SCS Short Course, May, 2019

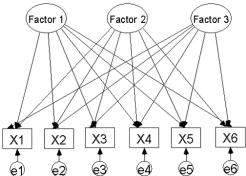


Overview

EFA, CFA, SEM?

Exploratory Factor Analysis (EFA)

- Method for "explaining" correlations of observed variables in terms of a small number of "common factors"
- Primary Q: How many factors are needed?
- Secondary Q: How to interpret the factors?



Three-factor EFA model. Each variable loads on all factors.

The factors are assumed to be uncorrelated

3/67

Course overview

Course notes & other materials will be available at:

http://datavis.ca/courses/CFA-SEM

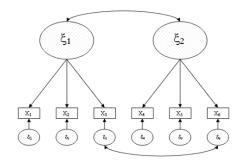
- Lecture 1: Setting the stage: EFA, CFA, SEM, Path analysis
 - Goal: Understand relations among a large number of observed variables
 - Goal: Extend regression methods to (a) multiple outcomes, (b) latent variables, (c) accounting for measurement error or unreliability
 - Thinking: Equations \rightarrow Path diagram \rightarrow estimate, test, visualize
- Lecture 2: Measurement models & CFA
 - Effects of measurement error
 - Testing equivalence of measures with CFA
 - Multi-factor, higher-order models
- Lecture 3: SEM with latent variables

Overview

EFA, CFA, SEM?

Confirmatory Factor Analysis (CFA)

- Method for testing hypotheses about relationships among observed variables
- Does this by imposing restrictions on an EFA model
- Q: Do the variables have a given factor structure?
- Q: How to compare competing models?



Two-factor CFA model with nonoverlapping factors

The factors are allowed to be correlated, as are two unique factors

EFA, CFA, SEM?

Structural Equation Models (SEM)

- Generalizes EFA, CFA to include
 - Simple and multiple regression
 - General linear model (Anova, multivariate regression, ...)
 - Path analysis several simultaneous regression models
 - Higher-order CFA models
 - Multi-sample CFA models ("factorial invariance")
 - Latent growth/trajectory models
 - Many more ...
- A general framework for describing, estimating and testing linear statistical models

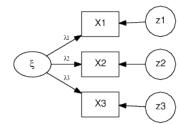
Recall basic EFA ideas

- Observed variables, x_1, x_2, \dots, x_p is considered to arise as a set of regressions on some unobserved, latent variables called common factors, $\xi_1, \xi_2, \dots, \xi_k$.
- That is, each variable can be expressed as a regression on the common factors. For three variables and one common factor, ξ , the model is:

$$x_1 = \lambda_1 \xi + z_1$$

$$x_2 = \lambda_2 \xi + z_2$$

$$x_3 = \lambda_3 \xi + z_3$$



• The common factors account for correlations among the xs.

Overview

• The z_i are error terms, or unique factors

5/67

Basic EFA ideas

The EFA model

• For k common factors, the common factor model is

$$x_1 = \lambda_{11}\xi_1 + \dots + \lambda_{1k} + z_1$$

$$x_2 = \lambda_{21}\xi_1 + \dots + \lambda_{2k} + z$$

$$\vdots$$

$$x_{1} = \lambda_{11}\xi_{1} + \dots + \lambda_{1k} + z_{1}$$

$$x_{2} = \lambda_{21}\xi_{1} + \dots + \lambda_{2k} + z_{2}$$

$$\vdots$$

$$x_{p} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{p} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \dots & \lambda_{1k} \\ \lambda_{21} & \dots & \lambda_{2k} \\ \vdots & \vdots & \vdots \\ \lambda_{p1} & \vdots & \lambda_{pk} \end{bmatrix} \begin{bmatrix} \xi_{1} \\ \vdots \\ \xi_{k} \end{bmatrix} + \begin{bmatrix} z_{1} \\ z_{2} \\ \vdots \\ z_{p} \end{bmatrix}$$

$$x_p = \lambda_{p1} \xi_1 + \dots + \lambda_{pk} + z_p$$

$$\mathbf{x} = \mathbf{\Lambda}\boldsymbol{\xi} + \mathbf{z}$$

• This looks like a set of multiple regression models for the xs, but it is not testable, because the factors, ξ , are unobserved

The EFA model

• However, the EFA model implies a particular form for the variance-covariance matrix, Σ , which is testable

$$\mathbf{x} = \mathbf{\Lambda}\boldsymbol{\xi} + \mathbf{z}$$
 \Longrightarrow $\mathbf{\Sigma} = \mathbf{\Lambda}\mathbf{\Phi}\mathbf{\Lambda}^T + \mathbf{\Psi}$

Basic EFA ideas

where:

- $\Lambda_{p \times k}$ = factor pattern ("loadings")
- $\Phi_{k \times k}$ = matrix of correlations among factors.
- ullet $\Psi =$ diagonal matrix of unique variances of observed variables.
- Typically, it is initially assumed that factors are uncorrelated ($\Phi = I$, the identity matrix)
- Can use an oblique rotation to allow correlated factors

Limitations of EFA

 The only true statistical tests in EFA are tests for the number of common factors (when estimated by ML)

> H_0 : $k = k_0$ k_0 factors are sufficient H_a : $k > k_0$ $> k_0$ factors are necessary

- Substantive questions about the nature of factors can only be addressed approximately through factor rotation methods
 - Varimax & friends attempt rotation to simple structure
 - Oblique rotation methods allow factors to be correlated
 - Procrustes rotation allows rotation to a "target" (hypothesized) loading matrix

Historical development: EFA → CFA

- ML estimation for the EFA model finds estimates that minimize the difference between the observed covariance matrix, \mathbf{S} , and that reproduced by the model, $\widehat{\Sigma} = \widehat{\Lambda} \widehat{\Phi} \widehat{\Lambda}^\mathsf{T} + \widehat{\Psi}$
 - Requires imposing k^2 restrictions for a unique solution
 - Gives a χ^2 test for goodness of fit

$$(N-1)F_{min}(\mathbf{S},\widehat{\boldsymbol{\Sigma}})\sim\chi^2$$
 with $df=[(p-k)^2-p-k]/2$

- Joreskog (1969) proposed that a factor hypothesis could be tested by imposing restrictions on the EFA model— fixed elements in Λ , Ψ , usually 0
 - Needs more than k² restrictions
 - The ML solution is then found for the remaining free parameters
 - The χ^2 for the restricted solution gives a test for how well the hypothesized factor structure fits.

9/67

verview

EFA to CFA

CFA: Restricted EFA

The pattern below specifies two non-overlapping oblique factors. The x's are the only free parameters.

$$\Lambda = \begin{bmatrix} x & 0 \\ x & 0 \\ x & 0 \\ 0 & x \\ 0 & x \\ 0 & x \end{bmatrix} \qquad \Phi = \begin{bmatrix} 1 \\ x & 1 \end{bmatrix}$$

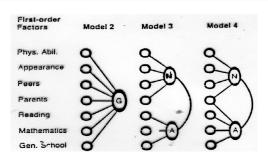
- This CFA model has only 7 free parameters and df = 15 7 = 8.
- A k = 2-factor EFA model would have all parameters free and df = 15 11 = 4 degrees of freedom.
- If this restricted model fits (has a small χ^2/df), it is strong evidence for two non-overlapping oblique factors.
- That hypothesis cannot be tested by EFA + rotation.

Overview CFA to SEM

Historical development: CFA → SEM

Higher-order factor analysis: The ACOVS model

- With more than a few factors, allowed to be correlated ($\Phi \neq I$), can we factor the factor correlations?
- In EFA, this was done by another EFA of the estimated factor correlations from an oblique rotation
- The second stage of development of CFA/SEM models combined these steps into a single model, and allowed different hypotheses to be compared



LISREL/SEM Model

- Jöreskog (1973) further generalized the ACOVS model to include structural equation models along with CFA.
- Two parts:
 - Measurement model How the latent variables are measured in terms of the observed variables; measurement properties (reliability, validity) of observed variables. [Traditional factor analysis models]
 - Structural equation model Specifies causal relations among observed and latent variables.
 - Endogenous variables determined within the model (v)
 - Exogenous variables determined outside the model (x)

Measurement models for observed variables

Structural eqn. for latent variables

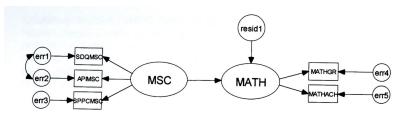
$$m{x} = m{\Lambda}_{\!\scriptscriptstyle X} m{\xi} + m{\delta}$$

$$\mathbf{y} = \mathbf{\Lambda}_{\mathbf{y}} \boldsymbol{\eta} + \boldsymbol{\epsilon}$$

$$oldsymbol{\eta} = oldsymbol{\mathcal{B}} oldsymbol{\eta} + \Gamma oldsymbol{\xi} + \zeta$$

LISREL/SEM Model

SEM model for measures of Math Self-Concept and MATH achievement:



This model has:

- 3 observed indicators in a measurement model for MSC (x)
- 2 observed indicators in a measurement model for MATH achievement
 (y)
- A structural equation predicting MATH achievement from MSC

13/67

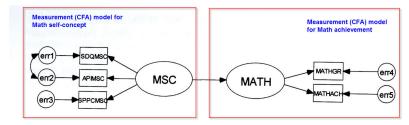
Overviev

CFA to SEM

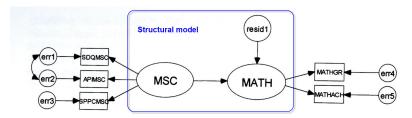
Overview software

LISREL/SEM Model

Measurement sub-models for \boldsymbol{x} and \boldsymbol{v}



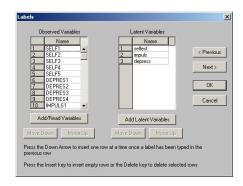
Structural model, relating ξ to η

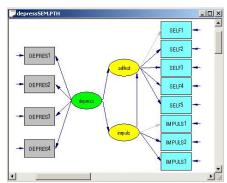


CFA/SEM software: LISREL

LISREL (http://www.ssicentral.com/) [student edition available]

- Originally designed as stand-alone program with matrix syntax
- LISREL 8.5+ for Windows/Mac: includes
 - interactive, menu-driven version;
 - PRELIS (pre-processing, correlations and models for categorical variables);
 - SIMPLIS (simplified, linear equation syntax)
 - path diagrams from the fitted model

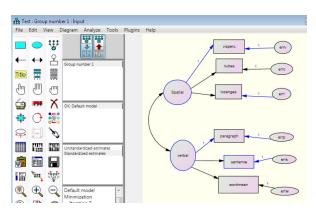




CFA/SEM software: Amos

Amos (www.ibm.com/software/products/en/spss-amos): Linear equation syntax + path diagram model description

- import data from SPSS, Excel, etc; works well with SPSS
- Create the model by drawing a path diagram
- simple facilities for multi-sample analyses
- nice comparative displays of multiple models



17/67

Overview

software

R: sem, lavaan and others

- sem package (John Fox)
 - flexible ways to specify models: cfa(), linearEquations(), and multigroupModel()

software

- bootSem () provides bootstrap analysis of SEM models
- miSem() provides multiple imputation
- ullet path diagrams using pathDiagram() o graphviz
- polychor package for polychoric correlations
- lavaan package (Yves Rossell)
 - Functions lavaan(), cfa(), sem(), growth() (growth curve models)
 - Handles multiple groups models
 - semTools provides tests of measurement invariance, multiple imputation, bootstrap analysis, power analysis for RMSEA, ...
- semPlot package path diagrams for sem, lavaan, Mplus, ... models

SAS: PROC CALIS

- SAS 9.3+: PROC CALIS
 - MATRIX (à la LISREL), LINEQS (à la EQS), RAM, ... syntax
 - Now handles multi-sample analyses
 - Multiple-model analysis syntax, e.g., Model 2 is like Model 1 except ...
 - Enhanced output controls
 - customizable fit summary table
- SAS macros http://datavis.ca/sasmac/:
 - caliscmp macro: compare model fits from PROC CALIS à la Amos
 - csmpower macro: power estimation for covariance structure models

Mplus

Mplus https://www.statmodel.com/[\$\$\$, but cheaper student price]

- Handles the widest range of models: CFA, SEM, multi-group, multi-level, latent group
- Variables: continuous, censored, binary, ordered categorical (ordinal), unordered categorical (nominal), counts, or combinations of these variable types
- For binary and categorical outcomes: probit, logistic regression, or multinomial logistic regression models.
- For count outcomes: Poisson and negative binomial regression models.
- Extensive facilities for simulation studies.

19/67

20/67

Path diagrams

Caveats

- CFA and SEM models are fit using the covariance matrix (S)
 - The raw data is often not analyzed
 - Graphs that can reveal potential problems often not made
- Typically, this assumes all variables are complete, continuous, multivariate normal. Implies:
 - S is a sufficient statistical summary
 - Relations assumed to be linear are in fact linear
 - Goodness-of-fit (χ^2) and other tests based on asymptotic theory $(N \to \infty)$
 - Missing data, skewed or long-tailed variables must be handled first
- Topics not covered here:
 - Using polychoric correlations for categorical indicators
 - Distribution-free estimation methods (still asymptotic)

Path diagrams

- Bootstrap methods to correct for some of the above
- Multiple imputation to handle missing data

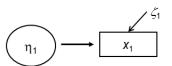
X₁

 X_2

 Rectangles and square boxes represent observed (manifest) variables

Visual representation of a set of simultaneous equations for EFA, CFA, SEM

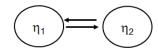
 Double-headed curved arrows represent unanalyzed association (correlation)



Path diagrams: Symbols

models (idea from Sewell Wright, 1920s)

- Ellipses and circles represent unobserved (latent) variables
- Straight, single-headed arrows indicate causal relations from base to head
- Unenclosed symbol is an error term (in equation or measurement error)



- Double single-headed arrows indicate reciprocal causation
- o Allows different weights for each path

22/67

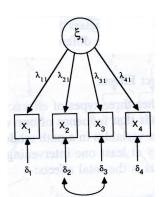
21/67

21/0/

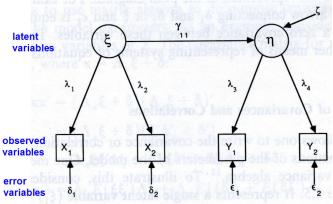
23/67

Path diagrams

Schematic Examples:



CFA, 1-factor model (correlated errors)

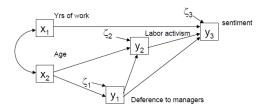


SEM, two latent variables, each with two indicators Causal relation betweeen ξ (Xs) and η (Ys)

Path diagrams

Path diagrams

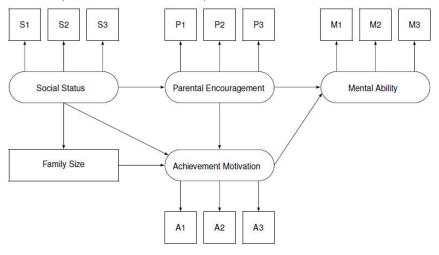
Substantive example: Path analysis model for union sentiment (McDonald & Clelland, 1984)



- No latent variables— all variables are observed indicators
- x_1, x_2 are exogenous variables—they are not explained within the model
- Correlation between x₁, x₂ is shown as a double-headed arrow
- y_1, y_2, y_3 are endogenous variables—they are explained within the model
- Causal relations are shown among the variables by single-headed arrows
- Residual (error) terms, $\zeta_1, \zeta_2, \zeta_3$ are shown as single-headed arrows to the y variables

Path diagrams

Substantive example: SEM with multiple indicators, path model for latent variables (error terms not shown)



Path Analysis

- Path analysis is a simple special case of SEM
 - These models contain only observed (manifest) variables,
 - No latent variables
 - Assumes that all variables are measured without error
 - The only error terms are residuals for y (endogenous) variables
- They are comprised of a set of linear regression models, estimated simultaneously
 - Traditional approaches using MRA fit a collection of separate models
 - Multivariate MRA (MMRA) usually has all y variables predicted by all x variables
 - In contrast, SEM path models allow a more general approach, in a single model

25/67

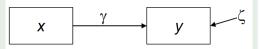
Path analysis Simple examples

Path analysis Simple examples

Path Analysis: Simple examples

Simple linear regression

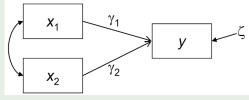
$$y_i = \gamma x_i + \zeta_i$$



- γ is the slope coefficient; ζ is the residual (error term)
- Means and regression intercepts usually not of interest, and suppressed

Multiple regression

$$y_i = \gamma_1 x_{1i} + \gamma_2 x_{2i} + \zeta_i$$



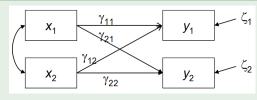
- Double-headed arrow signifies the assumed correlation between $x_1 \& x_2$
- In univariate MRA ($y \sim x_1 + \dots$), there can be any number of xs

Path Analysis: Simple examples

Multivariate multiple regression

$$y_{1i} = \gamma_{11} x_{1i} + \gamma_{12} x_{2i} + \zeta_{1i}$$

$$y_{2i} = \gamma_{21} x_{2i} + \gamma_{22} x_{2i} + \zeta_{2i}$$



- Now need two equations to specify the model
- Note subscripts: γ_{12} is coeff of y_1 on x_2 ; γ_{21} is coeff of y_2 on x_1

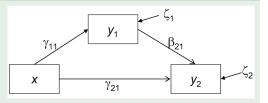
With more equations and more variables, easier with vectors/matrices

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} \quad \text{or} \quad \mathbf{y} = \mathbf{\Gamma}\mathbf{x} + \mathbf{\zeta}$$

Path Analysis: Simple examples

Simple mediation model

$$y_{1i} = \gamma_{11}x_i + \zeta_{1i} y_{2i} = \gamma_{21}x_i + \beta_{21}y_{1i} + \zeta_{2i}$$



- Something new: y_1 is a dependent variable in the first equation, but a predictor in the second
- This cannot be done simultaneously via standard MRA or MMRA models

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ \beta_{21} & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \gamma_{11} \\ \gamma_{21} \end{pmatrix} x + \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} \quad \text{or} \quad \mathbf{y} = \mathbf{B}\mathbf{y} + \mathbf{\Gamma}\mathbf{x} + \zeta$$

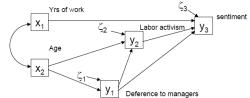
29/67

Example: Union sentiment

Norma Rae example— Union sentiment among non-union Southern textile workers (McDonald & Clelland (1984); Bollen (1986))

- Exogenous variables: x_1 (years of work); x_2 (age)
- Endogenous variables: y_1 (deference to managers); y_2 (support for labor activism); y_3 (support for unions)

The hypothesized model is comprised of three linear regressions



$$y_1 = \gamma_{12}x_2 + \zeta_1$$

$$y_2 = \beta_{21}y_1 + \gamma_{22}x_2 + \zeta_2$$

$$y_3 = \beta_{31}y_1 + \beta_{32}y_2 + \gamma_{31}x_1 + \zeta_3$$

These can be expressed as a single matrix equation for the \mathbf{v} variables:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ \beta_{21} & 0 & 0 \\ \beta_{31} & \beta_{32} & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{bmatrix} 0 & \gamma_{12} \\ 0 & \gamma_{22} \\ \gamma_{31} & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix}$$

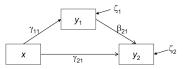
Exogenous and Endogenous Variables

Exogenous variables

- Are only independent (x) variables in the linear equations
- Never have arrows pointing at them from other variables
- They are determined outside ("ex") the model
- In path analysis models they are considered measured w/o error

Endogenous variables

- Serves as a dependent variable (outcome) in at least one equation
- If a variable has at least one arrow pointing to it, it is endogenous
- They are determined inside ("en") the model
- In path analysis models they always have error terms



In the simple mediation model, x is exogenous, and y_1, y_2 are endogenous

The general path analysis model

The general form of a SEM path analysis model is expressed in the matrix equation

$$\mathbf{v} = \mathbf{B}\mathbf{v} + \Gamma\mathbf{x} + \zeta$$

where:

- \mathbf{v} is a $p \times 1$ vector of endogenous variables
- x is a $q \times 1$ vector of exogenous variables
- $B_{n \times n}$ ("Beta") gives the regression coefficients of endogenous (\mathbf{y}) variables on other endogenous variables
- $\Gamma_{p \times q}$ ("Gamma") gives the regression coefficients of endogenous variables on the exogenous variables (x)
- $\zeta_{p\times 1}$ is the vector of errors in the equations (i.e., regression residuals)

However, some parameters in **B** and Γ are typically fixed to 0

$$m{B} = \left[egin{array}{ccc} 0 & 0 & 0 \ eta_{21} & 0 & 0 \ eta_{31} & eta_{32} & 0 \end{array}
ight] \quad m{\Gamma} = \left[egin{array}{ccc} 0 & \gamma_{12} \ 0 & \gamma_{22} \ \gamma_{31} & 0 \end{array}
ight]$$

Path analysis General path model

Read the variance-covariance matrix of the variables using readMoments ()

Union sentiment: using the sem package

1.559

-18.857 17.861 28.250 7.139 215.662

The general path analysis model

Other parameters pertain to variances and covariances of the exogenous variables and the error terms

• $\Phi_{a \times a}$ ("Phi")— variance-covariance matrix of the exogenous variables. Typically, these are all free parameters.

For the union sentiment example, Φ is a 2 × 2 matrix:

$$\Phi = \begin{bmatrix} \operatorname{var}(X_1) \\ \operatorname{cov}(X_1, X_2) & \operatorname{var}(X_2) \end{bmatrix}$$

• $\Psi_{p\times p}$ ("Psi")— variance-covariance matrix of the error terms (ζ). Typically, the error variances are free parameters, but their covariances are fixed to 0 (models can allow correlated errors)

For the union sentiment example, Ψ is a 3 \times 3 diagonal matrix:

$$\Psi = \begin{bmatrix} \operatorname{var}(\zeta_1) \\ 0 & \operatorname{var}(\zeta_2) \\ 0 & 0 & \operatorname{var}(\zeta_2) \end{bmatrix}$$

Path analysis General path model

library (sem) union <- readMoments(diag=TRUE, names=c('y1', 'y2', 'y3', 'x1', 'x2'), 14.610 -5.250 11.017 -8.057 11.087

1.021

The model can be specified in different, equivalent notations, but the simplest is often linear equations format, with specifyEquations ()

```
union.mod <- specifyEquations(covs="x1, x2", text="
  y1 = qam12 * x2
  y2 = beta21*y1 + gam22*x2
  y3 = beta31*y1 + beta32*y2 + gam31*x1
```

-0.482 0.677

33/67

35/67

Path analysis General path model

34/67

Union sentiment: using the sem package

Internally, sem expresses the model using "RAM" path notation (same as used by specifyModel()):

```
union.mod
     Path
               Parameter
## 1 x2 -> y1 gam12
## 2 y1 -> y2 beta21
## 3 x2 -> y2 gam22
## 4 y1 -> y3 beta31
## 5 y2 -> y3 beta32
## 6 x1 -> y3 gam31
## 7 x1 <-> x1 V[x1]
## 8 x1 <-> x2 C[x1,x2]
## 9 x2 <-> x2 V[x2]
## 10 y1 <-> y1 V[y1]
## 11 y2 <-> y2 V[y2]
## 12 y3 <-> y3 V[y3]
```

Fit the model using sem ():

```
union.sem <- sem(union.mod, union, N=173)
```

Union sentiment: Goodness-of-fit statistics

The summary () method prints a collection of goodness-of-fit statistics:

```
opt <- options(fit.indices = c("GFI", "AGFI", "RMSEA", "NNFI",</pre>
         "CFI", "AIC", "BIC"))
summary(union.sem)
```

```
## Model Chisquare = 1.25 Df = 3 \text{ Pr}(>\text{Chisq}) = 0.741
## Goodness-of-fit index = 0.997
## Adjusted goodness-of-fit index = 0.986
## RMSEA index = 0 90% CI: (NA, 0.0904)
## Tucker-Lewis NNFI = 1.0311
## Bentler CFI = 1
## AIC = 25.3
## BIC = -14.2
##
##
##
  R-square for Endogenous Variables
   y1 y2 y3
## 0.113 0.230 0.390
##
```

Union sentiment: Parameter estimates

```
Parameter Estimates
##
           Estimate Std Error z value Pr(>|z|)
## gam12
            -0.0874 0.0187
                               -4.68
                                       2.90e-06 y1 <--- x2
            -0.2846 0.0617
                               -4.61
                                       3.99e-06 y2 <--- y1
## beta21
             0.0579 0.0161
                                3.61
                                       3.09e-04 y2 <--- x2
## gam22
            -0.2177
                     0.0971
                               -2.24
                                       2.50e-02 y3 <--- y1
## beta31
## beta32
             0.8497 0.1121
                                7.58
                                       3.52e-14 v3 <--- v2
                                       1.13e-02 y3 <--- x1
## gam31
             0.8607 0.3398
                                2.53
## V[x1]
             1.0210 0.1101
                                9.27
                                       1.80e-20 x1 <--> x1
## C[x1,x2]
             7.1390 1.2556
                                5.69
                                      1.30e-08 x2 <--> x1
## V[x2]
           215.6620 23.2554
                                9.27
                                       1.80e-20 x2 <--> x2
## V[y1]
            12.9612 1.3976
                                9.27
                                      1.80e-20 y1 <--> y1
## V[y2]
             8.4882 0.9153
                                9.27
                                       1.80e-20 y2 <--> y2
            19.4542
                     2.0978
                                9.27
                                       1.80e-20 y3 <--> y3
## V[y3]
```

The fitted model is:

$$\widehat{y}_1 = -0.087x_2
\widehat{y}_2 = -0.285y_1 + 0.058x_2
\widehat{y}_3 = -0.218y_1 + 0.850y_2 + 0.861x_1$$

$$\widehat{\Psi} = \begin{bmatrix}
12.96 \\
0 & 8.49 \\
0 & 0 & 19.45
\end{bmatrix}$$

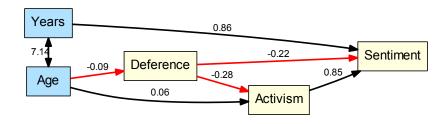
Path analysis General path model

37/67

Fundamental SEM hypothesis

Union sentiment: Path diagrams

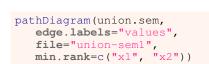
- dot produces a text file describing the path diagram
- This can easily be (hand) edited to produce a nicer diagram
- Using color or linestyle for + vs. edges facilitates interpretation

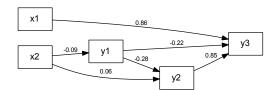


- The coefficients shown are unstandardized— on the scale of the variables
- Can also display standardized coefficients, easier to compare

Union sentiment: Path diagrams

- Path diagrams for a sem () model can be produced using pathDiagram (model)
- This uses the graphvis program (dot), that must be installed first (http://www.graphviz.org/)
- The latest version (sem 3.1-6) uses the DiagrammeR package instead
- Edges can be labeled with parameter names, values, or both





39/67

Fundamental hypothesis of CFA & SEM

• The covariance matrix (Σ) of the observed variables is a function of the parameters (θ) of the model

$$oldsymbol{\Sigma} = oldsymbol{\Sigma}(oldsymbol{ heta})$$

- That is, if
 - \bullet Σ is the population covariance matrix of the observed variables, and
 - \bullet θ is a vector of all unique free parameters to be estimated,
 - then, $\Sigma(\theta)$ is the model implied or predicted covariance matrix, expressed in terms of the parameters.
- If the model is correct, and we knew the values of the parameters, then

$$\mathbf{\Sigma} = \mathbf{\Sigma}(\mathbf{ heta})$$

says that the population covariance matrix would be exactly reproduced by the model parameters

Fundamental hypothesis of CFA & SEM

Example: Consider the simple linear regression model,

$$\mathbf{y}_i = \gamma \mathbf{x}_i + \zeta_i$$

If this model is true, then the variance and covariance of (y, x) are

$$var(y_i) = var(\gamma x_i + \zeta_i)$$

= $\gamma^2 var(x_i) + var(\zeta_i)$
$$cov(y_i, x_i) = \gamma var(x_i)$$

The hypothesis $\Sigma = \Sigma(\theta)$ means that Σ can be expressed in terms of the model-implied parameters, γ (regression slope), $var(\zeta)$ (error variance) and var(x):

$$\Sigma \begin{pmatrix} y \\ x \end{pmatrix} = \begin{bmatrix} \operatorname{var}(y) \\ \operatorname{cov}(y, x) & \operatorname{var}(y) \end{bmatrix} = \begin{bmatrix} \gamma^2 \operatorname{var}(x) + \operatorname{var}(\zeta) \\ \gamma \operatorname{var}(x) & \operatorname{var}(x) \end{bmatrix} = \Sigma \begin{pmatrix} \gamma \\ \operatorname{var}(\zeta) \\ \operatorname{var}(x) \end{pmatrix}$$

Identification rules

Fundamental hypothesis of CFA & SEM

This general hypothesis forms the basis for several important ideas in CFA and SEM

- Model identification: How to know if you can find a unique solution?
- Model estimation: How to fit a model to an observed covariance matrix (**S**)?
- Goodness-of-fit statistics: How to assess the discrepancy between S and $\Sigma(\theta)$?

41/67

Model identification

- A model is identified if it is possible to find a *unique* estimate for each parameter
- A non-identified model has an infinite number of solutions— not too useful
- Such models may be made identified by:
 - Setting some parameters to fixed constants (like $\beta_{12} = 0$ or $var(\zeta_1) = 1$)
 - Constraining some parameters to be equal (like $\beta_{12} = \beta_{13}$)
- Identification can be stated as follows:
 - An unknown parameter θ is identified if it can be expressed as a function of one or more element of Σ
 - The whole model is identified if all parameters in θ are identified
- Complex models can often lead to identification problems, but there are a few simple helpul rules

Model identification: *t*-rule and degrees of freedom

The simplest rule, the *t*-rule says:

• The number of unknown parameters to be estimated (t) cannot exceed the number of non-redundant variances and covariances of the observed variables

Identification rules

This is a necessary condition for identification, but it is not sufficient

For path analysis models, let P = p + q be the total numbr of endogenous (y)and exogenous (x) variables in Σ , and let t be the number of free parameters in θ . The t-rule is

$$P(P+1)/2 \ge t$$

The difference gives the number of degrees of freedom for the model:

$$df = P(P+1)/2 - t$$

- If *df* < 0, the model is under-identified (no unique solution)
- If df = 0, the model is just-identified (can't calculate goodness-of-fit)
- If df > 0, the model is over-identified (can calculate goodness-of-fit)
- ⇒ Useful SEM models should be over-identified!!

Example: Union sentiment

For the Union sentiment model, the model parameters were:

$$m{B} = \left[egin{array}{ccc} 0 & 0 & 0 \ eta_{21} & 0 & 0 \ eta_{31} & eta_{32} & 0 \end{array}
ight] \quad m{\Gamma} = \left[egin{array}{ccc} 0 & \gamma_{12} \ 0 & \gamma_{22} \ \gamma_{31} & 0 \end{array}
ight]$$

and

$$\Phi = \begin{bmatrix} \operatorname{var}(x_1) & & \\ \operatorname{cov}(x_1, x_2) & \operatorname{var}(x_2) \end{bmatrix} \quad \Psi = \begin{bmatrix} \operatorname{var}(\zeta_1) & & \\ 0 & \operatorname{var}(\zeta_2) & \\ 0 & 0 & \operatorname{var}(\zeta_2) \end{bmatrix}$$

Observed covariance matrix: p = 3 endogenous ys + q = 2 exogenous xs $\Longrightarrow \Sigma_{5\times 5}$ has $5\times 6/2=15$ variances and covariances.

12 free parameters in the model:

- 6 regression coefficients (3 non-zero in **B**, 3 non-zero in Γ)
- 3 variances/covariances in Φ
- ullet 3 residual variances in diagonal of Ψ

The model df = 15 - 12 = 3 > 0, so this model is over-identified

B rules: $\mathbf{B} = 0$

Another simple rule applies if no endogenous y variable affects any other endogenous variable, so $\mathbf{B} = 0$ For example:

$$y_1 = \gamma_{11} x_1 + \gamma_{12} x_2 + \zeta_1$$

 $y_2 = \gamma_{21} x_1 + \gamma_{23} x_3 + \zeta_2$
 $y_3 = \gamma_{31} x_1 + \gamma_{33} x_3 + \gamma_{34} x_4 + \zeta_3$

- $\mathbf{B} = 0$ because no y appears on the RHS of an equation
- Such models are always identified
- This is a sufficient, but not a necessary condition
- Residuals ζ_i in such models need not be uncorrelated, i.e., Ψ can be non-diagonal ("seemingly unrelated regressions")

45/67

47/67

Identification

Identification rules

B rules: recursive rule

The recursive rule applies if

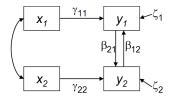
- the only free elements in **B** are on its lower (or upper) triangle, and
- \bullet Ψ is diagonal (no correlations amongst residuals)
- This basically means that there are no reciprocal relations among the ys and no feedback loops
- This also is a sufficient condition for model identification.

The union sentiment mode is recursive because **B** is lower-triangular and Ψ is diagonal

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ \beta_{21} & 0 & 0 \\ \beta_{31} & \beta_{32} & 0 \end{bmatrix} \quad \Psi = \begin{bmatrix} var(\zeta_1) \\ 0 & var(\zeta_2) \\ 0 & 0 & var(\zeta_2) \end{bmatrix}$$

B rules: recursive rule

Non-recursive because **B** is not lower-triangular:



$$\boldsymbol{\beta}_{21} \begin{bmatrix} \beta_{12} \\ \beta_{21} \end{bmatrix} \boldsymbol{\beta}_{12} \qquad \boldsymbol{\beta} = \begin{bmatrix} 0 & \beta_{12} \\ \beta_{21} & 0 \end{bmatrix} \boldsymbol{\Psi} = \begin{bmatrix} \operatorname{var}(\zeta_1) \\ 0 & \operatorname{var}(\zeta_2) \end{bmatrix}$$

Non-recursive because Γ is not diagonal:

$$x_1$$
 y_1 y_2 y_2

$$egin{aligned} egin{aligned} oldsymbol{\mathcal{B}} = egin{bmatrix} 0 & 0 \ eta_{21} & 0 \end{bmatrix} & oldsymbol{\Psi} = egin{bmatrix} \mathrm{var}(\zeta_1) \ \mathrm{cov}(\zeta_1, \zeta_2) & \mathrm{var}(\zeta_2) \end{bmatrix} \end{aligned}$$

Estimati

Model estimation

How to fit the model to your data?

- In ordinary regression analysis, the method of least squares is used to find values of the parameters (regression slopes) that minimize the sum of squared residuals, $\sum (y_i \hat{y}_i)^2$.
 - This is fitting the model to the individual observations
- In constrast, SEM methods find parameter estimates that fit the model to the observed covariance matrix. **S**.
- They are designed to minimize a function of the residual covariances, $\mathbf{S} \Sigma_{\theta}$
 - If the model is correct, then $\Sigma_{\theta} = \Sigma$ and as $N \to \infty$, $S = \Sigma$.
 - There is a variety of estimation methods for SEM, but all attempt to choose the values of parameters in θ to minimize a function $F(\bullet)$ of the difference between \mathbf{S} and Σ_{θ}

Model estimation: Maximum likelihood

• Maximum likelihood estimation is designed to maximize the likelihood ("probability") of obtaining the observed data (Σ) over all choices of parameters (θ) in the model

$$\mathcal{L} = \mathsf{Pr}(\mathsf{data} \,|\, \mathsf{model}) = \mathsf{Pr}(\boldsymbol{S} \,|\, \Sigma_{\boldsymbol{ heta}})$$

- This assumes that the observed data are multivariate normally distributed
- ML estimation is equivalent to minimizing the following function:

$$F_{ML} = \log |\Sigma_{m{ heta}}| - \log |m{ heta}| + \operatorname{tr}(m{ heta}\Sigma_{m{ heta}}^{-1}) - p$$

• All SEM software obtains some initial estimates ("start values") and uses an iterative algorithm to minimize F_{ML}

49/67

Fetimatic

Model estimation: Maximum likelihood

- ML estimates have optimal properties
 - Unbiased: $\mathcal{E}(\widehat{\theta}) = \theta$
 - Asymptotically consistent: as $N \to \infty$, $\widehat{\theta} \to \theta$
 - Maximally efficient: smallest standard errors
- As $N \to \infty$, parameter estimates $\widehat{\theta}_i$ are normally distributed, $\mathcal{N}(\widehat{\theta}_i, \text{var}(\theta_i))$, providing z (Wald) tests and confidence intervals

$$z = \frac{\widehat{\theta}}{\mathsf{s.e.}(\widehat{\theta})} \qquad \mathit{Cl}_{1-lpha} : \widehat{\theta} \pm \mathsf{z}_{1-lpha/2} \, \mathsf{se}(\widehat{\theta})$$

• As $N \to \infty$, the value $(N-1)F_{ML}$ has a χ^2 distribution with df = P(P+1)/2 - t degrees of freedom, giving an overall test of model fit.

Model evaluation

Model fit

• SEM provides R^2 values for each endogenous variable — the same as in separate regressions for each equation

```
## R-square for Endogenous Variables
## y1 y2 y3
## 0.113 0.230 0.390
```

- More importantly, it provides overall measures of fit for the entire model.
- The model for union sentiment fits very well, even though the R²s are rather modest

```
## Model Chisquare = 1.25    Df = 3 Pr(>Chisq) = 0.741
## Goodness-of-fit index = 0.997
## Adjusted goodness-of-fit index = 0.986
## RMSEA index = 0 90% CI: (NA, 0.0904)
## Bentler CFI = 1
## AIC = 25.3
## BIC = -14.2
```

- A just-identified model will always fit perfectly—but that doesn't mean it is a good model: there might be unnecessary or trivial parameters.
- An over-identified model that fits badly might have too many fixed or constrained parameters

Model fit: χ^2 test

- The fitting function $F(\mathbf{S}, \widehat{\Sigma})$ used to minimize the discrepancy between \mathbf{S} and the model estimate $\widehat{\Sigma} = \Sigma(\widehat{\theta})$ gives a chi-square test of model fit
- If the model is correct, then the minimized value, F_{min} , has an asympotic chi-square distribution,

$$X^2 = (N-1)F_{min} \sim \chi_{df}^2$$

with df = P(P+1)/2 - t degrees of freedom

• This gives a test of the hypothesis that the model fits the data

$$H_0: \mathbf{\Sigma} = \mathbf{\Sigma}(\mathbf{\theta})$$

• a large (significant) X^2 indicates that the model does not fit the data.

53/67

Model evaluation

RMSEA

Model evaluation

RMSEA

Model fit: RMSEA

The measure of root mean square error of approximation (RMSEA) attempts to solve these problems (Browne & Cudeck, 1993)

RMSEA =
$$\sqrt{\frac{X^2 - df}{(N-1)df}}$$

- Relatively insensitive to sample size
- Parsimony adjusted— denominator adjusts for greater df
- Common labels for RMSEA values:

RMSEA	interpretation
0	perfect fit
≤ .05	close fit
.0508	acceptable fit
.0810	mediocre fit
> .10	poor fit

Model fit: χ^2 test—problems

- The test statistic, $X^2 = (N-1)F_{min}$ is a function of sample size.
- With large N, trivial discrepancies will give a significant chi-square
- Worse, it tests an unrealistic hypothesis that the model fits perfectly
 - the specified model is exactly correct in all details
 - any lack-of-fit is due only to sampling error
 - it relies on asymptotic theory ($X^2\sim\chi^2$ as $N\to\infty$) and an assumption of multivariate normality
- Another problem is parsimony— a model with additional free parameters will always fit better, but smaller models are simpler to interpret
- If you fit several nested models, $M_1 \supset M_2 \supset M_3 \ldots$, chi-square tests for the difference between models are less affected by these problems

$$\Delta X^2 = X^2(M_1) - X^2(M_2) \sim \chi^2 \text{ with } df = df_1 - df_2$$

Model e

Model fit: RMSEA

In addition, the RMSEA statistic has known sampling distribution properties (McCallum et al., 1996). This means that:

- You can calculate confidence intervals for RMSEA
- It allows to test a null hypothesis of "close fit" or "poor fit", rather than "perfect fit"

 H_0 : RMSEA < 0.05 H_0 : RMSEA > 0.10

 It allows for power analysis to find the sample size (N) required to reject a hypothesis of "close fit" (RMSEA < 0.05)

55/67

56/67

Incremental fit indices

- Creating new indices of goodness-of-fit for CFA/SEM models was a "growth industry" for many years—there are many possibilities
- Incremental fit indices compare the existing model with a null or baseline model
 - The null model, M_0 assumes all variables are uncorrelated—the worst possible model.
 - Incremental fit indices compare the X_M^2 for model M with X_0^2 for the null model
 - All of these are designed to range from 0 to 1, with larger values (e.g., > 0.95) indicating better fit.
 - The generic idea is to calculate an R^2 -like statistic, of the form

$$\frac{f(\text{null model}) - f(\text{my model})}{f(\text{null model}) - f(\text{best model})}$$

for some function $f(\bullet)$ of X^2 and df, and where the "best" model fits perfectly.

Incremental fit indices

Parsimony-adjusted indices also adjust for model df

• Bentler's comparative fit index (CFI) is often widely used

$$CFI = 1 - \frac{X_M^2 - df_M}{X_0^2 - df_0}$$

• Tucker-Lewis Index (TLI), also called "non-normed fit index" (NNFI) are also popularly reported

$$TLI \equiv NNFI = \frac{X_0^2/df_0 - X_M^2/df_M}{X_0^2/df_0 - 1}$$

Model modification

57/67

Model evaluation Other fit indices

Information criteria: AIC, BIC

- Other widely used criteria, particularly when you have fit a collection of potential models are the "information criteria", AIC and BIC
- Unlike the likelihood ratio tests these can be used to compare non-nested models
- Each of these uses a penalty for model complexity; BIC expresses a greater preference for simpler models as the sample size increases.

$$AIC = X^2 - 2df$$

$$BIC = X^2 - \log(N)df$$

Smaller is better

Model modification

What to do when your model fits badly?

- First, note that a model might fit badly due to data problems:
 - outliers, missing data problems
 - non-normality (highly skewed, excessive kurtosis)
 - non-linearity, omitted interactions, ...
- Otherwise, bad model fit usually indicates that some important paths have been omitted, so some variances or covariances in **S** are poorly reproduced by the model
 - Some regression effects among (x, y) omitted (fixed to 0)?

Model evaluation

- Covariances among exogenous variables omitted? (all should be included)
- Covariances among residuals might need to be included as free parameters
- Actions:
 - Examine residuals, $\mathbf{S} \Sigma(\widehat{\theta})$ to see which variances/covariances are badly fit
 - Modification indices provide a way to test the impact of freeing each fixed parameter

58/67

Example: Union sentiment

To illustrate, consider what would have happened if we omitted the important path of y_3 (sentiment) on y_2 (activism) in the Union sentiment example

Fit the model:

```
union.sem.bad <- sem(mod.bad, union, N=173)
union.sem.bad
##
   Model Chisquare = 50.235 Df = 4
##
##
        gam12
                  beta21
                             gam22
                                        beta31
                                                    gam31
                                                               V[x1]
                          0.057938
   -0.087438 -0.284563
                                    -0.509024
                                                1.286631
                                                            1.021000
                  V[x2]
                             V[y1]
    C[x1,x2]
                                         V[y2]
                                                    V[y3]
    7.139000 215.662000 12.961186
                                      8.488216 25.863934
   Iterations = 0
```

Model evaluation Model modification

Normalized residuals show the differences $\mathbf{S} - \Sigma(\widehat{\theta})$ as approximate *z*-scores, so values outside of ± 2 can be considered significantly large.

```
round (normalizedResiduals (union.sem.bad), 3)

## y1 y2 y3 x1 x2

## y1 0.000 0.000 0.103 0.477 0.000

## y2 0.000 0.000 5.246 0.330 0.000

## y3 0.103 5.246 -0.054 -0.159 1.454

## x1 0.477 0.330 -0.159 0.000 0.000

## x2 0.000 0.000 1.454 0.000 0.000
```

- This points to the one very large residual for the y2 -> y3 (or y3 -> y2) path
- In this example Union sentiment (y3) is the main outcome, so it would make sense here to free the y2 -> y3 path

As expected, this model fits very badly

```
summary(union.sem.bad, fit.indices=c("RMSEA", "NNFI", "CFI"))
   Model Chisquare = 50.235 Df = 4 \text{ Pr}(>\text{Chisq}) = 3.2251e-10
   RMSEA index = 0.25923 90% CI: (0.19808, 0.32556)
   Tucker-Lewis NNFI = 0.38328
   Bentler CFI = 0.75331
   Normalized Residuals
##
    Min. 1st Qu. Median
                             Mean 3rd Qu.
   -0.159 0.000 0.000
                            0.594 0.330
                                            5.247
##
  R-square for Endogenous Variables
      y1 y2
                    y3
## 0.1129 0.2295 0.1957
```

62/67

Model evaluation

Model modification

Modification indices

- Modification indices provide test statistics for fixed parameters
- The statistics estimate the decrease in X^2 if each fixed parameter was allowed to be freely estimated
- These are $\chi^2(1)$ values, so values > 4 can be considered "significantly" large.

```
modIndices(union.sem.bad)

##

## 5 largest modification indices, A matrix (regression coefficients):
## y3<-y2 y2<-y3 x2<-y3 y3<-x2 y1<-y3
## 42.071 38.217 4.240 3.947 3.763

##

## 5 largest modification indices, P matrix (variances/covariances):
## y3<-y2 y3<-y1 x2<-y3 x1<-y2
## 38.3362 3.9468 3.9468 3.9468 0.4114</pre>
```

Once again, we see large values associated with the y2 -> y3 path

63/67 64/67

Modification indices: Caveats

- Using modification indices to improve model fit is called specification search
- This is often deprecated, unless there are good substantive reasons for introducing new free parameters
 - New paths or covariances in the model should make sense theoretically
 - Large modification indices could just reflect sample-specific effects

65/67

Summary

Summary II

- Path diagrams provide a convenient way to portray or visualize a SEM
 - Direct translation from/to a system of linear equations
 - Some software (AMOS graphics) allows construction of the model via a path diagram
 - Most SEM software provides for output of models and results as path diagrams
- Path analysis models provide a basic introduction to SEM
 - No latent variables— only observed ("manifest") ones
 - Does not allow for errors of measurement in observed variables
 - exogenous variables (xs)— only predictors in the linear equations
 - endogenous variables (ys)— a dependent variable in one or more equations
 - Error terms reflect errors-in-equations— unmodeled predictors, wrong functional form, etc.
- An important question in SEM models is model identification— can the parameters be uniquely estimated?
- Another important question is how to evaluate model fit?

Summary I

- Structural equation models are an historical development of EFA and CFA methods and path analysis
 - EFA and CFA attempt to explain correlations among observed variables in terms of latent variables ("factors")
 - EFA used factor rotation to obtain an interpretable solution
 - CFA imposes restrictions on a solution, and allows specific hypothesis tests
 - Higher-order CFA further generalized CFA to the ACOVS model
 - Meanwhile, path analysis developed methods for analyzing systems of equations together
 - The result, was SEM, in the form of the LISREL model