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Course overview

Course notes & other materials will be avaiable at:
http://datavis.ca/courses/CFA-SEM

Lecture 1: Setting the stage: EFA, CFA, SEM, Path analysis
Goal: Understand relations among a large number of observed variables
Goal: Extend regression methods to (a) multiple outcomes, (b) latent
variables, (c) accounting for measurement error or unreliability
Thinking: Equations→ Path diagram→ estimate, test, visualize

Lecture 2: Measurement models & CFA
Effects of measurement error
Testing equivalence of measures with CFA
Multi-factor, higher-order models

Lecture 3: SEM with latent variables
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Overview

EFA, CFA, SEM?

Exploratory Factor Analysis (EFA)
Method for “explaining” correlations of observed variables in terms of a
small number of “common factors”
Primary Q: How many factors are needed?
Secondary Q: How to interpret the factors?

Three-factor EFA model. Each variable
loads on all factors.
The factors are assumed to be uncor-
related
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Overview

EFA, CFA, SEM?

Confirmatory Factor Analysis (CFA)
Method for testing hypotheses about relationships among observed
variables
Does this by imposing restrictions on an EFA model
Q: Do the variables have a given factor structure?
Q: How to compare competing models?

Two-factor CFA model with non-
overlapping factors
The factors are allowed to be corre-
lated, as are two unique factors
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Overview

EFA, CFA, SEM?

Structural Equation Models (SEM)
Generalizes EFA, CFA to include

Simple and multiple regression
General linear model (Anova, multivariate regression, ...)
Path analysis — several simultaneous regression models
Higher-order CFA models
Multi-sample CFA models (“factorial invariance”)
Latent growth/trajectory models
Many more ...

A general framework for describing, estimating and testing linear
statistical models

5 / 67



Overview Basic EFA ideas

Recall basic EFA ideas

Observed variables, x1, x2, . . . , xp is considered to arise as a set of
regressions on some unobserved, latent variables called common
factors, ξ1, ξ2, . . . , ξk .
That is, each variable can be expressed as a regression on the common
factors. For three variables and one common factor, ξ, the model is:

x1 = λ1ξ + z1

x2 = λ2ξ + z2

x3 = λ3ξ + z3

The common factors account for correlations among the xs.
The zi are error terms, or unique factors
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Overview Basic EFA ideas

The EFA model

For k common factors, the common factor model is

This looks like a set of multiple regression models for the xs, but it is not
testable, because the factors, ξ, are unobserved
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Overview Basic EFA ideas

The EFA model

However, the EFA model implies a particular form for the
variance-covariance matrix, Σ, which is testable

where:
Λp×k = factor pattern (“loadings”)
Φk×k = matrix of correlations among factors.
Ψ = diagonal matrix of unique variances of observed variables.

Typically, it is initially assumed that factors are uncorrelated (Φ = I, the
identity matrix)
Can use an oblique rotation to allow correlated factors
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Overview Basic EFA ideas

Limitations of EFA

The only true statistical tests in EFA are tests for the number of common
factors (when estimated by ML)

H0 : k = k0 k0 factors are sufficient
Ha : k > k0 > k0 factors are necessary

Substantive questions about the nature of factors can only be addressed
approximately through factor rotation methods

Varimax & friends attempt rotation to simple structure
Oblique rotation methods allow factors to be correlated
Procrustes rotation allows rotation to a “target” (hypothesized) loading matrix
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Overview EFA to CFA

Historical development: EFA→ CFA

ML estimation for the EFA model finds estimates that minimize the
difference between the observed covariance matrix, S, and that
reproduced by the model, Σ̂ = Λ̂Φ̂Λ̂T + Ψ̂

Requires imposing k2 restrictions for a unique solution
Gives a χ2 test for goodness of fit

(N − 1)Fmin(S, Σ̂) ∼ χ2 with df = [(p − k)2 − p − k ]/2

Joreskog (1969) proposed that a factor hypothesis could be tested by
imposing restrictions on the EFA model— fixed elements in Λ, Ψ, usually
0

Needs more than k2 restrictions
The ML solution is then found for the remaining free parameters
The χ2 for the restricted solution gives a test for how well the hypothesized
factor structure fits.
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Overview EFA to CFA

CFA: Restricted EFA

The pattern below specifies two non-overlapping oblique factors. The x ’s are
the only free parameters.

Λ =


x 0
x 0
x 0
0 x
0 x
0 x

 Φ =

[
1
x 1

]

This CFA model has only 7 free parameters and df = 15− 7 = 8.
A k = 2-factor EFA model would have all parameters free and
df = 15− 11 = 4 degrees of freedom.
If this restricted model fits (has a small χ2/df ), it is strong evidence for
two non-overlapping oblique factors.
That hypothesis cannot be tested by EFA + rotation.
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Overview CFA to SEM

Historical development: CFA→ SEM
Higher-order factor analysis: The ACOVS model

With more than a few factors, allowed to be correlated (Φ 6= I), can we
factor the factor correlations?
In EFA, this was done by another EFA of the estimated factor correlations
from an oblique rotation
The second stage of development of CFA/SEM models combined these
steps into a single model, and allowed different hypotheses to be
compared
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Overview CFA to SEM

LISREL/SEM Model

Jöreskog (1973) further generalized the ACOVS model to include
structural equation models along with CFA.
Two parts:

Measurement model — How the latent variables are measured in terms of
the observed variables; measurement properties (reliability, validity) of
observed variables. [Traditional factor analysis models]
Structural equation model — Specifies causal relations among observed
and latent variables.

Endogenous variables - determined within the model (y)
Exogenous variables - determined outside the model (x)

Measurement models
for observed variables

x = Λxξ + δ

y = Λyη + ε

Structural eqn. for latent
variables η = Bη + Γξ + ζ
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Overview CFA to SEM

LISREL/SEM Model

SEM model for measures of Math Self-Concept and MATH achievement:

This model has:
3 observed indicators in a measurement model for MSC (x)
2 observed indicators in a measurement model for MATH achievement
(y)
A structural equation predicting MATH achievement from MSC
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Overview CFA to SEM

LISREL/SEM Model
Measurement sub-models for x and y

Structural model, relating ξ to η
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Overview software

CFA/SEM software: LISREL
LISREL (http://www.ssicentral.com/) [student edition available]

Originally designed as stand-alone program with matrix syntax
LISREL 8.5+ for Windows/Mac: includes

interactive, menu-driven version;
PRELIS (pre-processing, correlations and models for categorical variables);
SIMPLIS (simplified, linear equation syntax)
path diagrams from the fitted model
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Overview software

CFA/SEM software: Amos
Amos (www.ibm.com/software/products/en/spss-amos): Linear equation
syntax + path diagram model description

import data from SPSS, Excel, etc; works well with SPSS
Create the model by drawing a path diagram
simple facilities for multi-sample analyses
nice comparative displays of multiple models
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Overview software

SAS: PROC CALIS

SAS 9.3+: PROC CALIS
MATRIX (à la LISREL), LINEQS (à la EQS), RAM, ... syntax
Now handles multi-sample analyses
Multiple-model analysis syntax, e.g., Model 2 is like Model 1 except ...
Enhanced output controls
customizable fit summary table

SAS macros http://datavis.ca/sasmac/:
caliscmp macro: compare model fits from PROC CALIS à la Amos
csmpower macro: power estimation for covariance structure models
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Overview software

R: sem, lavaan and others

sem package (John Fox)
flexible ways to specify models: cfa(), linearEquations(), and
multigroupModel()
bootSem() provides bootstrap analysis of SEM models
miSem() provides multiple imputation
path diagrams using pathDiagram()→ graphviz
polychor package for polychoric correlations

lavaan package (Yves Rossell)
Functions lavaan(), cfa(), sem(), growth() (growth curve models)
Handles multiple groups models
semTools provides tests of measurement invariance, multiple imputation,
bootstrap analysis, power analysis for RMSEA, ...

semPlot package — path diagrams for sem, lavaan, Mplus, ... models
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Overview software

Mplus

Mplus https://www.statmodel.com/ [$$$, but cheaper student price]
Handles the widest range of models: CFA, SEM, multi-group, multi-level,
latent group
Variables: continuous, censored, binary, ordered categorical (ordinal),
unordered categorical (nominal), counts, or combinations of these
variable types
For binary and categorical outcomes: probit, logistic regression, or
multinomial logistic regression models.
For count outcomes: Poisson and negative binomial regression models.
Extensive facilities for simulation studies.
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Overview software

Caveats

CFA and SEM models are fit using the covariance matrix (S)
The raw data is often not analyzed
Graphs that can reveal potential problems often not made

Typically, this assumes all variables are complete, continuous,
multivariate normal. Implies:

S is a sufficient statistical summary
Relations assumed to be linear are in fact linear
Goodness-of-fit (χ2) and other tests based on asymptotic theory (N →∞)
Missing data, skewed or long-tailed variables must be handled first

Topics not covered here:
Using polychoric correlations for categorical indicators
Distribution-free estimation methods (still asymptotic)
Bootstrap methods to correct for some of the above
Multiple imputation to handle missing data
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Path diagrams

Path diagrams: Symbols
Visual representation of a set of simultaneous equations for EFA, CFA, SEM
models (idea from Sewell Wright, 1920s)
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Path diagrams

Path diagrams

Schematic Examples:

CFA, 1-factor model
(correlated errors)

SEM, two latent variables, each with two indicators
Causal relation betweeen ξ (Xs) and η (Ys)
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Path diagrams

Path diagrams
Substantive example: Path analysis model for union sentiment (McDonald &
Clelland, 1984)

No latent variables— all variables are observed indicators
x1, x2 are exogenous variables— they are not explained within the model
Correlation between x1, x2 is shown as a double-headed arrow
y1, y2, y3 are endogenous variables— they are explained within the model
Causal relations are shown among the variables by single-headed arrows
Residual (error) terms, ζ1, ζ2, ζ3 are shown as single-headed arrows to
the y variables
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Path diagrams

Path diagrams

Substantive example: SEM with multiple indicators, path model for latent
variables (error terms not shown)
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Path analysis

Path Analysis

Path analysis is a simple special case of SEM
These models contain only observed (manifest) variables,
No latent variables
Assumes that all variables are measured without error
The only error terms are residuals for y (endogenous) variables

They are comprised of a set of linear regression models, estimated
simultaneously

Traditional approaches using MRA fit a collection of separate models
Multivariate MRA (MMRA) usually has all y variables predicted by all x
variables
In contrast, SEM path models allow a more general approach, in a single
model
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Path analysis Simple examples

Path Analysis: Simple examples
Simple linear regression

yi = γxi + ζi

γ is the slope coefficient; ζ is the residual (error term)
Means and regression intercepts usually not of interest, and suppressed

Multiple regression

yi = γ1x1i + γ2x2i + ζi

Double-headed arrow signifies the assumed correlation between x1 & x2
In univariate MRA (y ∼ x1 + . . . ), there can be any number of xs
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Path analysis Simple examples

Path Analysis: Simple examples

Multivariate multiple regression

y1i = γ11x1i + γ12x2i + ζ1i

y2i = γ21x2i + γ22x2i + ζ2i

Now need two equations to specify the model
Note subscripts: γ12 is coeff of y1 on x2; γ21 is coeff of y2 on x1

With more equations and more variables, easier with vectors/matrices(
y1
y2

)
=

[
γ11 γ12
γ21 γ22

](
x1
x2

)
+

(
ζ1
ζ2

)
or y = Γx + ζ
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Path analysis Simple examples

Path Analysis: Simple examples

Simple mediation model

y1i = γ11xi + ζ1i

y2i = γ21xi + β21y1i + ζ2i

Something new: y1 is a dependent variable in the first equation, but a
predictor in the second
This cannot be done simultaneously via standard MRA or MMRA models

(
y1
y2

)
=

[
0 0
β21 0

](
y1
y2

)
+

(
γ11
γ21

)
x +

(
ζ1
ζ2

)
or y = By + Γx + ζ
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Path analysis Exogenous and Endogenous

Exogenous and Endogenous Variables

Exogenous variables

Are only independent (x) variables in the linear equations
Never have arrows pointing at them from other variables
They are determined outside (“ex”) the model
In path analysis models they are considered measured w/o error

Endogenous variables

Serves as a dependent variable (outcome) in at least one equation
If a variable has at least one arrow pointing to it, it is endogenous
They are determined inside (“en”) the model
In path analysis models they always have error terms

In the simple mediation model, x is exogenous,
and y1, y2 are endogenous
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Path analysis Exogenous and Endogenous

Example: Union sentiment
Norma Rae example— Union sentiment among non-union Southern textile
workers (McDonald & Clelland (1984); Bollen (1986))

Exogenous variables: x1 (years of work); x2 (age)
Endogenous variables: y1 (deference to managers); y2 (support for labor
activism); y3 (support for unions)

The hypothesized model is comprised of three linear regressions

y1 = γ12x2 + ζ1

y2 = β21y1 + γ22x2 + ζ2

y3 = β31y1 + β32y2 + γ31x1 + ζ3

These can be expressed as a single matrix equation for the y variables:

 y1
y2
y3

 =

 0 0 0
β21 0 0
β31 β32 0

 y1
y2
y3

+

 0 γ12
0 γ22
γ31 0

( x1
x2

)
+

 ζ1
ζ2
ζ3


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Path analysis General path model

The general path analysis model
The general form of a SEM path analysis model is expressed in the matrix
equation

y = By + Γx + ζ

where:
y is a p × 1 vector of endogenous variables
x is a q × 1 vector of exogenous variables
Bp×p (“Beta”) gives the regression coefficients of endogenous (y)
variables on other endogenous variables
Γp×q (“Gamma”) gives the regression coefficients of endogenous
variables on the exogenous variables (x)
ζp×1 is the vector of errors in the equations (i.e., regression residuals)

However, some parameters in B and Γ are typically fixed to 0

B =

 0 0 0
β21 0 0
β31 β32 0

 Γ =

 0 γ12
0 γ22
γ31 0


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Path analysis General path model

The general path analysis model
Other parameters pertain to variances and covariances of the exogenous
variables and the error terms

Φq×q (“Phi”)— variance-covariance matrix of the exogenous variables.
Typically, these are all free parameters.
For the union sentiment example, Φ is a 2× 2 matrix:

Φ =

[
var(x1)

cov(x1, x2) var(x2)

]
Ψp×p (“Psi”)— variance-covariance matrix of the error terms (ζ).
Typically, the error variances are free parameters, but their covariances
are fixed to 0 (models can allow correlated errors)
For the union sentiment example, Ψ is a 3× 3 diagonal matrix:

Ψ =

 var(ζ1)
0 var(ζ2)
0 0 var(ζ2)


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Path analysis General path model

Union sentiment: using the sem package
Read the variance-covariance matrix of the variables using readMoments()

library(sem)
union <- readMoments(diag=TRUE,

names=c('y1', 'y2', 'y3', 'x1', 'x2'),
text="

14.610
-5.250 11.017
-8.057 11.087 31.971
-0.482 0.677 1.559 1.021
-18.857 17.861 28.250 7.139 215.662

")

The model can be specified in different, equivalent notations, but the simplest
is often linear equations format, with specifyEquations()

union.mod <- specifyEquations(covs="x1, x2", text="
y1 = gam12*x2
y2 = beta21*y1 + gam22*x2
y3 = beta31*y1 + beta32*y2 + gam31*x1

")
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Path analysis General path model

Union sentiment: using the sem package
Internally, sem expresses the model using “RAM” path notation (same as
used by specifyModel()):

union.mod

## Path Parameter
## 1 x2 -> y1 gam12
## 2 y1 -> y2 beta21
## 3 x2 -> y2 gam22
## 4 y1 -> y3 beta31
## 5 y2 -> y3 beta32
## 6 x1 -> y3 gam31
## 7 x1 <-> x1 V[x1]
## 8 x1 <-> x2 C[x1,x2]
## 9 x2 <-> x2 V[x2]
## 10 y1 <-> y1 V[y1]
## 11 y2 <-> y2 V[y2]
## 12 y3 <-> y3 V[y3]

Fit the model using sem():

union.sem <- sem(union.mod, union, N=173)
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Path analysis General path model

Union sentiment: Goodness-of-fit statistics
The summary() method prints a collection of goodness-of-fit statistics:

opt <- options(fit.indices = c("GFI", "AGFI", "RMSEA", "NNFI",
"CFI", "AIC", "BIC"))

summary(union.sem)

##
## Model Chisquare = 1.25 Df = 3 Pr(>Chisq) = 0.741
## Goodness-of-fit index = 0.997
## Adjusted goodness-of-fit index = 0.986
## RMSEA index = 0 90% CI: (NA, 0.0904)
## Tucker-Lewis NNFI = 1.0311
## Bentler CFI = 1
## AIC = 25.3
## BIC = -14.2
##
## ...
##
## R-square for Endogenous Variables
## y1 y2 y3
## 0.113 0.230 0.390
##
## ...

36 / 67



Path analysis General path model

Union sentiment: Parameter estimates

## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## gam12 -0.0874 0.0187 -4.68 2.90e-06 y1 <--- x2
## beta21 -0.2846 0.0617 -4.61 3.99e-06 y2 <--- y1
## gam22 0.0579 0.0161 3.61 3.09e-04 y2 <--- x2
## beta31 -0.2177 0.0971 -2.24 2.50e-02 y3 <--- y1
## beta32 0.8497 0.1121 7.58 3.52e-14 y3 <--- y2
## gam31 0.8607 0.3398 2.53 1.13e-02 y3 <--- x1
## V[x1] 1.0210 0.1101 9.27 1.80e-20 x1 <--> x1
## C[x1,x2] 7.1390 1.2556 5.69 1.30e-08 x2 <--> x1
## V[x2] 215.6620 23.2554 9.27 1.80e-20 x2 <--> x2
## V[y1] 12.9612 1.3976 9.27 1.80e-20 y1 <--> y1
## V[y2] 8.4882 0.9153 9.27 1.80e-20 y2 <--> y2
## V[y3] 19.4542 2.0978 9.27 1.80e-20 y3 <--> y3

The fitted model is:

ŷ1 = −0.087x2

ŷ2 = −0.285y1 + 0.058x2

ŷ3 = −0.218y1 + 0.850y2 + 0.861x1

Ψ̂ =

 12.96
0 8.49
0 0 19.45


37 / 67



Path analysis General path model

Union sentiment: Path diagrams

Path diagrams for a sem() model can be produced using
pathDiagram(model)
This uses the graphvis program (dot), that must be installed first
(http://www.graphviz.org/)
The latest version (sem 3.1-6) uses the DiagrammeR package instead
Edges can be labeled with parameter names, values, or both

pathDiagram(union.sem,
edge.labels="values",
file="union-sem1",
min.rank=c("x1", "x2"))

x1

y3

0.86

x2
y1-0.09

y2
0.06

-0.28

-0.22

0.85
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Path analysis General path model

Union sentiment: Path diagrams
dot produces a text file describing the path diagram
This can easily be (hand) edited to produce a nicer diagram
Using color or linestyle for + vs. − edges facilitates interpretation

Years

Age

7.14 Sentiment

0.86

Deference-0.09

Activism
0.06

-0.28

-0.22

0.85

The coefficients shown are unstandardized— on the scale of the
variables
Can also display standardized coefficients, easier to compare
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Identification Fundamental SEM hypothesis

Fundamental hypothesis of CFA & SEM

The covariance matrix (Σ) of the observed variables is a function of the
parameters (θ) of the model

Σ = Σ(θ)

That is, if
Σ is the population covariance matrix of the observed variables, and
θ is a vector of all unique free parameters to be estimated,
then, Σ(θ) is the model implied or predicted covariance matrix, expressed in
terms of the parameters.

If the model is correct, and we knew the values of the parameters, then

Σ = Σ(θ)

says that the population covariance matrix would be exactly reproduced
by the model parameters
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Identification Fundamental SEM hypothesis

Fundamental hypothesis of CFA & SEM
Example: Consider the simple linear regression model,

yi = γxi + ζi

If this model is true, then the variance and covariance of (y , x) are

var(yi ) = var(γxi + ζi )

= γ2var(xi ) + var(ζi )

cov(yi , xi ) = γvar(xi )

The hypothesis Σ = Σ(θ) means that Σ can be expressed in terms of the
model-implied parameters, γ (regression slope), var(ζ) (error variance) and
var(x):

Σ

(
y
x

)
=

[
var(y)

cov(y , x) var(y)

]
=

[
γ2var(x) + var(ζ)

γvar(x) var(x)

]
= Σ

 γ
var(ζ)
var(x)


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Identification Fundamental SEM hypothesis

Fundamental hypothesis of CFA & SEM

This general hypothesis forms the basis for several important ideas in CFA
and SEM

Model identification: How to know if you can find a unique solution?
Model estimation: How to fit a model to an observed covariance matrix
(S)?
Goodness-of-fit statistics: How to assess the discrepancy between S
and Σ(θ)?
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Identification Identification rules

Model identification

A model is identified if it is possible to find a unique estimate for each
parameter
A non-identified model has an infinite number of solutions— not too
useful
Such models may be made identified by:

Setting some parameters to fixed constants (like β12 = 0 or var(ζ1) = 1)
Constraining some parameters to be equal (like β12 = β13)

Identification can be stated as follows:
An unknown parameter θ is identified if it can be expressed as a function of
one or more element of Σ
The whole model is identified if all parameters in θ are identified

Complex models can often lead to identification problems, but there are a
few simple helpul rules
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Identification Identification rules

Model identification: t-rule and degrees of freedom
The simplest rule, the t-rule says:

The number of unknown parameters to be estimated (t) cannot exceed
the number of non-redundant variances and covariances of the observed
variables
This is a necessary condition for identification, but it is not sufficient

For path analysis models, let P = p + q be the total numbr of endogenous (y )
and exogenous (x) variables in Σ, and let t be the number of free parameters
in θ. The t-rule is

P(P + 1)/2 ≥ t

The difference gives the number of degrees of freedom for the model:

df = P(P + 1)/2− t

If df < 0, the model is under-identified (no unique solution)
If df = 0, the model is just-identified (can’t calculate goodness-of-fit)
If df > 0, the model is over-identified (can calculate goodness-of-fit)

=⇒ Useful SEM models should be over-identified!!
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Identification Identification rules

Example: Union sentiment
For the Union sentiment model, the model parameters were:

B =

 0 0 0
β21 0 0
β31 β32 0

 Γ =

 0 γ12
0 γ22
γ31 0


and

Φ =

[
var(x1)

cov(x1, x2) var(x2)

]
Ψ =

 var(ζ1)
0 var(ζ2)
0 0 var(ζ2)


Observed covariance matrix: p = 3 endogenous ys +q = 2 exogenous xs
=⇒ Σ5×5 has 5× 6/2 = 15 variances and covariances.
12 free parameters in the model:

6 regression coefficients (3 non-zero in B, 3 non-zero in Γ)
3 variances/covariances in Φ
3 residual variances in diagonal of Ψ

The model df = 15− 12 = 3 > 0, so this model is over-identified
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Identification Identification rules

B rules: B = 0

Another simple rule applies if no endogenous y variable affects any other
endogenous variable, so B = 0
For example:

y1 = γ11x1 + γ12x2 + ζ1
y2 = γ21x1 + γ23x3 + ζ2
y3 = γ31x1 + γ33x3 + γ34x4 + ζ3

B = 0 because no y appears on the RHS of an equation
Such models are always identified
This is a sufficient, but not a necessary condition
Residuals ζi in such models need not be uncorrelated, i.e., Ψ can be
non-diagonal (“seemingly unrelated regressions”)
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Identification Identification rules

B rules: recursive rule

The recursive rule applies if
the only free elements in B are on its lower (or upper) triangle, and
Ψ is diagonal (no correlations amongst residuals)
This basically means that there are no reciprocal relations among the ys
and no feedback loops
This also is a sufficient condition for model identification.

The union sentiment mode is recursive because B is lower-triangular and Ψ is
diagonal

B =

 0 0 0
β21 0 0
β31 β32 0

 Ψ =

 var(ζ1)
0 var(ζ2)
0 0 var(ζ2)


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Identification Identification rules

B rules: recursive rule

Non-recursive because B is not lower-triangular:

B =

[
0 β12
β21 0

]
Ψ =

[
var(ζ1)

0 var(ζ2)

]

Non-recursive because Γ is not diagonal:

B =

[
0 0
β21 0

]
Ψ =

[
var(ζ1)

cov(ζ1, ζ2) var(ζ2)

]
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Estimation

Model estimation

How to fit the model to your data?
In ordinary regression analysis, the method of least squares is used to
find values of the parameters (regression slopes) that minimize the sum
of squared residuals,

∑
(yi − ŷi )

2.
This is fitting the model to the individual observations

In constrast, SEM methods find parameter estimates that fit the model to
the observed covariance matrix, S.
They are designed to minimize a function of the residual covariances,
S −Σθ

If the model is correct, then Σθ = Σ and as N →∞, S = Σ.
There is a variety of estimation methods for SEM, but all attempt to choose
the values of parameters in θ to minimize a function F (•) of the difference
between S and Σθ
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Estimation

Model estimation: Maximum likelihood

Maximum likelihood estimation is designed to maximize the likelihood
(“probability”) of obtaining the observed data (Σ) over all choices of
parameters (θ) in the model

L = Pr(data |model) = Pr(S |Σθ)

This assumes that the observed data are multivariate normally distributed
ML estimation is equivalent to minimizing the following function:

FML = log |Σθ| − log |S|+ tr(SΣ−1
θ )− p

All SEM software obtains some initial estimates (“start values”) and uses
an iterative algorithm to minimize FML
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Estimation

Model estimation: Maximum likelihood

ML estimates have optimal properties
Unbiased: E(θ̂) = θ

Asymptotically consistent: as N →∞, θ̂ → θ
Maximally efficient: smallest standard errors

As N →∞, parameter estimates θ̂i are normally distributed,
N (θ̂i , var(θi )), providing z (Wald) tests and confidence intervals

z =
θ̂

s.e.(θ̂)
CI1−α : θ̂ ± z1−α/2 se(θ̂)

As N →∞, the value (N − 1)FML has a χ2 distribution with
df = P(P + 1)/2− t degrees of freedom, giving an overall test of model
fit.
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Model evaluation

Model fit
SEM provides R2 values for each endogenous variable — the same as in
separate regressions for each equation
## R-square for Endogenous Variables
## y1 y2 y3
## 0.113 0.230 0.390

More importantly, it provides overall measures of fit for the entire model.
The model for union sentiment fits very well, even though the R2s are
rather modest
## Model Chisquare = 1.25 Df = 3 Pr(>Chisq) = 0.741
## Goodness-of-fit index = 0.997
## Adjusted goodness-of-fit index = 0.986
## RMSEA index = 0 90% CI: (NA, 0.0904)
## Bentler CFI = 1
## AIC = 25.3
## BIC = -14.2

A just-identified model will always fit perfectly— but that doesn’t mean it is
a good model: there might be unnecessary or trivial parameters.
An over-identified model that fits badly might have too many fixed or
constrained parameters
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Model evaluation chi-square test

Model fit: χ2 test

The fitting function F (S, Σ̂) used to minimize the discrepancy between S
and the model estimate Σ̂ = Σ(θ̂) gives a chi-square test of model fit
If the model is correct, then the minimized value, Fmin, has an asympotic
chi-square distribution,

X 2 = (N − 1)Fmin ∼ χ2
df

with df = P(P + 1)/2− t degrees of freedom
This gives a test of the hypothesis that the model fits the data

H0 : Σ = Σ(θ)

a large (significant) X 2 indicates that the model does not fit the data.
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Model evaluation chi-square test

Model fit: χ2 test— problems

The test statistic, X 2 = (N − 1)Fmin is a function of sample size.
With large N, trivial discrepancies will give a significant chi-square
Worse, it tests an unrealistic hypothesis that the model fits perfectly

the specified model is exactly correct in all details
any lack-of-fit is due only to sampling error
it relies on asymptotic theory (X 2 ∼ χ2 as N →∞) and an assumption of
multivariate normality

Another problem is parsimony— a model with additional free parameters
will always fit better, but smaller models are simpler to interpret
If you fit several nested models, M1 ⊃ M2 ⊃ M3 . . . , chi-square tests for
the difference between models are less affected by these problems

∆X 2 = X 2(M1)− X 2(M2) ∼ χ2 with df = df1 − df2
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Model evaluation RMSEA

Model fit: RMSEA

The measure of root mean square error of approximation (RMSEA) attempts
to solve these problems (Browne & Cudeck, 1993)

RMSEA =

√
X 2 − df

(N − 1)df

Relatively insensitive to sample size
Parsimony adjusted— denominator adjusts for greater df
Common labels for RMSEA values:

RMSEA interpretation
0 perfect fit
≤ .05 close fit

.05− .08 acceptable fit

.08− .10 mediocre fit
> .10 poor fit
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Model evaluation RMSEA

Model fit: RMSEA

In addition, the RMSEA statistic has known sampling distribution properties
(McCallum et al., 1996). This means that:

You can calculate confidence intervals for RMSEA
It allows to test a null hypothesis of “close fit” or “poor fit”, rather than
“perfect fit”

H0 : RMSEA < 0.05
H0 : RMSEA > 0.10

It allows for power analysis to find the sample size (N) required to reject a
hypothesis of “close fit” (RMSEA ≤ 0.05)
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Model evaluation Other fit indices

Incremental fit indices

Creating new indices of goodness-of-fit for CFA/SEM models was a
“growth industry” for many years— there are many possibilities
Incremental fit indices compare the existing model with a null or baseline
model

The null model, M0 assumes all variables are uncorrelated— the worst
possible model.
Incremental fit indices compare the X 2

M for model M with X 2
0 for the null

model
All of these are designed to range from 0 to 1, with larger values (e.g.,
> 0.95) indicating better fit.
The generic idea is to calculate an R2-like statistic, of the form

f (null model)− f (my model)
f (null model)− f (best model)

for some function f (•) of X 2 and df , and where the “best” model fits perfectly.
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Model evaluation Other fit indices

Incremental fit indices

Parsimony-adjusted indices also adjust for model df
Bentler’s comparative fit index (CFI) is often widely used

CFI = 1−
X 2

M − dfM
X 2

0 − df0

Tucker-Lewis Index (TLI), also called “non-normed fit index” (NNFI) are
also popularly reported

TLI ≡ NNFI =
X 2

0 /df0 − X 2
M/dfM

X 2
0 /df0 − 1
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Model evaluation Other fit indices

Information criteria: AIC, BIC

Other widely used criteria, particularly when you have fit a collection of
potential models are the “information criteria”, AIC and BIC
Unlike the likelihood ratio tests these can be used to compare non-nested
models
Each of these uses a penalty for model complexity; BIC expresses a
greater preference for simpler models as the sample size increases.

AIC = X 2 − 2df
BIC = X 2 − log(N)df

Smaller is better

59 / 67



Model evaluation Model modification

Model modification

What to do when your model fits badly?

First, note that a model might fit badly due to data problems:
outliers, missing data problems
non-normality (highly skewed, excessive kurtosis)
non-linearity, omitted interactions, ...

Otherwise, bad model fit usually indicates that some important paths
have been omitted, so some variances or covariances in S are poorly
reproduced by the model

Some regression effects among (x , y) omitted (fixed to 0)?
Covariances among exogenous variables omitted? (all should be included)
Covariances among residuals might need to be included as free parameters

Actions:
Examine residuals, S−Σ(θ̂) to see which variances/covariances are badly fit
Modification indices provide a way to test the impact of freeing each fixed
parameter
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Model evaluation Model modification

Example: Union sentiment
To illusrate, consider what would have happened if we omitted the important
path of y3 (sentiment) on y2 (activism) in the Union sentiment example

mod.bad <- specifyEquations(covs="x1, x2", text='
y1 = gam12*x2
y2 = beta21*y1 + gam22*x2
y3 = beta31*y1 + gam31*x1
')

x1
y3

gam31

x2

y1gam12

y2
gam22

beta21

beta31

Fit the model:
union.sem.bad <- sem(mod.bad, union, N=173)
union.sem.bad

##
## Model Chisquare = 50.235 Df = 4
##
## gam12 beta21 gam22 beta31 gam31 V[x1]
## -0.087438 -0.284563 0.057938 -0.509024 1.286631 1.021000
## C[x1,x2] V[x2] V[y1] V[y2] V[y3]
## 7.139000 215.662000 12.961186 8.488216 25.863934
##
## Iterations = 0
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Model evaluation Model modification

As expected, this model fits very badly

summary(union.sem.bad, fit.indices=c("RMSEA", "NNFI", "CFI"))

##
## Model Chisquare = 50.235 Df = 4 Pr(>Chisq) = 3.2251e-10
## RMSEA index = 0.25923 90% CI: (0.19808, 0.32556)
## Tucker-Lewis NNFI = 0.38328
## Bentler CFI = 0.75331
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.159 0.000 0.000 0.594 0.330 5.247
##
## R-square for Endogenous Variables
## y1 y2 y3
## 0.1129 0.2295 0.1957
##
...
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Model evaluation Model modification

Normalized residuals show the differences S − Σ(θ̂) as approximate z-scores,
so values outside of ±2 can be considered significantly large.

round(normalizedResiduals(union.sem.bad), 3)

## y1 y2 y3 x1 x2
## y1 0.000 0.000 0.103 0.477 0.000
## y2 0.000 0.000 5.246 0.330 0.000
## y3 0.103 5.246 -0.054 -0.159 1.454
## x1 0.477 0.330 -0.159 0.000 0.000
## x2 0.000 0.000 1.454 0.000 0.000

This points to the one very large residual for the y2 -> y3 (or y3 ->
y2 ) path
In this example Union sentiment (y3) is the main outcome, so it would
make sense here to free the y2 -> y3 path
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Model evaluation Model modification

Modification indices

Modification indices provide test statistics for fixed parameters
The statistics estimate the decrease in X 2 if each fixed parameter was
allowed to be freely estimated
These are χ2(1) values, so values > 4 can be considered “significantly”
large.

modIndices(union.sem.bad)

##
## 5 largest modification indices, A matrix (regression coefficients):
## y3<-y2 y2<-y3 x2<-y3 y3<-x2 y1<-y3
## 42.071 38.217 4.240 3.947 3.763
##
## 5 largest modification indices, P matrix (variances/covariances):
## y3<->y2 y3<->y1 x2<->y3 x1<->y3 x1<->y2
## 38.3362 3.9468 3.9468 3.9468 0.4114

Once again, we see large values associated with the y2 -> y3 path
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Model evaluation Model modification

Modification indices: Caveats

Using modification indices to improve model fit is called specification
search
This is often deprecated, unless there are good substantive reasons for
introducing new free parameters

New paths or covariances in the model should make sense theoretically
Large modification indices could just reflect sample-specific effects
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Summary

Summary I

Structural equation models are an historical development of EFA and
CFA methods and path analysis

EFA and CFA attempt to explain correlations among observed variables in
terms of latent variables (“factors”)
EFA used factor rotation to obtain an interpretable solution
CFA imposes restrictions on a solution, and allows specific hypothesis tests
Higher-order CFA further generalized CFA to the ACOVS model
Meanwhile, path analysis developed methods for analyzing systems of
equations together
The result, was SEM, in the form of the LISREL model

66 / 67



Summary

Summary II

Path diagrams provide a convenient way to portray or visualize a SEM
Direct translation from/to a system of linear equations
Some software (AMOS graphics) allows construction of the model via a path
diagram
Most SEM software provides for output of models and results as path
diagrams

Path analysis models provide a basic introduction to SEM
No latent variables— only observed (“manifest”) ones
Does not allow for errors of measurement in observed variables
exogenous variables (xs)— only predictors in the linear equations
endogenous variables (ys)— a dependent variable in one or more equations
Error terms reflect errors-in-equations— unmodeled predictors, wrong
functional form, etc.

An important question in SEM models is model identification— can the
parameters be uniquely estimated?
Another important question is how to evaluate model fit?
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