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Abstract

Collinearity diagnostics are widely used, but the typical tabular output used in almost all soft-
ware makes it hard to tell what to look for and how to understand the results. We describe a simple
improvement to the standard tabular display, a graphic rendition of the salient information as a
“tableplot,” and graphic displays designed to make the information in these diagnostic methods
more readily understandable.

In addition, we propose a visualization of the contributions of the predictors to collinearity
through acollinearity biplot, which is simultaneously a biplot of the smallest dimensions of the cor-
relation matrix of the predictors,RXX , and the largest dimensions ofR−1

XX
, on which the standard

collinearity diagnostics are based.
Key words: condition indices, collinearity biplot, diagnostic plots, effect ordering, multiple regres-
sion, tableplot, variance inflation

1 Introduction

Q: (Collinearity diagnostics and remedies): ”Some of my collinearity diagnostics
have large values, or small values, or whatever they’re not supposed to have. Is this
bad? If so, what can we do about it?”

from: http://www.sociology.ohio-state.edu/people/ptv/faq/
collinearity.htm

Problems in estimation in multiple regression models that arise from influential observations and
high correlations among the predictors were first described in a comprehensive way in Belsley, Kuh, and
Welsch’s (1980)Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. This
book would prove to be a highly influential point on the landscape of diagnostic methods for regression,
but not always one of high leverage, at least in graphical methods forvisualizing and understanding
collinearity diagnostics.

Later, David Belsley wroteA guide to using the collinearity diagnostics(Belsley, 1991b), that
seemed to promise a solution for visualizing these diagnostics. For context, it isworth quoting the
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The description of the collinearity diagnostics as presented in Belsley, Kuh,and Welsch’s,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, is prin-
cipally formal, leaving it to the user to implement the diagnostics and learn to digestand
interpret the diagnostic results. This paper is designed to overcome this shortcoming by
describing the different graphical displays that can be used to present the diagnostic infor-
mation and, more importantly, by providing the detailed guidance needed to promote the
beginning user into an experienced diagnostician and to aid those who wish toincorporate
or automate the collinearity diagnostics into a guided-computer environment.

Alas, the “graphical displays” suggested were just tables– of eigenvalues, condition numbers and
coefficient variance proportions associated with the collinearity diagnostics. There is no doubt that
Belsley’s suggested tabular displays have contributed to the widespread implementation and use of
these diagnostics. Yes, as the initial quote for this introduction indicates, users are often uncertain about
how to interpret these tabular displays.

To make the point of this paper more graphic, we liken the analyst’s task in understanding collinear-
ity diagnostics to that of the reader of Martin Hansford’s successful series of books,Where’s Waldo
(titled Where’s Wallyin the UK,Wo ist Walterin Germany, etc.). These consist of a series of full-page
illustrations of hundreds of people and things and a few Waldos— a character wearing a red and white
striped shirt and hat, glasses, and carrying a walking stick or other paraphernalia. Waldo was never
disguised, yet the complex arrangement of misleading visual cues in the pictures made him very hard to
find. Collinearity diagnostics often provide a similar puzzle.

The plan of this paper is as follows: We first describe a simple example that illustrates the cur-
rent state of the art for the presentation of collinearity diagnostics. Section2 summarizes the standard
collinearity diagnostics in relation to the classical linear regression model,y = Xβ + ǫ. In Section 3
we suggest some simple improvements to the typical tabular displays and a graphic rendering called a
“tableplot” to make these diagnostics easier to read and understand. Section 4describes some graphic
displays based on the the biplot (Gabriel, 1971) that helps interpret the information in collinearity diag-
nostics.

It is also important to say here what this paper doesnot address: collinearity in regression models
is a large topic, and the answer to the last question in the initial quote,If so, what can we do about
it? would take this article too far afield. The methods described below do providea means to see
what is potentially harmful, whether large or small and thus, answers the question Is this bad?More
importantly, the graphic displays related to these questions can often saywhysomething about the data
is good or bad.

1.1 Example: Cars data

As a leading example, we use the Cars dataset from the 1983 ASA Data Exposition (http://stat-computing.
org/dataexpo/1983.html) prepared by Ernesto Ramos and David Donoho. This dataset contains
406 observations on the following seven variables:MPG (miles per gallon),Cylinder (# cylinders),En-
gine (engine displacement, cu. inches),Horse (horsepower),Weight (vehicle weight, lbs.),Accel (time
to accelerate from 0 to 60 mph, in sec.), andYear (model year, modulo 100). An additional categorical
variable identifies the region of origin (American, European, Japanese), not analyzed here. For this data,
the natural questions concern how well MPG can be explained by the othervariables.

Collinearity diagnostics are not part of the standard output of any widely-used statistical software;
they must be explicitly requested by using options (SAS), menu choices (SPSS) or other packages (R:
car, perturb).
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As explained in the next section, the principal collinearity diagnostics include: (a) variance inflation
factors, (b) condition indices, and (c) coefficient variance proportions. To obtain this output in SAS, one
can use the following syntax, using the options VIF and COLLINOINT.

proc reg data = cars;
model mpg = weight year engine horse accel cylinder / vif collinoint;
run;

Another option, COLLIN, produces collinearity diagnostics that include theintercept. But these are
uselessunlessthe intercept has a real interpretation and the origin on the regressors is contained within
the predictor space, as explained in Section 2.2. See Fox (1997, p. 351)and the commentary surround-
ing Belsley (1984) for discussion of this issue. We generally prefer the intercept-adjusted diagnostics,
but the choice is not material to the methods presented here.

The model specified above fits very well, with anR2 = 0.81; however, thet-tests for parameters
shown in Table 1 indicates that only two predictors— Weight and Year are significant. Table 1 also
shows the variance inflation factors. By the rules-of-thumb described below, four predictors— Weight,
Engine, Horse and Cylinder have potentially serious problems of collinearity, or at least cause for con-
cern. The condition indices and coefficient variance proportions are given in Table 2. As we describe
below, we might consider the last two rows to show evidence of collinearity. However, the information
presented here hardly gives rise to a clear understanding.

Table 1: Cars data: parameter estimates and variance inflation factors
Variable DF Parameter Standard t Value Pr> |t| Variance

Estimate Error Inflation
Intercept 1 −14.63175 4.88451 −3.00 0.0029 0
Weight 1 −0.00678 0.00067704 −10.02 <.0001 10.857
Year 1 0.76205 0.05292 14.40<.0001 1.253
Engine 1 0.00848 0.00747 1.13 0.2572 20.234
Horse 1 −0.00290 0.01411 −0.21 0.8375 9.662
Accel 1 0.06121 0.10366 0.59 0.5552 2.709
Cylinder 1 −0.34602 0.33313 −1.04 0.2996 10.658

Table 2: Cars data: Condition indices and variance proportions, in the form displayed by most statistical
software

Number Eigenvalue Condition Proportion of Variation
Index Weight Year Engine Horse Accel Cylinder

1 4.25623 1.00000 0.00431 0.00968 0.00256 0.00523 0.00922 0.00457
2 0.83541 2.25716 0.00538 0.85620 0.00114 0.00003952 0.00396 0.00296
3 0.68081 2.50034 0.01278 0.05358 0.00177 0.00244 0.42400 0.00515
4 0.13222 5.67358 0.08820 0.00581 0.01150 0.29168 0.06140 0.31720
5 0.05987 8.43157 0.71113 0.06882 0.00006088 0.66021 0.49182 0.11100
6 0.03545 10.95701 0.17819 0.00592 0.98297 0.04040 0.00961 0.55912
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2 Background: Notation and collinearity diagnostics

Consider the classical linear regression model,y = Xβ + ǫ, wherey is ann × 1 vector of responses;
X is ann × p full-rank matrix of predictors, the first column of which consists of 1s;β is a p × 1
vector of parameters to be estimated, where, by convention, the first element (intercept) is denotedβ0;
andǫ is ann × 1 vector of errors, withE(ǫ) = 0 andV(ǫ) = σ2I. The usual least squares estimates
of the parametersβ are given byb ≡ β̂ = (X ′X)−1X ′y, andV(b) = σ2(X ′X)−1, whence the
standard deviations of the parameters, which inversely reflect the precision of estimation, are given by
[diagV(b)]1/2.

2.1 Variance inflation

It can be shown ( e.g., Fox (1984)) that the sampling variances of the non-intercept parameter estimates
can be expressed as

V(bj) =
σ2

(n − 1)s2

j

×



 1

1 − R2

j |others



 , (1)

wheres2

j is the sample variance of thej-th column,Xj , andR2

j |othersis the squared multiple correla-

tion from the regression ofXj on the other predictors. It is easily seen that the second term in Eqn. (1)
is a factor that multiplies the parameter variances as a consequence of correlations among the predic-
tors. This term, called thevariance-inflation factor(VIF) by Marquandt (1970) has become a standard
collinearity diagnostic. When the predictors are all uncorrelated, allR2

j = 0 and all VIFj have their
minimum value of 1. As anyR2

j approaches 1 (complete linear dependence on the other predictors),
VIFj approaches∞.

In the linear regression model with standardized predictors, the covariance matrix of the estimated
intercept-excluding parameter vectorb⋆ has the simpler form,

V(b⋆) =
σ2

n − 1
R−1

XX , (2)

whereRXX is the correlation matrix among the predictors. It can then be seen that the VIFj are just
the diagonal entries ofR−1

XX .

2.2 Condition indices and variance proportions

Large VIFj indicate predictor coefficients whose precise estimation is degraded due to largeR2

j |others.

To go further, we need to determine (a) how many dimensions in the space of the predictors are as-
sociated with nearly collinear relations; (b) which predictors are most strongly implicated in each of
these.

In the predictor space, the linear relations among the variables can be seenmost easily in terms of
the principal component analysis of the standardized predictors, or, equivalently, in terms of the eigen
decomposition ofRXX asRXX = V ΛV ′, whereΛ is a diagonal matrix whose entriesλ1 ≥ λ2 ≥
. . . ≥ λp ≥ 0 are the ordered eigenvalues ofRXX andV is thep × p matrix whose columns are the
corresponding eigenvectors. By elementary matrix algebra, the eigen decomposition ofR−1

XX is then

R−1

XX = V Λ
−1V ′ . (3)
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Thus,RXX andR−1

XX have the same eigenvectors, and the eigenvalues ofR−1

XX are justλ−1

i . Using
Eqn. (3), the variance inflation factors may be expressed as

V IFj =
p∑

k=1

V 2

jk

λk
, (4)

which shows that only the small eigenvalues contribute to variance inflation, but only for those predictors
that have large eigenvector coefficients on those small components. These facts lead to the following
diagnostic statistics for collinearity:

Condition indices : The smallest of the eigenvalues, thoseλk ≈ 0, indicate collinearity and the num-
ber of small values indicates the number of near collinear relations. Because the sum of the
eigenvalues,Σλi = p which increases with the number of predictors, it is useful to scale them all
in relation to the largest. This leads tocondition indices, defined asκk =

√
λ1/λk. These have

the property that the resulting numbers have common interpretations regardless of the number of
predictors. By common conventions (Belsley, 1991a) condition indices from 10–30 are consid-
ered values to be wary of;> 30 indicates trouble; and> 100 is a sign of potential disaster in
estimation.

Coefficient variance proportions : Large VIFs indicate variables that are involved insomenearly
collinear relations, but they don’t indicatewhichother variable(s) each is involved with. For this
purpose, Belsleyet al. (1980) and Belsley (1991a) proposed calculation of the proportions of
variance of each variable associated with each principal component as adecomposition of the
coefficient variance for each dimension. These may be expressed (Fox, 1984,§3.1.3) as

pjk =
V 2

jk

V IFj λk
(5)

Note that for orthogonal regressors, all condition indicesκk = 1 and the matrix of coefficient
variance proportions,P = (pjk) = I. Thus, Belsley (1991a,b) recommended that the sources of
collinearity be diagnosed (a) only for those components with largeκk, and (b) for those compo-
nents for whichpjk is large (say,pjk ≥ 0.5) on two or more variables.

3 Improved tabular displays: How many Waldos?

The standard tabular display of condition indices and variance proportions in Table 2 suffers mainly
from the fact that the most important information is disguised by being embedded in a sea of mostly
irrelevant numbers, arranged by inadvertent design to make the user’stask harder. One could easily
nominate this design as aWhere’s Waldofor tabular display.

The first problem is that the table is sorted by decreasing eigenvalues. This would otherwise be
typical and appropriate for eigenvalue displays, but for collinearity diagnostics, it hides Waldo among
the bottom rows. It is more useful to sort by decreasing condition numbers.

A second problem is that the variance proportions corresponding tosmall condition numbers are
totally irrelevant to problems of collinearity. Including them, perhaps out of adesire for completeness,
would otherwise be useful, but here it helps Waldo avoid detection. For thepurpose for which these
tables are designed, it is better simply to suppress the rows correspondingto low condition indices. In
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this article we adopt the practice of showing one more row than the number of condition indices greater
than 10 in tables, but there are even better practices.

Software designers who are troubled by incompleteness can always arrange to make the numbers
we would suppress perceptually less important, e.g., smaller in size or closer tobackground in texture
or shading, as in Table 3. A simple version of this is to use a ’fuzz’ value, e.g., fuzz=0.5 such that all
variance proportions< fuzz are blanked out, or replaced by a place holder (’.’). For example, the
colldiag function in the R packageperturb (Hendrickx, 2008) has a print method that supports a
fuzz argument.

The third problem is that, even for those rows (large condition numbers) wewant to see, the typical
displayed output offers Waldo further places to hide among numbers printed to too many decimals. Do
we really care that the variance proportion for Engine on component 5 is 0.00006088? For the large
condition numbers, we should only be concerned with the variables that have large variable proportions
associated with those linear combinations of the predictors.

For the Cars data, we need only look at the rows corresponding to the highest condition indices. Any
sharp cutoff for the coefficient variance proportions to display (e.g.,pjk ≥ 0.5) runs into difficulties
with borderline values, so in Table 3, we highlight the information that should capture attention by (a)
removing all decimals and (b) distinguishing values≥ 0.5 by font size and style; other visual attributes
could also be used. From this, it is easily seen that there are two Waldos in thispicture. The largest
condition index corresponds to a near linear dependency involving Engine size and number of cylinders;
the second largest involves weight and horsepower, with a smaller contribution of acceleration. Both
of these have clear interpretations in terms of these variables on automobiles:engine size is directly
related to number of cylinders and, orthogonal to that dimension, there is a relation connecting weight
to horsepower.

Table 3: Cars data: Revised condition indices and variance proportions display. Variance proportions
> 0.5 are highlighted.

Condition Proportion of Variation (×100)
Number Index Eigenvalue Weight Year Engine Horse Accel Cylinder

6 10.96 0.03545 18 1 98 4 1 56
5 8.43 0.05987 71 7 0 66 49 11

3.1 Tableplots

Table 2 and even the collinearity-targeted version, Table 3, illustrate how difficult it is to display quan-
titative information in tables so that what isimportantto see— patterns, trends, differences, or special
circumstances— are madedirectly visually apparent to the viewer. Tukey (1990) referred to this prop-
erty asinteroccularity : the message hits you between the eyes.

A tableplot is a semi-graphic display designed to overcome these difficulties, developedby Ernest
Kwan (2008a). The essential idea is to display the numeric information in a tablesupplemented by
symbols whose size is proportional to the cell value, and whose other visual attributes (shape, color fill,
background fill, etc.) can be used to encode additional information essential to direct visual understand-
ing. The method is far more general than described here and illustrated in thecontext of collinearity
diagnostics. See Kwan (2008b) for some illustrations of the use for factoranalysis models.
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4
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1
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71 7 0 66 49 11
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9 1 1 29 6 32
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1 5 0 0 42 1

2.26

#2
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1

#1
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Figure 1: Tableplot of condition indices and variance proportions for theCars data. In column 1, the
square symbols are scaled relative to a maximum condition index of 30. In the remaining columns,
variance proportions (×100) are shown as circles scaled relative to a maximum of 100.

Figure 1 is an example of one tableplot display design for collinearity diagnostics. All the essential
numbers in Table 2 are shown, but encoded in such a way as to make their interpretation more direct.
The condition indices are shown by the area of the white squares in column 1.In this example these are
scaled so that a condition index of 30 corresponds to a square that fills thecell. The background color
of the cells in this column indicate a reading of the severity of the condition index,κk. In this example,
green (”OK”) indicatesκk < 5, yellow (”warning”) indicates5 ≤ κk < 10 and red (”danger”) indicates
κk ≥ 10. The remaining columns show the collinearity variance proportions,100 × pjk, with circles
scaled relative to a maximum of 100, and with color fill (white, pink, red) distinguishing the ranges{
0–20, 20–50, 50–100}.

The details of the particular assignments of colors and ranges to the conditionindices and variance
proportions are surely debatable, but the main point here is that Figure 1 succeeds where Table 2 does
not and Table 3 only gains by hiding irrelevant information.
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4 Graphical displays: biplots

As we have seen, the collinearity diagnostics are all functions of the eigenvalues and eigenvectors of the
correlation matrix of the predictors in the regression model, or alternatively,the SVD of theX matrix in
the linear model (excluding the constant). The standard biplot (Gabriel, 1971, Gower and Hand, 1996)
can be regarded as a multivariate analog of a scatterplot, obtained by projecting a multivariate sample
into a low-dimensional space (typically of 2 or 3 dimensions) accounting for the greatest variance in the
data. With the symmetric (PCA) scaling used here, this is equivalent to a plot ofprincipal component
scores of the mean-centered matrixX̃ of predictors for the observations (shown as points or case labels),
together with principal component coefficients for the variables (shown as vectors) in the same 2D (or
3D) space.

The standard biplot, of the first two dimensions, corresponding to the largest eigenvalues ofRXX is
shown in Figure 2. This is useful for visualizing the principal variation of the observations in the space
of the predictors. It can be seen in Figure 2 that the main dimension of variation among the automobile
models is in terms of engine size and power; acceleration time is also strongly related to Dimension
1, though of course inversely. The second dimension (accounting for an additional 13.8% of predictor
variance) is largely determined by model year.

In these plots: (a) The variable vectors have their origin at the mean on each variable, and point
in the direction of positive deviations from the mean on each variable. (b) The angles between vari-
able vectors portray the correlations between them, in the sense that the cosine of the angle between
any two variable vectors approximates the correlation between those variables (in the reduced space).
(c) Similarly, the angles between each variable vector and the biplot axes approximate the correlation
between them. (d) Because the predictors were scaled to unit length, the relative length of each variable
vector indicates the proportion of variance for that variable represented in the low-rank approximation.
(e) The orthogonal projections of the observation points on the variable vectors show approximately the
value of each observation on each variable. (f) By construction, the observations, shown as principal
component scores are uncorrelated;

But the standard biplot is less useful for visualizing the relations among the predictors that lead to
nearly collinear relations. Instead, biplots of the smallest dimensions show these relations directly, and
can show other features of the data as well, such as outliers and leveragepoints.

4.1 Visualizing variance proportions

As with the tabular display of variance proportions, Waldo is hiding in the dimensions associated with
the smallest eigenvalues (largest condition indices). As well, it turns out that outliers in the predictor
space— high leverage observations— can often be seen as observations far from the centroid in the
space of the smallest principal components.

Figure 3 shows the biplot of the Cars data for the smallest two dimensions— what we can call the
collinearity biplot. The projections of the variable vectors on the Dimension 5 and Dimension 6 axes
are proportional to their variance proportions in Table 2. The relative lengths of these variable vectors
can be considered to indicate the extent to which each variable contributes tocollinearity for these two
near-singular dimensions.

Thus, we see that (as in Table 3) Dimension 6 is largely determined by Engine size, with a substantial
relation to Cylinder. Dimension 5 has its’ strongest relations to Weight and Horse. In the reduced tabular
display, Table 3, we low-lighted all variance proportions< 0.5, but this is unnecessary in the graphical
representation.
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Figure 2: Standard biplot of the Cars data, showing the first two dimensions. The observations are
labeled with their case numbers and colored according to region of origin. The right half of the plot
consists almost entirely of US cars (blue).

Moreover, there is one observation, #20, that stands out as an outlier inpredictor space, far from
the centroid. It turns out that this vehicle, a Buick Estate wagon, is an early-year (1970) American
behemoth, with an 8-cylinder, 455 cu. in, 225 horse-power engine, andable to go from 0 to 60 mph in
10 sec. (Its MPG is only slightly under-predicted from the regression model, however.)

This and other high-leverage observations may be seen in other graphical displays; but it is useful to
know here that they will often also be quite noticeable in what we propose here as the collinearity biplot.
The web page of supplementary materials for this article (Section 5.2) shows arobust outlier-detection
QQ plot and an influence plot of these data for comparison with more well-known methods.

4.2 Visualizing condition indices

The condition indices are defined in terms of the ratiosλ1/λk (on a square root scale). It is common to

refer to the maximum of these,
√

λ1/λp as thecondition numberfor the entire system, giving the worst
near-singularity for the entire model.

A related visualization, that potentially provides more information than just the numerical condition
indices can be seen in biplots of Dimension 1 vs. Dimensionk, where, typically only thek correspond-
ing to the smallest eigenvalues are of interest. To visualize the relative size ofλk to λ1 it is useful to
overlay this plot with a data ellipse for the component scores.

Figure 4 shows the condition number biplot for the Cars data, where the condition number can be
approximately seen as the ratio of the horizontal to the vertical dimensions of the data ellipse. As the
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Figure 3: Collinearity biplot of the Cars data, showing the last two dimensions.The projections of the
variable vectors on the coordinate axes are proportional to their variance proportions. To reduce graphic
clutter, only the eight most outlying observations in predictor space are identified by case labels. An
extreme outlier (case #20) appears in the upper right corner.

numerical values of the condition indices in Table 2 also indicate, ill-conditioningin this example is
not particularly severe. In general, however, the relative lengths of the variable vectors approximately
indicate those variables that contribute to ill-conditioning.

The observations can also be interpreted in this display in relation to their projections on the variable
vectors. Case 20, the main high-leverage point is seen as having high projections on Dimension 1,
which in this view is seen as the four variables with high VIFs: Engine, Horse, Weight, Cylinder. The
observations that contribute to large condition indices are those with large projections on the smallest
component, Dimension 6.

5 Other examples

5.1 Biomass data

Rawlings (1988, Table 13.1) described analyses of a data set concerned with the determination of soil
characteristics influencing the aerial biomass production of a marsh grass, Spartina alterniflorain the
Cape Fear estuary of North Carolina. The soil characteristics consistedof 14 physical and chemical
properties, measured at nine sites (three locations× three vegetation types), with five samples per site,
givingn = 45 observations. The data were collected as part of a Ph.D. dissertation by Richard Linthurst.
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Figure 4: Condition number biplot of the Cars data, showing the first and last dimensions, with a 68%
data ellipse for the component scores. The square root of the ratio of thehorizontal and vertical axes of
the ellipse portrays the condition number.

The quantitative predictors (i.e., excluding location and type) were:H2S: free sulfide;sal: salin-
ity; Eh7: redox potential at pH 7;pH: soil pH; buf: buffer acidity at pH 6.6; and concentrations of
the following chemical elements and compounds—P: phosphorus;K : potassium;Ca: calcium;Mg:
magnesium;Na: sodium;Mn : manganese;Zn: zinc;Cu: copper,NH4: ammonium.

It should be noted that if the goal of the study was simply todescribebiomass for the given time-
frame and locations, collinearity would be less of an issue. But here, the emphasis in analysis focuses
on identifying the “important” variable determinants of biomass.

The model with all 14 quantitative predictors fits very well indeed, with anR2 = .81. However, the
parameter estimates and their standard errors shown in Table 4 indicate that only two variables, K and
Cu, have significantt statistics, all of the others being quite small in absolute value. For comparison,
a stepwise selection analysis using 0.10 as the significance level to enter andremove variables selected
the four-variable model consisting of pH, Mg, Ca and Cu (in that order),giving R2 = 0.75; other
selection methods were equally inconsistent and perplexing in their possible biological interpretations.
Such results are a clear sign-post of collinearity. We see from Table 4 that many of the VIFs are quite
large, with six of them (pH, buf, Ca, Mg, Na and Zn) exceeding 10. How many Waldos are hiding here?

The condition indices and variance proportions for the full model are shown, in our preferred form,
in Table 5, where, according to our rule of thumb, 1+#(Condition Index> 10), we include the 4 rows
with condition indices> 7. Following Belsley’s (1991a) rules of thumb, it is only useful to interpret
those entries (a) for which the condition indices are large and (b) where two or more variables have
large portions of their variance associated with a near singularity. Accordingly, we see that there are
two Waldos contributing to collinearity: the smallest dimension (#14), consisting of the variables pH,
buf, and Ca, and the next smallest (#13), consisting of Mg and Zn. The first of these is readily interpreted
as indicating that soil pH is highly determined by buffer acidity and calcium concentration.

Alternatively, Figure 5 shows a tableplot of the largest 10 condition indicesand associated variance
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Table 4: Linthall data: Parameter estimates and variance inflation factors

Variable DF Parameter Standardt Value Pr> |t| VIF
Estimate Error

Intercept 1 2909.93 3412.90 0.85 0.401 0
H2S 1 0.42900 2.9979 0.14 0.887 3.02
sal 1 −23.980 26.170 −0.92 0.367 3.39
Eh7 1 2.5532 2.0124 1.27 0.214 1.98
pH 1 242.528 334.173 0.73 0.474 62.08
buf 1 −6.902 123.821 −0.06 0.956 34.43
P 1 −1.702 2.640 −0.64 0.524 1.90
K 1 −1.047 0.482 −2.17 0.038 7.37
Ca 1 −0.1161 0.1256 −0.92 0.363 16.66
Mg 1 −0.2802 0.2744 −1.02 0.315 23.76
Na 1 0.00445 0.02472 0.18 0.858 10.35
Mn 1 −1.679 5.373 −0.31 0.757 6.18
Zn 1 −18.79 21.780 −0.86 0.395 11.63
Cu 1 345.16 112.078 3.08 0.004 4.83
NH4 1 −2.705 3.238 −0.84 0.410 8.38

Table 5: Linthall data: Condition indices and variance proportions (×100). Variance proportions> 0.4
are highlighted.

Cond Eigen
# Index value H2S sal Eh7 pH buf P K Ca Mg Na Mn Zn Cu NH4

14 22.78 0.0095 22 25 3 95 70 1 8 60 16 21 34 2 4 17
13 12.84 0.0298 0 9 2 0 12 8 28 1 67 25 16 45 0 21
12 10.43 0.0453 0 16 3 4 13 5 0 16 15 28 2 9 43 24
11 7.53 0.0869 19 3 0 0 4 1 7 18 1 5 14 32 9 2

proportions, using the same assignments of colors to ranges as describedfor Figure 1. Among the
top three rows shaded red for the condition index, the contributions of the variables to the smallest
dimensions is more readily seen than in tabular form (Table 5).

The standard biplot (Figure 6) shows the main variation of the predictors onthe two largest dimen-
sions in relation to the observations; here, these two dimensions account for 62% of the variation in the
14-dimensional predictor space. As before, we can interpret the relative lengths of the variable vectors
as the proportion of each variable’s variance shown in this 2D projection,and the (cosines of) the angles
between the variable vectors as the approximation of their correlation shownin this view.

Based on this evidence it is tempting to conclude, as did Rawlings (1988, p. 366) that there are two
clusters of highly related variables that account for collinearity: Dimension1, having strong associations
with five variables (pH, Ca, Zn, buf, NH4), and Dimension 2, whose largest associations are with the
variables K, Na and Mg. This conclusion is wrong!

The standard biplot does convey useful information, but is misleading forthe purpose of diagnosing
collinearity because we are only seeing the projection into the 2D predictor space of largest variation
and inferring, indirectly, the restricted variation in the small dimensions whereWaldo usually hides. In
the principal component analysis (or SVD) on which the biplot is based, thesmallest four dimensions

12
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Figure 5: Tableplot of the 10 largest condition indices and variance proportions for the Linthall data.
In column 1, the symbols are scaled relative to a maximum condition index of 30. In the remaining
columns, variance proportions (×100) are scaled relative to a maximum of 100.

(shown in Table 5) account for 1.22% of the variation in predictor space.Figure 7 shows the collinear-
ity biplot for the smallest two dimensions ofRXX , or equivalently, the largest dimensions ofR−1

XX ,
comprising only 0.28% of predictor variation.

Again, this graph provides a more complete visualization of the information related to collinearity
than is summarized in Table 5, if we remember to interpret only the long variable vectors in this plot
and their projections on the horizontal and vertical axes. Variables pH, buf, and Ca to a smaller degree
stand out on dimension 14, while Mg and Zn stand out on dimension 13. The contributions of the
other variables and the observations to these nearly singular dimensions would give the analyst more
information to decide on an effective strategy for dealing with collinearity.

5.2 Further examples and software

The data and scripts, for SAS and R, for these examples and others, will be available atwww.math.
yorku.ca/SCS/viscollin, where links for biplot and tableplot software will also be found.

6 Discussion

As we have seen, the standard collinearity diagnostics— variance inflation factors, condition indices,
and the variance proportions associated with each eigenvalue ofRXX— doprovide useful and relatively
complete information about the degree of collinearity, the number of distinct near singularities, and the
variables contributing to each. However, the typical tabular form in which this information is provided
to the user is perverse— it conceals, rather than highlights, what is importantto understand.
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Figure 6: Standard biplot of the Linthurst data, showing the first two dimensions. The point labels refer
to case numbers, which are colored according to the location of the site.

We have illustrated some simple modifications to the usual tabular displays designed to make it
easier to see the number of Waldos in the picture and the variables involved in each. The re-ordered
and reduced forms of these tables are examples of a general principle ofeffect ordering for data display
(Friendly and Kwan, 2003) that translates here as “in tables and graphs, make the important information
most visually apparent.” Tableplots take this several steps further to highlight what is important to be
seendirectly to the eye. The collinearity biplot, showing the smallest dimensions, does this too,but also
provides a more complete visualization of the relations among the predictors andthe observations in the
space where Waldo usually hides.
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