In press, The American Statistician

Where’s Waldo: Visualizing Collinearity Diagnostics

Michael Friendly Ernest Kwan

Abstract

Collinearity diagnostics are widely used, but the typieddular output used in almost all soft-
ware makes it hard to tell what to look for and how to undedtiue results. We describe a simple
improvement to the standard tabular display, a graphicitiendof the salient information as a
“tableplot,” and graphic displays designed to make thermfttion in these diagnostic methods
more readily understandable.

In addition, we propose a visualization of the contribusiasf the predictors to collinearity
through acollinearity biplot, which is simultaneously a biplot of the smallest dimensiofithe cor-
relation matrix of the predictord? x x, and the largest dimensionst;QX, on which the standard
collinearity diagnostics are based.

Key words: condition indices, collinearity biplot, diagnostic plp&sfect ordering, multiple regres-
sion, tableplot, variance inflation

1 Introduction

Q: (Collinearity diagnostics and remedies): "Some of myiceérity diagnostics
have large values, or small values, or whatever they’re mgpased to have. Is this
bad? If so, what can we do about it?”

from: htt p: // ww. soci ol ogy. ohi o- st at e. edu/ peopl e/ pt v/ faq/
collinearity.htm

Problems in estimation in multiple regression models that arise from influentiahvalises and
high correlations among the predictors were first described in a commighavay in Belsley, Kuh, and
Welsch’s (1980Regression Diagnostics: Identifying Influential Data and Sources of @allity. This
book would prove to be a highly influential point on the landscape of distgnmethods for regression,
but not always one of high leverage, at least in graphical methodgdoalizing and understanding
collinearity diagnostics.

Later, David Belsley wroteA guide to using the collinearity diagnosti¢Belsley, 1991b), that
seemed to promise a solution for visualizing these diagnostics. For contextydtiis quoting the
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The description of the collinearity diagnostics as presented in Belsleyafah)Nelsch’s,
Regression Diagnostics: Identifying Influential Data and Sources of @aliity, is prin-
cipally formal, leaving it to the user to implement the diagnostics and learn to digdst
interpret the diagnostic results. This paper is designed to overcome this@hing by
describing the different graphical displays that can be used to prémediagnostic infor-
mation and, more importantly, by providing the detailed guidance needed to f@oheo
beginning user into an experienced diagnostician and to aid those who wislotporate
or automate the collinearity diagnostics into a guided-computer environment.

Alas, the “graphical displays” suggested were just tables— of eigessatondition numbers and
coefficient variance proportions associated with the collinearity diagsosiitiere is no doubt that
Belsley’s suggested tabular displays have contributed to the widespresshiengation and use of
these diagnostics. Yes, as the initial quote for this introduction indicates, aiseoften uncertain about
how to interpret these tabular displays.

To make the point of this paper more graphic, we liken the analyst's task grstatiding collinear-
ity diagnostics to that of the reader of Martin Hansford’s successfigdsef booksWhere’s Waldo
(titled Where’s Wallyin the UK, Wo ist Walterin Germany, etc.). These consist of a series of full-page
illustrations of hundreds of people and things and a few Waldos— a dkakaearing a red and white
striped shirt and hat, glasses, and carrying a walking stick or otheplpemaalia. Waldo was never
disguised, yet the complex arrangement of misleading visual cues in thesgioctade him very hard to
find. Collinearity diagnostics often provide a similar puzzle.

The plan of this paper is as follows: We first describe a simple example thdtalies the cur-
rent state of the art for the presentation of collinearity diagnostics. Sezsommarizes the standard
collinearity diagnostics in relation to the classical linear regression mgdel, X 3 + €. In Section 3
we suggest some simple improvements to the typical tabular displays and &geaptering called a
“tableplot” to make these diagnostics easier to read and understand. Sed#gsoribes some graphic
displays based on the the biplot (Gabriel, 1971) that helps interpret threriafion in collinearity diag-
nostics.

It is also important to say here what this paper doetsaddress: collinearity in regression models
is a large topic, and the answer to the last question in the initial qlfote, what can we do about
it? would take this article too far afield. The methods described below do prevideans to see
what is potentially harmful, whether large or small and thus, answers thetigués this bad? More
importantly, the graphic displays related to these questions can oftemhsapmething about the data
is good or bad.

1.1 Example: Cars data

As a leading example, we use the Cars dataset from the 1983 ASA Dataittqpht t p: / / st at - conmput i ng.
or g/ dat aexpo/ 1983. ht m ) prepared by Ernesto Ramos and David Donoho. This dataset contains
406 observations on the following seven variabM®&G (miles per gallon)Cylinder (# cylinders) En-
gine (engine displacement, cu. incheldprse (horsepower)Weight (vehicle weight, Ibs.)Accel (time
to accelerate from 0 to 60 mph, in sec.), afer (model year, modulo 100). An additional categorical
variable identifies the region of origin (American, European, Japajestegnalyzed here. For this data,
the natural questions concern how well MPG can be explained by thewathables.

Collinearity diagnostics are not part of the standard output of any widedyl statistical software;
they must be explicitly requested by using options (SAS), menu choicesS|SP8ther packages (R:
car, perturb).



As explained in the next section, the principal collinearity diagnostics incli@eariance inflation
factors, (b) condition indices, and (c) coefficient variance propastido obtain this output in SAS, one
can use the following syntax, using the options VIF and COLLINOINT.

proc reg data =

run;

cars;
nodel nmpg = wei ght year engi ne horse accel

cylinder / vif collinoint;

Another option, COLLIN, produces collinearity diagnostics that includeitibercept. But these are
uselessinlessthe intercept has a real interpretation and the origin on the regressorgasned within
the predictor space, as explained in Section 2.2. See Fox (1997, pardbihe commentary surround-
ing Belsley (1984) for discussion of this issue. We generally prefer tieecept-adjusted diagnostics,
but the choice is not material to the methods presented here.
The model specified above fits very well, with & = 0.81; however, thet-tests for parameters
shown in Table 1 indicates that only two predictors— Weight and Year ardgfisant. Table 1 also
shows the variance inflation factors. By the rules-of-thumb describledvpur predictors— Weight,
Engine, Horse and Cylinder have potentially serious problems of collingarigt least cause for con-
cern. The condition indices and coefficient variance proportionsiges gn Table 2. As we describe
below, we might consider the last two rows to show evidence of collineardwener, the information
presented here hardly gives rise to a clear understanding.

Table 1: Cars data: parameter estimates and variance inflation factors

Variable DF  Parameter Standard tValue >Pft| Variance
Estimate Error Inflation
Intercept 1 —14.63175 4.88451 —-3.00 0.0029 0
Weight 1 —-0.00678 0.00067704 —10.02 <.0001  10.857
Year 1 0.76205 0.05292  14.40<.0001 1.253
Engine 1 0.00848 0.00747 1.13 0.2572  20.234
Horse 1 —0.00290 0.01411 -0.21 0.8375 9.662
Accel 1 0.06121 0.10366 0.59 0.5552 2.709
Cylinder 1 —0.34602 0.33313 —1.04 0.2996  10.658

Table 2: Cars data: Condition indices and variance proportions, in thedisplayed by most statistical

software
Number Eigenvalue Conditio Proportion of Variation
Index | Weight Year Engine Horse Accel Cylinder
1 4.25623 1.00000 0.00431 0.00968 0.00256 0.00523 0.00922 0.00457
2 0.83541 2.25716 0.00538 0.85620 0.00114 0.00003952 0.00396 0.00296
3 0.68081 2.50034 0.01278 0.05358 0.00177 0.00244 0.42400 0.00p15
4 0.13222 5.67358 0.08820 0.00581 0.01150 0.29168 0.06140 0.31]720
5 0.05987 8.43157 0.71113 0.06882 0.00006088 0.66021 0.49182 0.11100
6 0.03545 10.95701 0.17819 0.00592 0.98297 0.04040 0.00961 0.55p12




2 Background: Notation and collinearity diagnostics

Consider the classical linear regression mogel X 3 + €, wherey is ann x 1 vector of responses;
X is ann x p full-rank matrix of predictors, the first column of which consists of fisis ap x 1
vector of parameters to be estimated, where, by convention, the first eélémercept) is denotedy;
ande is ann x 1 vector of errors, with€(e) = 0 andV(e) = o?I. The usual least squares estimates
of the parameters are given byb = 8 = (X'X) ' X'y, andV(b) = 02(X'X)"!, whence the
standard deviations of the parameters, which inversely reflect the ipreofsestimation, are given by
[diag V(b)]'/2.

2.1 Variance inflation

It can be shown ( e.g., Fox (1984)) that the sampling variances of thantencept parameter estimates
can be expressed as

o? 1
V(b;) = (n—1)s? 1R ' @
J j S

j|other

wheres§ is the sample variance of theth column, X, ande?mtherSis the squared multiple correla-

tion from the regression aX; on the other predictors. It is easily seen that the second term in Eqgn. (1)
is a factor that multiplies the parameter variances as a consequenceaddtbons among the predic-
tors. This term, called theariance-inflation factoVIF) by Marquandt (1970) has become a standard
collinearity diagnostic. When the predictors are all uncorrelatedR%\II: 0 and all VIF; have their
minimum value of 1. As anyR? approaches 1 (complete linear dependence on the other predictors),
VIF; approachesoc.

In the linear regression model with standardized predictors, the coearmaatrix of the estimated
intercept-excluding parameter vectgrhas the simpler form,

02

—1
V) = — Rxx )
where Ry x is the correlation matrix among the predictors. It can then be seen that theakdfust
the diagonal entries dR .

2.2 Condition indices and variance proportions

Large VIF; indicate predictor coefficients whose precise estimation is degraded dmg&@%others
To go further, we need to determine (a) how many dimensions in the space pfdtictors are as-
sociated with nearly collinear relations; (b) which predictors are mostgramplicated in each of
these.

In the predictor space, the linear relations among the variables can bexestrasily in terms of
the principal component analysis of the standardized predictors, wvadently, in terms of the eigen
decomposition ofRx x asRyx = VAV’ whereA is a diagonal matrix whose entriegg > Ay >
... > )\, > 0 are the ordered eigenvalues Bfy x and V' is thep x p matrix whose columns are the
corresponding eigenvectors. By elementary matrix algebra, the eigemgesition ofR;}X is then

R} =VA V. 3)



Thus,Rx x andRyy have the same eigenvectors, and the eigenvaluBS&f are just\; '. Using
Eqn. (3), the variance inflation factors may be expressed as

14 V‘Qk
VIF; =) AL : (4)
k=1 "k

which shows that only the small eigenvalues contribute to variance inflatibanty for those predictors
that have large eigenvector coefficients on those small componentse feuts lead to the following
diagnostic statistics for collinearity:

Condition indices : The smallest of the eigenvalues, thoge~ 0, indicate collinearity and the num-
ber of small values indicates the number of near collinear relations. Bet¢hessum of the
eigenvaluesy.\; = p which increases with the number of predictors, it is useful to scale them all
in relation to the largest. This leadsdondition indicesdefined as:;, = \/A1/A\;. These have
the property that the resulting numbers have common interpretations resganfithe number of
predictors. By common conventions (Belsley, 1991a) condition indices 0-30 are consid-
ered values to be wary ofy 30 indicates trouble; and- 100 is a sign of potential disaster in
estimation.

Coefficient variance proportions : Large VIFs indicate variables that are involvedsamenearly
collinear relations, but they don’t indicatéhich other variable(s) each is involved with. For this
purpose, Belslewt al. (1980) and Belsley (1991a) proposed calculation of the proportions of
variance of each variable associated with each principal componentiesoanposition of the
coefficient variance for each dimension. These may be expressedl@&4,53.1.3) as

2
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Note that for orthogonal regressors, all condition indiggs= 1 and the matrix of coefficient
variance proportions? = (p;;) = I. Thus, Belsley (1991a,b) recommended that the sources of
collinearity be diagnosed (a) only for those components with laggend (b) for those compo-
nents for whiclp;, is large (sayp;, > 0.5) on two or more variables.

3 Improved tabular displays: How many Waldos?

The standard tabular display of condition indices and variance propsiitiohable 2 suffers mainly
from the fact that the most important information is disguised by being emdadde sea of mostly
irrelevant numbers, arranged by inadvertent design to make the test'darder. One could easily
nominate this design asvlhere’s Walddor tabular display.

The first problem is that the table is sorted by decreasing eigenvalués.wdhld otherwise be
typical and appropriate for eigenvalue displays, but for collinearityribatcs, it hides Waldo among
the bottom rows. It is more useful to sort by decreasing condition numbers

A second problem is that the variance proportions correspondisg#il condition numbers are
totally irrelevant to problems of collinearity. Including them, perhaps outadsire for completeness,
would otherwise be useful, but here it helps Waldo avoid detection. Fquutmose for which these
tables are designed, it is better simply to suppress the rows correspoadivgcondition indices. In



this article we adopt the practice of showing one more row than the numbendition indices greater
than 10 in tables, but there are even better practices.

Software designers who are troubled by incompleteness can alwaygarro make the numbers
we would suppress perceptually less important, e.g., smaller in size or cldssckground in texture
or shading, as in Table 3. A simple version of this is to use a 'fuzz’ value,faugz=0. 5 such that all
variance proportions: f uzz are blanked out, or replaced by a place holder' (). For example, the
col I di ag function in the R packagper t ur b (Hendrickx, 2008) has a print method that supports a
f uzz argument.

The third problem is that, even for those rows (large condition numbergjaméto see, the typical
displayed output offers Waldo further places to hide among numbersgtmteo many decimals. Do
we really care that the variance proportion for Engine on component ®@06088? For the large
condition numbers, we should only be concerned with the variables thatdr@e variable proportions
associated with those linear combinations of the predictors.

For the Cars data, we need only look at the rows corresponding to theshigdndition indices. Any
sharp cutoff for the coefficient variance proportions to display (@.g.,> 0.5) runs into difficulties
with borderline values, so in Table 3, we highlight the information that shoapduce attention by (a)
removing all decimals and (b) distinguishing value$.5 by font size and style; other visual attributes
could also be used. From this, it is easily seen that there are two Waldos pidtise. The largest
condition index corresponds to a near linear dependency involving Esga and number of cylinders;
the second largest involves weight and horsepower, with a smaller adgidrilof acceleration. Both
of these have clear interpretations in terms of these variables on automaifgine size is directly
related to number of cylinders and, orthogonal to that dimension, thereslation connecting weight
to horsepower.

Table 3: Cars data: Revised condition indices and variance proportisplsy Variance proportions
> 0.5 are highlighted.

Condition Proportion of Variation & 100)
Number Index Eigenvalue Weight Year Engine Horse Accel Cylinder
6 10.96 0.03545 18 1 98 4 1 56
5 8.43 0.05987 71 7 0 66 49 11

3.1 Tableplots

Table 2 and even the collinearity-targeted version, Table 3, illustrate héeudtift is to display quan-
titative information in tables so that whatiimportantto see— patterns, trends, differences, or special
circumstances— are madéectly visually apparent to the viewer. Tukey (1990) referred to this prop-
erty asinteroccularity : the message hits you between the eyes.

A tableplotis a semi-graphic display designed to overcome these difficulties, devebypeahest
Kwan (2008a). The essential idea is to display the numeric information in a dapf@emented by
symbols whose size is proportional to the cell value, and whose othet aituiautes (shape, color fill,
background fill, etc.) can be used to encode additional information edgertieect visual understand-
ing. The method is far more general than described here and illustrated é¢ortext of collinearity
diagnostics. See Kwan (2008b) for some illustrations of the use for fantdysis models.



CondIndex Weight Year Engine Horse Accel Cylinder
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Figure 1: Tableplot of condition indices and variance proportions foiChes data. In column 1, the
square symbols are scaled relative to a maximum condition index of 30. Ireth&iring columns,
variance proportions{100) are shown as circles scaled relative to a maximum of 100.

Figure 1 is an example of one tableplot display design for collinearity didiggo#\l the essential
numbers in Table 2 are shown, but encoded in such a way as to make thgirétagon more direct.
The condition indices are shown by the area of the white squares in coluimithls example these are
scaled so that a condition index of 30 corresponds to a square that filelth@he background color
of the cells in this column indicate a reading of the severity of the condition indexn this example,
green ("OK”) indicates:; < 5, yellow ("warning”) indicates$ < k; < 10 and red ("danger”) indicates
ki > 10. The remaining columns show the collinearity variance proportiod®,x p;;, with circles
scaled relative to a maximum of 100, and with color fill (white, pink, red) distisiging the range$
0-20, 20-50, 50-1Q0

The details of the particular assignments of colors and ranges to the conuditioes and variance
proportions are surely debatable, but the main point here is that Figuec&eds where Table 2 does
not and Table 3 only gains by hiding irrelevant information.



4 Graphical displays: biplots

As we have seen, the collinearity diagnostics are all functions of the eilygrs/and eigenvectors of the
correlation matrix of the predictors in the regression model, or alternatthel\sVD of theX matrix in
the linear model (excluding the constant). The standard biplot (Gabrigl,, T®ower and Hand, 1996)
can be regarded as a multivariate analog of a scatterplot, obtained bgtimgpje multivariate sample
into a low-dimensional space (typically of 2 or 3 dimensions) accounting éogiteatest variance in the
data. With the symmetric (PCA) scaling used here, this is equivalent to a ptoincipal component
scores of the mean-centered matkixof predictors for the observations (shown as points or case labels),
together with principal component coefficients for the variables (sh@mweetors) in the same 2D (or
3D) space.

The standard biplot, of the first two dimensions, corresponding to theslesggenvalues aR x x is
shown in Figure 2. This is useful for visualizing the principal variation efthhservations in the space
of the predictors. It can be seen in Figure 2 that the main dimension of vara@tiong the automobile
models is in terms of engine size and power; acceleration time is also stronggdradaDimension
1, though of course inversely. The second dimension (accountingnfadditional 13.8% of predictor
variance) is largely determined by model year.

In these plots: (a) The variable vectors have their origin at the mean ¢nvasaable, and point
in the direction of positive deviations from the mean on each variable. (b)afigles between vari-
able vectors portray the correlations between them, in the sense that the cbthe angle between
any two variable vectors approximates the correlation between thoselgar{@bthe reduced space).
(c) Similarly, the angles between each variable vector and the biplot apesxapate the correlation
between them. (d) Because the predictors were scaled to unit lengthlaiineeriength of each variable
vector indicates the proportion of variance for that variable repred@mtie low-rank approximation.
(e) The orthogonal projections of the observation points on the variabtens show approximately the
value of each observation on each variable. (f) By construction, teereations, shown as principal
component scores are uncorrelated;

But the standard biplot is less useful for visualizing the relations amongréukcpors that lead to
nearly collinear relations. Instead, biplots of the smallest dimensions shew ttblations directly, and
can show other features of the data as well, such as outliers and lepeiatse

4.1 Visualizing variance proportions

As with the tabular display of variance proportions, Waldo is hiding in the dilnaesissociated with
the smallest eigenvalues (largest condition indices). As well, it turns oubthilers in the predictor
space— high leverage observations— can often be seen as observyatidrom the centroid in the
space of the smallest principal components.

Figure 3 shows the biplot of the Cars data for the smallest two dimensions-+wehezan call the
collinearity biplot The projections of the variable vectors on the Dimension 5 and Dimensioass ax
are proportional to their variance proportions in Table 2. The relativgttesnof these variable vectors
can be considered to indicate the extent to which each variable contributeinearity for these two
near-singular dimensions.

Thus, we see that (as in Table 3) Dimension 6 is largely determined by Enzgnevgh a substantial
relation to Cylinder. Dimension 5 has its’ strongest relations to Weight angid-1ém the reduced tabular
display, Table 3, we low-lighted all variance proportian$.5, but this is unnecessary in the graphical
representation.
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Figure 2: Standard biplot of the Cars data, showing the first two dimensibhs observations are
labeled with their case numbers and colored according to region of origia.right half of the plot
consists almost entirely of US cars (blue).

Moreover, there is one observation, #20, that stands out as an outhezdictor space, far from
the centroid. It turns out that this vehicle, a Buick Estate wagon, is an-gealy (1970) American
behemoth, with an 8-cylinder, 455 cu. in, 225 horse-power enginealaledo go from 0 to 60 mph in
10 sec. (Its MPG is only slightly under-predicted from the regression mbdeever.)

This and other high-leverage observations may be seen in other giagibjdays; but it is useful to
know here that they will often also be quite noticeable in what we propasedsehe collinearity biplot.
The web page of supplementary materials for this article (Section 5.2) shaksist outlier-detection
QQ plot and an influence plot of these data for comparison with more wellskmoethods.

4.2 Visualizing condition indices

The condition indices are defined in terms of the ratipg\;; (on a square root scale). It is common to
refer to the maximum of thes%/,)\l/)\p as thecondition numbefor the entire system, giving the worst
near-singularity for the entire model.

A related visualization, that potentially provides more information than just theenigal condition
indices can be seen in biplots of Dimension 1 vs. Dimengiomhere, typically only theé: correspond-
ing to the smallest eigenvalues are of interest. To visualize the relative sigetof); it is useful to
overlay this plot with a data ellipse for the component scores.

Figure 4 shows the condition number biplot for the Cars data, where thitioconnumber can be
approximately seen as the ratio of the horizontal to the vertical dimensions dth ellipse. As the
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Figure 3: Collinearity biplot of the Cars data, showing the last two dimensibms.projections of the
variable vectors on the coordinate axes are proportional to their varm@oportions. To reduce graphic
clutter, only the eight most outlying observations in predictor space aréifiddrby case labels. An
extreme outlier (case #20) appears in the upper right corner.

numerical values of the condition indices in Table 2 also indicate, ill-conditiomirigis example is
not particularly severe. In general, however, the relative lengthseofahable vectors approximately
indicate those variables that contribute to ill-conditioning.

The observations can also be interpreted in this display in relation to theicpooje on the variable
vectors. Case 20, the main high-leverage point is seen as having higletjmmas on Dimension 1,
which in this view is seen as the four variables with high VIFs: Engine, Hakggght, Cylinder. The
observations that contribute to large condition indices are those with laoggcpons on the smallest
component, Dimension 6.

5 Other examples

5.1 Biomass data

Rawlings (1988, Table 13.1) described analyses of a data set cedosithn the determination of soil
characteristics influencing the aerial biomass production of a marsh @@esdina alterniflorain the
Cape Fear estuary of North Carolina. The soil characteristics consitetl physical and chemical
properties, measured at nine sites (three locatiotisree vegetation types), with five samples per site,
givingn = 45 observations. The data were collected as part of a Ph.D. dissertatiaoharéRLinthurst.
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Figure 4: Condition number biplot of the Cars data, showing the first andilmensions, with a 68%
data ellipse for the component scores. The square root of the ratio lebtiz®ntal and vertical axes of
the ellipse portrays the condition number.

The guantitative predictors (i.e., excluding location and type) wei2S: free sulfide;sal: salin-
ity; Eh7: redox potential at pH 7pH: soil pH; buf: buffer acidity at pH 6.6; and concentrations of
the following chemical elements and compound&-phosphorusK: potassiumCa: calcium;Mg:
magnesiumNa: sodium;Mn: manganeseZn: zinc; Cu: copperNH4: ammonium.

It should be noted that if the goal of the study was simplgdéscribebiomass for the given time-
frame and locations, collinearity would be less of an issue. But here, thbasisgn analysis focuses
on identifying the “important” variable determinants of biomass.

The model with all 14 quantitative predictors fits very well indeed, wittRdn= .81. However, the
parameter estimates and their standard errors shown in Table 4 indicateljhiat@ variables, K and
Cu, have significant statistics, all of the others being quite small in absolute value. For comparison,
a stepwise selection analysis using 0.10 as the significance level to entenaouk variables selected
the four-variable model consisting of pH, Mg, Ca and Cu (in that ordgivjng B> = 0.75; other
selection methods were equally inconsistent and perplexing in their posgililgibal interpretations.
Such results are a clear sign-post of collinearity. We see from Table #ntinay of the VIFs are quite
large, with six of them (pH, buf, Ca, Mg, Na and Zn) exceeding 10. Howmywsaldos are hiding here?

The condition indices and variance proportions for the full model are/shim our preferred form,
in Table 5, where, according to our rule of thumb, 1+#(Condition Indéx), we include the 4 rows
with condition indices> 7. Following Belsley’s (1991a) rules of thumb, it is only useful to interpret
those entries (a) for which the condition indices are large and (b) wher@itwnore variables have
large portions of their variance associated with a near singularity. Acagydwe see that there are
two Waldos contributing to collinearity: the smallest dimension (#14), consisfitigeovariables pH,
buf, and Ca, and the next smallest (#13), consisting of Mg and Zn. ftefithese is readily interpreted
as indicating that soil pH is highly determined by buffer acidity and calciunceotnation.

Alternatively, Figure 5 shows a tableplot of the largest 10 condition indicesassociated variance

11



Table 4: Linthall data: Parameter estimates and variance inflation factors

Variable DF Parameter Standard Value Pr> [tf]  VIF

345.16 112.078 3.08 0.004 4.83
—2.705 3.238 -0.84 0.410 8.38

Cu
NH4

Estimate Error

Intercept 1 2909.93 3412.90 0.85 0.401 0
H2S 1 0.42900 2.9979 0.14 0.887 3.02
sal 1 —23.980 26.170 —0.92 0.367 3.39
Eh7 1 2.5532 2.0124 1.27 0.214 1.98
pH 1 242.528 334.173 0.73 0.474 62.08
buf 1 —6.902 123.821 —-0.06 0.956 34.43
P 1 —-1.702 2.640 -0.64 0.524 1.90
K 1 —1.047 0.482 -2.17 0.038 7.37
Ca 1 -0.1161 0.1256 —-0.92 0.363 16.66
Mg 1 -0.2802 0.2744 —-1.02 0.315 23.76
Na 1 0.00445 0.02472 0.18 0.858 10.35
Mn 1 —-1.679 5.373 -0.31 0.757 6.18
Zn 1 -18.79 21.780 —0.86 0.395 11.63

1

1

Table 5: Linthall data: Condition indices and variance proportioti®)()). Variance proportions- 0.4
are highlighted.

Cond Eigen
# Index valuel H2S sal Eh7 pH buf P K Ca Mg Na Mn Zn Cu NH4
14 22.78 0.0095 22 25 3 95 70 1 8 60 16 21 34 2 4 17
13 12.84 0.0298 0 9 0 12 8 28 1 67 25 16 45 0 21
12 10.43 0.0453 0 16 4 13 5 0 16 15 28 2 9 43 24
11 7.53 0.0869 19 3 0 4 1 7 18 1 5 14 32 9 2

o w N

proportions, using the same assignments of colors to ranges as dedorilfédure 1. Among the
top three rows shaded red for the condition index, the contributions ofghables to the smallest
dimensions is more readily seen than in tabular form (Table 5).

The standard biplot (Figure 6) shows the main variation of the predictofseotwo largest dimen-
sions in relation to the observations; here, these two dimensions acco6@toof the variation in the
14-dimensional predictor space. As before, we can interpret theveelatigths of the variable vectors
as the proportion of each variable’s variance shown in this 2D projectiahthe (cosines of) the angles
between the variable vectors as the approximation of their correlation shawis view.

Based on this evidence it is tempting to conclude, as did Rawlings (19886ptH there are two
clusters of highly related variables that account for collinearity: Dimerkjbraving strong associations
with five variables (pH, Ca, Zn, buf, NH4), and Dimension 2, whose krgesociations are with the
variables K, Na and Mg. This conclusion is wrong!

The standard biplot does convey useful information, but is misleadingéqguurpose of diagnosing
collinearity because we are only seeing the projection into the 2D predicioe sy largest variation
and inferring, indirectly, the restricted variation in the small dimensions wA&ldo usually hides. In
the principal component analysis (or SVD) on which the biplot is basedsrttalest four dimensions
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CondldxH2S sal Eh7 pH buf P K Ca Mg Na Mn Zn Cu NH4
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Figure 5: Tableplot of the 10 largest condition indices and varianceoptiops for the Linthall data.
In column 1, the symbols are scaled relative to a maximum condition index ofr8thelremaining
columns, variance proportions {00) are scaled relative to a maximum of 100.

(shown in Table 5) account for 1.22% of the variation in predictor spliggire 7 shows the collinear-
ity biplot for the smallest two dimensions d@tx x, or equivalently, the largest dimensionst;(}X,
comprising only 0.28% of predictor variation.

Again, this graph provides a more complete visualization of the information deateollinearity
than is summarized in Table 5, if we remember to interpret only the long variablersen this plot
and their projections on the horizontal and vertical axes. Variables yidabd Ca to a smaller degree
stand out on dimension 14, while Mg and Zn stand out on dimension 13. Titdledions of the
other variables and the observations to these nearly singular dimensiait give the analyst more
information to decide on an effective strategy for dealing with collinearity.

5.2 Further examples and software

The data and scripts, for SAS and R, for these examples and othersewaldiable atwwv. mat h.
yor ku. ca/ SCS/ vi scol | i n, where links for biplot and tableplot software will also be found.

6 Discussion

As we have seen, the standard collinearity diagnostics— variance inflatitor$, condition indices,
and the variance proportions associated with each eigenvalde @F— doprovide useful and relatively
complete information about the degree of collinearity, the number of distiactsiegularities, and the
variables contributing to each. However, the typical tabular form in whiishitifiormation is provided
to the user is perverse— it conceals, rather than highlights, what is imptotantierstand.
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Dimension 1 (35.17%)

Figure 6: Standard biplot of the Linthurst data, showing the first two dimnaasThe point labels refer
to case numbers, which are colored according to the location of the site.

We have illustrated some simple modifications to the usual tabular displays dk$mneake it
easier to see the number of Waldos in the picture and the variables involvedtin €he re-ordered
and reduced forms of these tables are examples of a general princgfteafordering for data display
(Friendly and Kwan, 2003) that translates here as “in tables and gnajalke the important information
most visually apparent.” Tableplots take this several steps further to Highvigat is important to be
seerdirectlyto the eye. The collinearity biplot, showing the smallest dimensions, does thisuicaiso

provides a more complete visualization of the relations among the predictotiseaoldservations in the
space where Waldo usually hides.
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