Mosaic Displays for Multi-Way Contingency Tables

Michael FrIENDLY *

Mosaic displays represent the counts in a contingency table by tiles whose size is proportional to the cell count. This graphical display
for categorical data generalizes readily to multi-way tables. This article discusses extensions of the mosaic display to highlight patterns
of deviations from various models for categorical data. First, we introduce the use of color and shading to represent sign and magnitude
of standardized residuals from a specified model. For unordered categorical variables, we show how the perception of patterns of
association can be enhanced by reordering the categories. Second, we introduce sequential mosaics of marginal subtables, together
with sequential models for these tables. For a class of sequential models of joint independence, the individual mosaics provide a
graphic representation of a partition of the overall likelihood ratio G2 for complete independence in the full table into portions

attributable to hypotheses about the marginal subtables.
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1. INTRODUCTION

Statistical methods for categorical data, such as log-linear
models and logistic regression, represent discrete analogs of
the analysis of variance and regression methods for contin-
uous response variables. But although graphical display
techniques are common adjuncts to analysis of variance and
regression, methods for plotting contingency table data are
not as widely used.

Several schemes for representing contingency tables
graphically are based on the fact that when the row and col-
umn variables are independent, the expected frequencies are
products of the row and column totals (divided by the grand
total). Then, each cell can be represented by a rectangle
whose area shows the cell frequency or deviation from in-
dependence. The mosaic display, introduced by Hartigan
and Kleiner (1981, 1984), represents each cell directly by a
rectangle (or “tile”) whose area is proportional to the cell
frequency. Hartigan and Kleiner maintained that the pattern
of tiles shown by the mosaic display is useful for suggesting
hypotheses, making visual comparisons across portions of a
frequency table, and highlighting unusually large and small
counts.

Moreover, one form of the mosaic display extends quite
naturally to multidimensional tables. For example, Hartigan
and Kleiner (1984) presented a mosaic display of a four-way
table of size 3 X 6 X 7 X 12 representing Nielson television
ratings (number of viewers) broken down by television net-
work, time of day, day of week, and weeks over a 3-month
period. A graphical display of 1,512 cells requires some study,
but it would be hard to imagine being able to see any patterns
in a table.

This article extends the use of the mosaic display as a
data-analytic tool in two ways. First, for a given display we
can fit a baseline model of independence or partial indepen-
dence and user color and shading of the tiles to reflect de-
partures from that model. For unordered categorical vari-
ables, we show how perception of the pattern of association
can be enhanced by reordering the categories to put residuals
of like signs in opposite corners. A general scheme for reor-
dering categories is based on a singular value decomposition
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(SVD) of residuals from independence. Second, for multi-
way tables we find it useful to examine a sequence of mosaic
displays of marginal subtables as successive variables are
brought into the cross-classification. Although any log-linear
model can be fit to the full table, a class of sequential models
of joint independence provides a graphic representation of
a partition of the overall likelihood ratio G? for complete
independence in the full table into portions attributable to
hypotheses about the marginal subtables.

Section 2 describes the construction of mosaic displays
for two-way tables and introduces the use of color and shad-
ing and reordering of rows or columns to highlight patterns
of departure from independence. Section 3 describes the ex-
tension of the display to multi-way tables and shows how
fitting certain baseline log-linear models can be applied to

- the mosaic display. Section 4 illustrates the use of mosaic

displays for several multi-way tables.

2. TWO-WAY TABLES
2.1 Notation

To establish notation, let N = {#;} be the observed fre-
quency table of variables 4 and B with I rows and J columns.
In what follows, an index is replaced by “+> when summed
over the corresponding variable, so n;. = X; n;; gives the total
frequency in row i, n,; = X; ny; gives the total frequency in
column j, and n,, = 22 n; is the grand total; for conve-
nience, 1., is also symbolized by ». Estimated expected fre-
quencies, under the hypothesis of independence, are denoted
my; = (nan. )/ n. Finally, we express a standardized residual
for cell i, j as d;. For Pearson X2, for example, dj = (ny
— )/ VnT,»,, the signed root contribution for cell i, j, so that
X 2= Z,' 2 j d,zj

2.2 Two-way Mosaics

Table 1 shows data on the relation between hair color and
eye color among 592 students in a statistics course collected
by Snee (1974). The Pearson X? for these data is 138.3 with
9 degrees of freedom, indicating substantial departure from
independence. The question is how to understand the nature
of the association between hair and eye color.
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Table 1. Hair Color-Eye Color Data

Hair Color
Eye
Color Black Brown Red Blond Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

For any two-way table, the expected frequencies under
independence can be represented by rectangles whose widths
are proportional to the total frequency in each column, #, j,
and whose heights are proportional to the total frequency in
each row, n;, ; the area of each rectangle is then proportional
to 7. Figure 1 shows the expected frequencies for hair and
eye color.

One form of the mosaic display, which suggests the name
“mosaic,” is similar to a divided bar chart. The width of
each tile in Figure 2 is still proportional to the marginal
frequency n, ; in each column of the table; but the height is
proportional to the conditional frequency #;; of each row
(eye color) for a given column (hair color), so the area is
proportional to cell frequency and complete independence
is shown when all tiles in each row have the same height, as
in Figure 1.

Several cells stand out in Figure 2. There are more blue-
eyed blonds and brown-eyed black-haired people than would
occur under independence, and fewer people with brown
eyes and blond hair. But the rows are no longer aligned,
except for the first and last rows. This makes it easier to
make comparisons within hair color (columns) groups, but
harder to make comparisons within eye color groups. A sim-
ilar plot could be made with the first division proportional
to the row totals, which would facilitate comparisons among
eye color groups.

2.3 Detecting Patterns

In Hartigan and Kleiner’s (1981) original version, all the
tiles are unshaded and drawn in one color, so only the relative
sizes of the rectangles indicate deviations from independence.
We can increase the visual impact of the mosaic by using
shading to reflect the size of the residual and by reordering
rows and columns to make the pattern more coherent.

Color and Shading. Figure 3 extends the mosaic plot,
showing the standardized deviation from independence, d,,
by the color and shading of each rectangle. Cells with positive
deviations are drawn black, outlined with solid lines, with
shading slanted from upper left to lower right (NE to SW);
negative deviations are drawn red, outlined with broken lines
and shaded SE-NW. (The mosaic displays are most effective
when seen in color; however, the sign information is lost if
the figure is reproduced as shown here in monochrome, so
we represent the sign of the deviation redundantly. The sim-
plest solution is to add a stick-on dot with a “+ sign to cells
with positive residuals, which seems to work well.) The ab-
solute value of the deviation is portrayed by shading density.
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Green 11.7 30.9 7.7 13.7 64
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Brown 40.1 106.3 26.4 47.2 220

108 286 71 127 592

Black Brown Red Blond
Hair Color

Figure 1. Expected Frequencies Under Independence. The height and
width of each box is proportional to the marginal totals. Area is proportional
to expected frequency, shown in each box.

Cells with absolute values less than 2 are empty and cells
with | d;| = 2 are filled; those with | d,| = 4 are filled with
a darker pattern. Standardized deviations are often referred
to a standard Gaussian distribution; under the assumption
of independence, these values roughly correspond to two-
tailed probabilities p < .05 and p < .0001 that a given value
of | d;| exceeds 2 or 4.

Reordering Categories. When the row or column vari-
ables are unordered, we are also free to rearrange the cor-
responding categories in the plot to help show the nature of
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Figure 2. Condensed Column Proportion Mosaic. Each rectangle shows
the conditional frequency of eye color given hair color.
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association. For example, in Figure 3, the eye color categories
have been permuted so that the deviations from indepen-
dence have an opposite-corner pattern, with positive values
running from SW to NE corners and negative values running
along the opposite diagonal. With the reordering of categories
coupled with size and shading of the tiles, the excess in the
black-brown and blond-blue cells is even more apparent than
it is in a shaded but unreordered version (not shown). We
can also see clearly an overrepresentation of persons with
red hair and green eyes and an underrepresentation of per-
sons with blond hair and brown eyes and persons with black
hair and blue eyes relative to independence. You could see
the same things in a table of dj; values if you looked hard
enough, but the enhanced mosaic display makes the pattern
apparent.

Note that although both hair color and eye color were
treated as nominal variables, eligible for reordering, they also
could be considered to be ordered along a dark-light di-
mension. Although the table was reordered based on the 4,
values, both dimensions in Figure 3 are ordered from dark
to light, suggesting an explanation for the association.

3. MULTI-WAY TABLES

The condensed form of the mosaic plot generalizes readily
to the display of multidimensional contingency tables.
Imagine that each cell of the two-way table for hair and eye
color is further classified by one or more additional vari-
ables—sex and ethnic group, for example. Then each rect-
angle in the mosaic plot can be subdivided vertically to show
the proportion of males and females in that cell, and each
of those portions can be subdivided horizontally to show the
proportions of persons of each ethnicity in the hair-eye-sex
group.

3.1 Constructing the n-way Mosaic

The steps in constructing the mosaic display are described
here for a four-way table of variables 4, B, C, and D with
frequencies nyy, i=1,...,L;j=1,..., J;k=1,...,K;
and/=1,..., L. The extension to n-way tables is immediate.
The construction of the mosaic is governed by an ordering
of the variables, which we designate by the symbols for the
table dimensions; for example, IJKL . The division into tiles
usually alternates vertically and horizontally in this order:

1. First, the available display area is divided into vertical
strips proportional to the marginal totals of variable 4, so
the widths are proportional to 7;, ..

2. Each vertical strip is then subdivided horizontally pro-
portional to joint frequencies with the second variable, n;....
Thus each tile has a height proportional to the conditional
frequency of the second variable given the first, 7,4+ /7114,
and area proportional to 7.

3. Next, each IJ rectangle is divided vertically proportional
to i+, giving widths proportional to #j. /1.

4. Finally, each IJK tile is divided horizontally to give
areas proportional to the cell frequency 7.

Spacing. This procedure gives a mosaic of IJKL tiles
with no spacing, in which cells with small frequencies are
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Figure 3. Condensed Mosaic, Reordered and Shaded. Deviations from
independence are shown by shading. Positive deviations have solid outlines
and are shaded NE-SW. Negative deviations have dashed outlines and
are shaded SE-NW. The two levels of shading density correspond to stan-
dardized deviations greater than 2 and 4 in absolute value. This form of
the display generalizes readily to multi-way tables.

difficult to see. Following Hartigan and Kleiner, the tiles are
separated, with larger spacings at the earlier subdivisions, to
help preserve the visual impact of small counts. For a four-
way table with vertical splitting on dimensions / and K, the
divisions of the first variable are spaced proportionally to 1/
(I — 1); divisions between levels of the third variable are
spaced proportionally to 1/(IK — 1). A more detailed de-
scription of the algorithm and a FORTRAN program for
constructing n-way mosaics was given by Wang (1985).
The displays shown here are implemented in SAS/IML
software (SAS Institute 1989), whose combination of
matrix operations, built-in functions for contingency table
analysis, and graphics provide a convenient environment for
graphical display for multi-way categorical data (Friendly
1991, 1992a). The program, MOSAICS.SAS (Friendly
1992b), is available for anonymous FTP transfer from
UICVM.CC.UIC.EDU in the directory UICSTAT.

3.2 Fitting Log-linear Models

When three or more variables are represented in the mo-
saic, we can fit several different models of independence and
display the residuals from that model. For a given model,
we find the expected frequencies by iterative proportional
fitting (Deming and Stephan 1940). We treat these models
as null or baseline models, which may not fit the data par-
ticularly well. The deviations of observed frequencies from
expected, displayed by shading, will often suggest terms to
be added to an explanatory model that achieves a better fit.

For example, the model of complete independence, the
log-linear model [A][B][C] for a three-way table, puts all
higher terms (and hence all association among the variables)
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Table 2. Frequencies of Hair Color by Eye Color by Sex

Hair Color
Eye
Sex Color Black Brown Red Blond Total
Male Brown 32 38 10 3 83
Blue 11 50 10 30 101
Hazel 10 25 7 5 47
Green K] 15 7 8 33
TOTAL 56 127 34 46 264
Female Brown 36 81 16 4 137
Blue 9 34 7 64 114
Hazel 5 29 7 5 46
Green 2 14 7 8 31
TOTAL 52 158 37 81 328

into the residuals. Another possibility is to fit the model in
which variable C is jointly independent of variables 4 and
B, the log-linear model [4B][ C]. Residuals from this model
show the extent to which variable C is related to the com-
binations of variables 4 and B, but they do not show any
association between A4 and B. The simplest extension of joint
independence to four variables is the model [ABC][D].

Residuals. For computational simplicity, all examples
in this article use standardized Pearson residuals. When the
model being fit holds, the dj, are asymptotically normal with
mean 0, but their asymptotic variance, v;, is less than 1.0,
with average value v; = (residual df)/(number of cells).
Hence, when fitting models more complex than the model
of mutual independence, the v; may be considerably less
than 1, and the use of conventional Gaussian values such as
+2 and *+4 may be highly conservative (Agresti 1990) and
fail to nominate some cells whose departure from the model
should be noticed. One solution, which we simply note here,
is to scale the standardized residual by its estimated standard
error, giving Haberman’s (1973) adjusted residuals, r,
= dj/ Vv_,j, which does have an asymptotic N(0, 1) distri-
bution.

3.3 Example: Hair Color by Eye Color by Sex

Table 2 shows the breakdown of the hair color-eye color
data by sex (the division by sex is contrived). Fitting the
model [HairEye][Sex] allows us to see the extent to which
the joint distribution of hair color and eye color is associated
with sex. We might motivate such a model by asking whether
the genetic information that determines hair and eye color
is sex-linked. For this model, the likelihood ratio G2 is 29.35
on 15 df (p = .015), indicating some lack of fit.

The three-way mosaic, shown in Figure 4, highlights two
cells; males are underrepresented among persons with brown
hair and brown eyes and overrepresented among persons
with brown hair and blue eyes. Females in these cells have
the opposite patterns, of course; however, the standardized
deviates are just shy of the criterion, | dj;| = 2, for shading.
The d? for these four cells account for 15.3 of the X 2 for the
model [HairEye] [Sex]. Except for these cells, hair color and
eye color appear unassociated with sex.

For comparison, the three-way mosaic for deviations from |

mutual independence, [Hair] [Eye][Sex], is shown in Figure

g \\x R
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Figure 4. Mosaic Display for Hair Color, Eye Color, and Sex. The cat-
egories of sex are crossed with those of hair color, but only the first
occurrence is labeled. Residuals from the model [HE | [S ] are shown by
shading. G2 = 29.35 on 15 df. The lack of fit is attributable mainly to the
cells for brown hair and brown or blue eyes.

5. The G? for this model is 179.79 on 24 df (p < .0001).
The pattern of deviations roughly combines features seen in
Figure 3 and Figure 4: the positive deviations along the SE-
NW diagonal reflect the hair-eye association, and the de-
viations in cells for brown hair reflect the pattern seen in
Figure 4. As we shall see, this result is implied by the sequence
of models, [Hair] [Eye] and [HairEye] [Sex], whose G? values
sum to that for the model [Hair] [Eye][Sex].

37 n

Hazel Green

)

| IR | ")
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20
Male Female
Black Brown Red Blond

Figure 5. Mosaic Display for Hair Color, Eye Color, and Sex. This display
shows residuals from the model of complete independence, [H][E][S],
G? =179.79 on 24 df.
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3.4 Sequential Plots

The mosaic for a complete n-way table depicts information
about the joint frequency distribution at several levels:

a. Cell frequencies are shown directly by the area of each
tile.

b. The scheme for spacing allows visually combining the
cells for nested marginals along both axes. For example,
in Figure 5 we can visually combine across sex to see
the marginal hair-eye frequencies or across eye color
and sex to see the one-way frequencies of hair color in
the table.

c. Approximate significance of cell contributions to lack
of fit for a specified model is shown by shading.

This is a great deal of information for one plot, however.
It may be more instructive, therefore, to examine the se-
quence of mosaics as each variable is brought into the anal-
ysis. For an n-way table, we can draw the mosaic for each
of the marginal subtables, {4}, {4B}, {ABC}, and so on,
not just the final stage as Hartigan and Kleiner did. We now
consider a set of sequential models for these subtables whose
residuals can be displayed in the corresponding mosaic.

3.5 Sequential Models

For the final n-way plot, we can fit any specified log-linear
model or one of the baseline models described in Section
3.2. For the intermediate plots, with an arbitrary non-baseline
model, we fit the reduced model in which all variables not
included in the current plot are eliminated. For example,
consider a four-way table in which variable D is a response
and the model of interest is [ABC][ABD][ACD][BCD].
Then the reduced model for the two-way { AB} plotis [4B],
and the reduced model for the three-way {ABC} plot is
[ABC]. In this case the reduced models are saturated, so all
residuals are 0 and the mosaic displays simply show the mar-
ginal {AB} and {ABC} frequencies, which are considered
fixed when variable D is the response.

For exploratory purposes, the baseline models fit some of
the gross structure of the data, leaving the patterns of asso-
ciation that remain to be displayed in the residuals. The
sequential models of joint association are of particular in-
terest, because, following Goodman (1970, 1971), the series
of hypotheses about the marginal subtables provides a par-
tition of the hypothesis of complete independence in the full
table.

Consider the hypothesis of complete independence in a
three-way table. Let H{4»5) denote the hypothesis that 4 and
B are independent in the marginal subtable formed by col-
lapsing over variable C, and let H, 4p0¢) denote the hypothesis
of joint independence of C from the 4B combinations. Then
Goodman’s (1970, sec. 6.3) method shows that the hypothesis
of complete independence, H opoc; can be expressed as
Hsop0c; = Hia08, N Hapocy. When expected frequencies
under each hypothesis are estimated by maximum likelihood,
the likelihood ratio Gs are additive: G}ie0c) = Gi0n)
+ G34p0c). For example, for the hair-eye data, G? for the

model [Hair][Eye][Sex] is 179.79 on 24 df. Figure 3 and

Figure 4 can be viewed as representing the partition
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Model df G?

[Hair] [Eye] 9 146.44
[Hair, Eye] [Sex] 15 29.35
[Hair] [Eye] [Sex] 24 179.79

This partitioning scheme extends readily to higher-way
tables. For a four-way table, the hypothesis of complete
independence gives rise to an analogous partitioning,
Glaepocop; = Glaen + Giapec) + Glascob)-

This sequence of models of joint independence has another
interpretation when the ordering of the variables is based on
a set of ordered causal hypotheses regarding the relationships
among variables (Fienberg 1980; Goodman 1973). Suppose,
for example, that the causal ordering of four variables is
A — B - C — D, where the arrow means “is antecedent
to.” Goodman suggested that the conditional joint proba-
bilities of B, C, and D given A can be characterized by the
recursive logit models, which treat B as a response to 4, treat
C as a response to 4 and B jointly, and treat D as a response
to A, B, and C. These are equivalent to the log-linear models
that we fit as the sequential baseline models of joint inde-
pendence, namely [4][B], [AB][C], and [ABC][D]. The
combination of these models with the marginal probabilities
of A gives a characterization of the joint probabilities of all
four variables.

3.6 Reordering Categories

Bertin (1983, pp. 168-169) gave numerous examples of
reordering the categories of nominal qualitative variables to
simplify and enhance, sometimes dramatically, the percep-
tion of associations. His method is essentially one of inspec-
tion, trial and error, though he also describes a physical device
called a “domino” for permuting the rows and columns of
an array.

Given an ordering of the variables, the categories of the
nominal variables can be reordered on the basis of sequential
plots showing deviations from models of joint independence.
With the variables labeled 4, B, C, and D in order of division
in the mosaic, the categories of variables 4 and B can be
reordered from the [4][ B] plot, those of variable C can be
reordered from the deviations in the [AB][C] plot, and so
forth. Experience shows that for small tables the orderings
to diagonalize the pattern of residuals can often be deter-
mined by inspection.

A more general approach is based on the ideas of corre-
spondence analysis (CA) (see, for example, Greenacre 1984
and Greenacre and Hastie 1987), which assigns scores to the
categories so that the Pearson correlation of the optimally
scaled variables is maximized. For a two-way table, the scores
for the row categories, namely x;,, and column categories,
Vim, on dimension m = 1, . . . , M are derived from the SVD
of Pearson residuals to account for the largest proportion of
the X2 in a small number of dimensions. This decomposition
may be expressed as dyj/ Vi = Z¥_; Ay XimVjm, Where A, = A
> .-+ =2Nsand M = min(/ — 1, J — 1). A rank-d ap-
proximation in d dimensions is obtained from the first d
singular values; the proportion of X ? accounted for by this
approximation is #n 24 A2,/ X 2.
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Therefore, rearranging row or column categories according
to the CA scores x;; or y;; on the first (largest) dimension
should provide an ordering for the mosaic display to best
reveal the pattern of association. This ordering captures the
nature of the association to the extent that A\}/ =™ A2, is
large. For the hair-eye data, for example, the singular values
are .456 (89%), .149, and .051. The order of the scores for
eye colors on the first dimension is precisely the order de-
termined by inspection from Figure 2.

For higher-order tables, van der Heijden and de Leeuw
(1985) described extensions of CA that have close links with
log-linear models and with the sequential mosaic displays
described here. Their method is to apply the usual corre-
spondence analysis to a two-way “multiple table,” ngy, where
G and H are nonoverlapping subsets of the variables 4, B,
..., which constitute the complete table. For a three-way
table reshaped as n;y, they showed that the correspondence
analysis solution can be interpreted in terms of residuals
from the model [4B][C] in a way that corresponds to the
mosaic display of residuals from the same model. The row
and column scores on the first dimension account for max-
imal association between the joint AB categories and the C
categories. This suggests, therefore, that successive variables
in the mosaic can be reordered in terms of their scores on
the first correspondence analysis dimension from the table
in which all previous variables are coded interactively.

4. EXAMPLES

Two examples are presented to illustrate the use of mosaic
displays. The first example compares the results obtained
with different orderings of the variables and demonstrates
the use of the correspondence analysis SVD to reorder cat-
egories. The second example concentrates on the use of the
mosaic display for model building. (See Friendly and Fox
1991 for the analysis of a five-way table and comparison of
mosaic displays with effects plots for logit models.)

4.1 Suicide Data

We use data on suicide rates in West Germany, classified
by age, sex, and method of suicide, to illustrate the effects
of reordering variables and categories in analysis of multi-
way tables. In this section 4, S, and M represent these vari-
ables. The data, from Heuer (1979, table 1), have been dis-
cussed by van der Heijden and de Leeuw (1985) and others.

Table 3. Frequencies of Suicide by Age, Sex, and Method

Method
Sex Age Poison Gas Hang Drown Gun  Jump
M 10-20 1160 335 1524 67 512 189
M 25-35 2823 883 2751 213 852 366
M 40-50 2465 625 3936 247 875 244
M 55-65 1531 201 3581 207 477 273
M 70-90 938 45 2948 212 229 268
F 10-20 921 40 212 30 25 131
F 25-35 1672 113 575 139 64 276
F 40-50 2224 91 1481 354 52 327
F 55-65 2283 45 2014 679 29 388
F 70-90 1548 29 1355 501 3 383
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Table 4. Log-Linear Models for Suicide Data

Model df Likelihood ratio G? Pearson X?
[M] [A] [S] 49 10119.6 9908.2
[M] [AS] 45 8632.0 8371.3
[A] [MS] 44 4719.0 4387.7
[S]1 [MA] 29 7029.2 6485.5
[MS] [AS] 40 3231.5 3030.5
[MA] [AS] 25 5541.6 5135.0
[MA] [MS] 24 1628.6 1592.4
[MA] [MS] [AS] 20 242.0 237.0

The original 2 X 17 X 9 table contains 17 age groups from
10 to 90 in S-year steps and 9 categories of suicide method.
To avoid extremely small cell counts, this example uses a
reduced table in which age groups are combined in 15-year
intervals except for the last interval, which includes ages 70-
90; the methods “toxic gas” and “cooking gas” were collapsed
and the methods “knife” and “other” were deleted, giving
the 2 X' 5 X 6 table shown in Table 3. These changes do not
affect the general nature of the data.

The variables in Table 3 could be ordered in several dif-
ferent ways. if we regard method of suicide as a response to
background variables of age and sex, then the order S, 4,
M is indicated. On the other hand, if no variable is singled
out as a response, then other considerations may be used. A
purely graphic consideration is that with three variables, the
first and third will divide one dimension of the mosaic. All
other things equal, it is useful to choose an order for which
the product of levels, IK, is not too large, to preserve reso-
lution in the plot. For example, the order 4, S, M would
have 30 divisions vertically by 2 horizontally. Because the
relation between method of suicide and age, ignoring sex
seems of some interest in addition to the three-way relation,
we consider the variables in the order M, A4, S. To illustrate
the effect of changing the order of the variables, we also show
the mosaic for the order S, 4, M.

For a multi-way table, it is also useful to examine the fit
of various log-linear models and choose an order of variables
based on the association terms that appear to be important.
Table 4 shows the results of all possible hierarchical log-
linear models for the suicide data. It is apparent that none
of these models has an acceptable fit. Given the enormous
sample size (n = 48,177), even relatively small departures
from any unsaturated model would appear significant, how-
ever. Nevertheless, from the differences among the G2 and
X? values in the sections of Table 4 containing zero, one,
two, and three two-way association terms, it is clear that all
three two-way associations have significant effects.

Figure 6 shows the initial mosaic for method and age in
the order M, A4, S, with the methods arranged as in Table
3. To show age on the horizontal axis in these figures, the
first variable is placed on the vertical dimension. Some trends
across age are apparent: The methods POISON, GAS, and
GUN are prevalent in younger ages and decrease with age,
whereas the methods HANG and DROWN show the op-
posite pattern.

The pattern of association between method and age can
be clarified by reordering the methods according to the
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Figure 6. Mosaic Display for Method and Age. Residuals from the model
[M][A] are shown by shading. The methods are ordered as in Table 3.
Some trends with age can be seen, but the overall pattern of association
is unclear.

method scores from the SVD of the d;; values. The first two
dimensions of the correspondence analysis solution for the
MA marginal table are displayed in Figure 7. The configu-
ration is essentially one-dimensional; the first dimension ac-
counts for 94% of the Pearson X 2.

With the methods of suicide reordered according to their
positions on dimension 1 of Figure 7, the mosaic in Figure
8 is produced. The opposite corner pattern of residuals makes
it easier to see the relations between methods and age de-
scribed earlier. In addition, we see that the pattern of devia-
tions for JUMP differs from an increasing or a decreasing
trend with age that characterizes the other methods. This is
reflected in the position of JUMP on dimension 2 of
Figure 7.

The three-way mosaic showing deviations from the model
[Method, Age][Sex] is shown in Figure 9, where each MA
marginal is partitioned according to the conditional pro-

0.25 N
N .
c ) JUMP
- DROWN 80 . 3
g 0004 - - - 'dch .. POISON .1.5 ......... GAs
g - 45 GUN
E :
o

-.25

T
-.75 0.00 0.75
Dimension 1

Figure 7. Two-Dimensional Correspondence Analysis Solution for the
[M][A] Table. The origin represents the marginal profiles p,. and p.; for
both the methods of suicide and age groups (which are labeled by their
midpoint). Method and age points with similar positions correspond to
cells with positive deviations from expected frequencies in the two-way
table. The association between method and age is accounted for almost
entirely by the positions on dimension 1. '
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Figure 8. Mosaic Display for Method and Age, Reordered. In color fig-
ures, positive residuals are shown in black and negative residuals in red.
The methods have been reordered according to their positions on dimen-
sion 1 of Figure 7. The pattern of association between method and age
is now more apparent.

portions of males and females. We see that the prevalent use
of GAS and GUN among younger people is associated more
closely with males. POISON, JUMP, and DROWN are
common among females, the last two particularly among
older females.

Again we note that the deviations displayed in Figure 8
and Figure 9 represent a partition of the overall G2 for com-
plete independence in the full three-way table. The mosaic
display for deviations from the independence model,

o [ — \

DROWN

HANG

SIS L LS LY.

AL,

JUMP

m |

2: A A

25-35

POISON

55-65>65

10-20 40-50

Figure 9. Mosaic Display for Method, Age, and Sex. Residuals from
the model [MA][S] are shown by shading.
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FEMALE

MALE

10-20 25-35 40-50 55-65 >65

Figure 10. Mosaic Display for Sex and Age. The frequency of suicide
shows opposite trends with age for males and females.

[M][A][S], has the same-sized tiles as in Figure 9, of course.
To save space, we do not display this mosaic.

The analogous mosaics for the order S, A, M are displayed
in Figure 10 and Figure 11. Figure 10 displays the marginal
relation between sex and age of persons committing suicide,
ignoring method. Suicide is more common in males than in
females. For males, the tendency to commit suicide decreases
with age, whereas females show an opposite trend.

Figure 11 displays the breakdown of the sex—age groups
by suicide method. The methods have been arranged in order
of the method scores on the first dimension of the CA so-

NN
\\\\\\\\\\\
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g
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£ N X

25-35 40-50
Figure 11. Mosaic Display Showing Deviations from Model [SA][M].

The methods have been reordered according to their positions on dimen-

sion 1 of the correspondence analysis solution for the [SA][M] table.
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Figure 12. Two-Dimensional Correspondence Analysis Solution for the
[SA][M] Multiple Table. The positions of the methods along dimension
1 provides an optimal ordering for the mosaics with the variables ordered
SAM.

lution for the [Sex, Age][Method] multiple table. That so-
lution represents a partition of the Pearson X2 = 8371.3 for
the model [S4][M] in M = 5 dimensions. The first two
dimensions, shown in Figure 12, account for 60.4% and
33.0% of the residuals from this model. Note that the order
of the methods on dimension 1 of Figure 12 differs somewhat
from the order of the methods shown in Figure 7. Comparing
Figure 7 and Figure 12, it may be seen that dimension 1 in
Figure 7 corresponds to projections on an axis at approxi-
mately 60 degrees to the horizontal in Figure 12.

Residuals from model [Sex, Age][Method], displayed in
Figure 11, again show the prevalence of GUN and GAS
among younger males and decreasing with age, whereas
HANG increases with age. For females, these three methods
are used less frequently than would be the case if method
were independent of age and sex, whereas POISON, JUMP,
and DROWN occur more often.

4.2 Marital Status and Premarital and
Extramarital Sex

Table 5 lists the 2* table from a study of divorce patterns
reported by Thornes and Collard (1979) and analyzed by

Table 5. Marital Status in Relation to Gender and Report
of Premarital and Extramarital Sex

Gender Premarital Extramarital Divorced Still Married
Men N N 68 130

N Y 17 4

Y N 60 42

Y Y 28 11
Women N N 214 322

N Y 36 4

Y N 54 25

Y Y 17 4
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Table 6. Sequential Decomposition of Likelihood Ratio G?

for Marital Data
Model df G?
[G] [P] 1 75.259
[GP] [E] 3 48.929
[GPE] [M] 7 107.956
[G] [P] [E] [M] 11 232.142

Gilbert (1981) and Agresti (1990, sec. 7.2.4). A sample of
about 500 people who had petitioned for divorce and a sim-
ilar number of married people were asked two questions
regarding their premarital and extramarital sexual experi-
ence: (1) “Before you married your (former) husband / wife,
had you ever made love with anyone else?”; (2) “During
your (former) marriage (did you) have you had any affairs
or brief sexual encounters with another man /woman?” The
table variables are thus gender (G ), reported premarital (P)
and extramarital (E) sex, and current marital status (A).

In this analysis we consider the variables in the order G,
P, E,and M. That is, in the first stage we treat P as a response
to G and examine the [Gender] [Pre] mosaic to assess whether
gender has an effect on premarital sex. In the second stage
we treat E as a response to G and P jointly; we examine the
mosaic for [Gender, Pre][Extra] for evidence that extra-
marital sex is related to either gender or premarital sex. Fi-
nally, the mosaic for [Gender, Pre, Extra][Marital] is ex-
amined for evidence of the dependence of marital status on
the three previous variables jointly.

Each stage results in a fitted model for the corresponding
marginal table. As noted in Section 3.5, these models are
equivalent to the recursive logit models whose path diagram
is G > P — E — M. The G? values for these models (shown
in Table 6) provide a decomposition of the G? for the model
of complete independence fit to the full table.

The [Gender] [Pre] mosaic is shown in Figure 13. G for
the model [G][P] is 75.26 on 1 df, indicating that gender
and reported premarital sex are highly associated. The mosaic
shows that men are much more likely to report premarital
sex than are women; the sample odds ratio is 3.7. We also
see that women are about twice as prevalent as men in this
sample.

For the second stage, the [Gender, Pre][Extra] mosaic is
shown in Figure 14. G? for the model [GP][E] is 48.93 on
3 df, indicating that extramarital sex is not independent of
gender and premarital sex jointly. From the pattern of de-
viations in Figure 14, we see that men and women who have
reported premarital sex are far more likely to report extra-
marital sex than are those who have not. From the marginal
totals for the [GP][E] table, the conditional odds ratio of
extramarital sex is 3.61 for men and 3.56 for women. The
pattern of deviations in the mosaic suggests the need for a
[PE] term in an explanatory model for extramarital sex, but
a [GE] term incorporating an association between gender
and extramarital sex, given premarital sex, appears unnec-
essary.

The mosaic for the model [Gender, Pre, Extra][Marital]
for the final stage is shown in Figure 15. G? for this model
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Figure 13. Mosaic Display for Gender and Premarital Sexual Experience.
Residuals from the model [G][P] are shown by shading.

is 107.96 on 7 df, indicating that marital status depends
strongly on gender, premarital sex, and extramarital sex
jointly. The relationship displayed by the pattern of devia-
tions in the mosaic is more complex than a single interaction.
Among those reporting no premarital sex (the bottom part
of Figure 15), there is a similar pattern of cell sizes and de-
viations for marital status in relation to gender and extra-
marital sex. Given that persons did not report premarital
sexual experience, they are more likely to still be married if
they did not report extramarital sex and more likely to be
divorced if they did. Among those who do report premarital
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| z

Figure 14. Mosaic Display for Gender, Premarital, and Extramarital
Sexual Experience. Deviations from the model of joint independence,
[GP][E] are shown.
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sex (top part of Figure 15), there also a similar pattern of
sign of deviations: positive for those who are divorced and
negative for those who are married.

The four 2 X 2 blocks of the mosaic show the conditional
relation of extramarital sex to marital status. Comparing
these, we see that the odds ratios of divorce in relation to
reported extramarital sex are considerably larger for men
and women who also reported premarital sex. These obser-
vations imply the need to incorporate effects [ PM/] and [ EM]
of premarital and extramarital sex on marital status, and
probably the interaction [ PEM] into an explanatory model.

Thus Figure 15 suggests the relationship between marital
status and gender, premarital sex and extramarital sex can
be explained better by adding the two-way associations [ PM]
and [ EM] or the three-way term [ PEM] to the model. Be-
cause this stage considers marital status as a response to gen-
der, premarital sex, and extramarital sex, we would normally
fit the [GPE] marginal table and consider the models
[GEP][PM][EM] or [GPE][PEM] for the complete table.

The model [GPE][PM][EM] does not fit particularly
well, producing G* = 18.16 on 5 df (p = .0028). To see why,
we display the residuals from this model in Figure 16. Only
one cell has a standardized residual exceeding 2: There are
more still-married men who reported both premarital sex
and extramarital sex than the model predicts. The contri-
bution to X ? from this cell is 4> = 6.92, which is not large
enough to account for the lack of fit. Examining the signs
of residuals in each of the four corner blocks in Figure 16,
we see that the relationship of extramarital sex to marital
status is opposite to each other in the NW and SE blocks
and in the SW and NE blocks, suggesting an interaction
between P and E in their effects on marital status; that is,
the model [GPE ][PEM 1. This model does indeed fit quite

e \<\<\<<\

Figure 15. Four-Way Mosaic for Gender, Premarital sex, Extramarital
sex, and Marital status. Deviations from the model of joint independence,
[GPE][M], are shown by color and shading. The pattern of residuals
suggests some terms to be included in an explanatory model.
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Figure 16. Four-Way Mosaic for Gender, Premarital sex, Extramarital
sex, and Marital status. Shading shows residuals from the model
[GPE]J[PM][EM]. Although only one cell has a standardized residual
exceeding 2 in magnitude, the signs of residuals suggest the need for an
additional term in the model.

The process of finding an acceptable model for these data
clearly could be carried out numerically, by fitting all possible
models, or using a method of forward or backward selection.
For multi-dimensional tables with higher-order associations,
the interpretation of the log-linear parameters for these as-
sociations is often difficult. The sequence of mosaic displays
reveals the pattern of these associations as each variable is
included. As we move from a baseline fit to an explanatory
model, these associations are eliminated from the mosaic.
Hence we can think of the process of finding an acceptable
model as “cleaning the mosaic.”

More generally, we regard the mosaic display as a natural
and direct graphic adjunct to log-linear modeling for multi-
way contingency tables. Log-linear models can show which
variables are associated, whereas mosaic displays reveal how
those variables are related. The representation of the mosaic
display is direct, because the size of each tile reflects cell
frequency. The use of color and shading to represent sign
and magnitude of residuals from a model is a natural way
to portray the pattern of departure from the model and rep-
resents visually the information experienced analysts usually
look for in tables of numbers.

[Received July 1991. Revised June 1992.]
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