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Corrgrams: Exploratory displays for correlation matrices

Michael Friendly
York University

Abstract

Correlation and covariance matrices provide the basis for all classical multivariate techniques.
Many statistical tools exist for analyzing their structure, but, surprisingly, there are few techniques
for exploratory visual display, and for depicting the patterns of relations among variables in such
matricesdirectly, particularly when the number of variables is moderately large.

This paper describes a set of techniques we subsume under the name “corrgram”, based on
two main schemes: (a) rendering the value of a correlation to depict its sign and magnitude. We
consider some of the properties of several iconic representations, in relation to the kind of task to
be performed. (b) re-ordering the variables in a correlation matrix so that “similar” variables are
positioned adjacently, facilitating perception.

In addition, the extension of this visualization to matrices for conditional independence and
partial independence is described and illustrated, and we provide an easily-used SAS implementa-
tion of these methods.

Key words: correlation matrix, visualization, value rendering, independence, conditional inde-
pendence, partial correlation, effect ordering, variable sorting, visual thinning, SAS

1 Introduction

Correlation and covariance matrices provide the basis for all classical multivariate techniques, because
(together with mean vectors) they provide sufficient statistics under multivariate normal linear models.
Many statistical tools exist for analyzing multivariate structure: principal component analysis, factor
analysis, canonical correlation analysis, and so forth. All of these have the goal of reducing high-
dimensional multivariate structure to a smaller number of dimensions, so that the relationships among
the variables may be more readily apprehended.

Some visualization techniques for these dimension-reduction methods have also been developed,
to help reveal or explain the pattern of relations among variables: biplots (Gabriel, 1971), factor pattern
plots, canonical structure plots (Friendly, 1991), and so forth. Dynamic graphics, including techniques
such as exploratory projection-pursuit (Friedman, 1987) and grand tours (Asimov, 1985) can also lead
to simplified views of relations among variables, in terms of linear combinations and projections.
Surprisingly, there are few technigues for exploratory visual display, and for depicting the patterns of
relations among variablafirectly from correlation matrices.

For a relatively small number of variables, (p < 10, say), the scatterplot matrix provides an
excellent visual representation of the relations among variables. It shows all the data, and may be
considerably enhanced by the addition of linear regression lines, (loess) smoothed curves, data ellipses,
and so forth. Particularly with the addition of non-parametric smoothed curves, the scatterplot matrix
display can help determine if relationships are linear, or if transformations are useful for some of the
variables. From here on, we assume that all such problems have been dealt with, and that all variables
may be reasonably assumed to be linearly related on some possibly transformed scales.

*This research was supported by the National Sciences and Engineering Research Council of Canada, Grant OGP-
0138748. We thank Forrest Young for the initial stimulus to this work, John Fox for insightful comments and suggestions,
and the referees and Associate Editor for helpful critical reviews.



When we go beyond a relatively small number of variables, it becomes progressively more difficult
to show all the data directly. The main approach, as indicated above, has been the application of
dimension-reduction techniques.

Here, we consider techniques to display the pattern of relations among a possibly large set of vari-
ables directly, in terms of their correlations. To do so in a comprehensible way, even for a moderately
large number of variables requires some schematic visual summary— an effective visual thinning, asin
the boxplot (Tukey, 1977), which sacrifices detail in the middle to provide more essential information
on univariate shape, center, spread and outliers.

In this paper we focus on techniques to displayp#iern of correlations in terms of their signs and
magnitudes using visual thinning and correlation-based variable ordering. Some of the specific ideas
and techniques we illustrate have been suggested before, and some are novel. The main contributions
of this paper are to integrate these methods within a coherent framework based on the principles of
correlation rendering andcorrelation ordering, with details, comparisons, and software.

In particular, we compare a variety of visual encodings for schematic rendering of bivariate re-
lations among quantitative variables and illustrate the perceptual differences among them for various
data-analytic tasks. We also introduce a new method for arranging the variables in such displays so
that the pattern of relations among variables may be more easily discerned. Finally, extensions of
this framework lead directly to useful new displays for exploring conditional independence and partial
independence.

For simplicity, we consider the case fovariables )Y, Ys,. .., Y}, assumed to be at least approx-
imately multivariate normal, so that a correlation is a reasonable numerical summary, and expressed
in standardized formy{ = 0,0; = 1), so that we may focus on a correlation matrix rather than a
covariance matrix.

Section 2 describes several methods for visually encoding a correlation value to show both its sign
and magnitude, with the goal of depicting the pattern of relations among variables in a potentially
large matrix of correlations. Section 3 describes and illustrates a method for re-ordering the variables
in a correlation matrix so that “similar” variables are positioned adjacently, in order to make such
patterns more apparent. In Section 4, we extend these ideas to displays designed to show conditional
and partial independence relations among variables. Section 5 describes some related methods, while
Section 6 describes software implementing our procedures and some others. Section 7 presents some
conclusions and questions for further work on this topic.

2 Correlation rendering

A matrix of correlations can be displayed schematically in a variety of forms: as numbers, shaded
squares, bars, ellipses, or as circular ‘pac-man’ symbols, as shown in Figure 1. These schemes all
attempt to show both the sign and magnitude of the correlation value, using a color mapping of two
hues in varying lightness (Cleveland, 1993), where the intensity of color increases uniformly as the
correlation value moves away from 0. Color (blue for positive values, red for negative values) is used
to encode the sign of the correlation, but the renderings are designed so that the sign may still be
discerned when reproduced in black and white.

In the shaded row, each cell is shaded blue or red depending on the sign of the correlation, and with
the intensity of color scaled 0—-100% in proportion to the magnitude of the correlation. (Such scaled
colors are easily computed using RGB coding from red0, 0), through white(1,1,1), to blue
(0,0,1). For simplicity, we ignore the non-linearities of color reproduction and perception, but note
that these are easily accommodated in the color mapping function.) White diagonal lines are added
so that the direction of the correlation may still be discerned in black and white. This bipolar scale of
color was chosen to leave correlations near 0 empty (white), and to make positive and negative values
of equal magnitude approximately equally intensely shaded. Gray scale and other color schemes are
implemented in our software (Section 6), but not illustrated here.
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Figure 1. Some renderings for correlation values.

The bar and circular symbols also use the same scaled colors, but fill an area proportional to the
absolute value of the correlation. For the bars, negative values are filled from the bottom, positive
values from the top. The circles are filled clockwise for positive values, anti-clockwise for negative
values. The ellipses have their eccentricity parametrically scaled to the correlation value (Murdoch
and Chow, 1996). Perceptually, they have the property of becoming visually less prominent as the
maghnitude of the correlation increases, in contrast to the other glyphs.

We use these iconic encodings to display the pattern of correlations among variables in the en-
tire matrix, as shown in Figure 2, which depicts the matrix of correlations among 11 measures of
performance and salary for 263 baseball players in the 1986 season (from the 1988 Data Expo at the
ASA meetings, as corrected by Hoaglin and Velleman (1994)hsée: / /1 i b. st at . cru. edu/
dat a- expo/ 1988. ht nl ). To illustrate the differences among these encodings, we have used shad-
ing for the lower triangle, and circles for the upper triangle. The diagonal cells, which have values of
1.0 are intentionally left empty. The interpretation for this example, and the method used to order the
variables are described in Section 3.

The choice of visual representation for graphics always depends on the task to be carried out by
the viewer. From Figure 1 and Figure 2 we note that it appears easiest to “read” the numerical value
from the number itself, next from the circular symbols, then from the ellipses and the bars, and last for
the pure shadingsFor exploratory visualization, where the task is to detect patterns of relations, and
anomalies, this ordering may well be reversed— from shaded boxes as the best to numerical values as
the worst.

Other forms of encoding may also be useful, or those shown here may be enhanced for certain
purposes. For example, it is straightforward to add visual indications of the significance level, or of
the value of a correlation required for significance. We do not consider these extensions here, because
our emphasis is on exploratory display.

3 Correlation ordering

For exploratory visualization, the task of detecting patterns of relations, trends, and anomalies is made
considerably easier when “similar” variables are arranged contiguously and ordered in a way that
simplifies the pattern of relations among variables. This is an instance of a simple general principle,
called “effect-ordered data display” (Friendly and Kwan, 2002) which says simply that in any data
display (table or graph), unordered factors or variables should be ordered according to what we wish
to show or see. This principle extends the idea of “main effect ordering” (e.g., Cleveland (1993))—
sort quantitative, multi-way data by means or medians—and is grounded in the perceptual ideas of

1The order of the pies and bars may be up for grabs, but we put our money on the much-maligned Camembert, when the
purpose is to be able to say “which is more,” or estimate the correlation value.
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Figure 2. Corrgram for Baseball data. Variables ordered by vector angles from Figure 3. Lower
triangle: correlations shown by color and intensity of shading; upper: circle symbols.

similarity and grouping which stem from Gestalt psychology.

Of course, for correlations, there are many ways of specifying what we mean by “similar”. Several
variations have interpreted this criterion in terms of a clustering, typically hierarchical, of the variables
whose correlations are displayed. These procedures induce only a partial-ordering on the variables:
variables within clusters are contiguous, but those within clusters at any level may be permuted in any
order with the same visual interpretation. (Gruvaeus and Wainer (1972) provide a method to make the
ordering of variables unique, but this method is ad hoc and not necessarily optimal.)

Here, we take a different tack and opt for a slightly stronger criterion: doing a reasonable job of
placing the variables in a well-defined optimal unidimensional order. We confine ourselves here to
methods based on the eigenvalues and eigenvectors of the correlation mRatdx,some function
of it; we consider only methods based on the eigenvectors associated with the taeggstvalues,

k = 1,2,3. Friendly and Kwan (2002) show that this approach provides solutions for a wide range
of visualization methods. Second, we do this with the hope that this approach may be more useful in
some cases, and give results which should not be substantively different from those obtained by the
weaker clustering interpretation.

When the structure of correlations is well-described by a single, dominant dimension (as in a uni-
dimensional scale or a simplex), ordering variables according to their positions on the first eigenvector,
e, of the correlation matrixR, will suffice. Geometrically, this implies that all variable-vectors are
contained within &0° segment op-space, and all (or most) correlations are positive or near zero. This
is not usually the case, and in general, more satisfactory solutions are obtained by ordering variables
according to the angles formed by the first two (or three) eigenvectors (principal components).

For example, Figure 3 plots the first two eigenvectors of the correlation matrix among variables in
the baseball data. Dimension 1 relates mostly to measures of batting performance, while Dimension
2 relates to two measures of fielding performance and to longevitity in the major leagues. However,
the lengths of the projections on these dimensions is determined by the adequacy (percent of variance)
of the two-dimensional representation. On the other hand, the (cosines of) angles between vectors
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Figure 3: Eigenvector plot for Baseball data. Each variable is represented by a vector whose endpoint
is the coordinates of the first two eigenvectors.

approximate the correlations between these variables, and so an ordering based on the angular positions
of these vectors naturally places the most similar variables contiguously. Friendly and Kwan (2002)
refer to this as “correlation ordering,” a general method for arranging variables in multivariate data
displays.

In Figure 2 the variables have been arranged in the angular order of the eigenvectors from Figure 3.
More precisely, the order of the variables is calculated from the order of the aggles,

o — tan_l(eig/eﬂ) ei1 >0 (l)
‘ tan !(ep/e;1) + 7 otherwise ’

wheree; ande, are thep x 1 eigenvectors associated with the largest two eigenvalues. This circular
order is unfolded to a linear order by splitting at the largest gap between adjacent vectors. Falissard
(1996) describes a method for representing the variables in a correlation matrix on a unit sphere, using
the first three principal components (PCs).

3.1 Examples

We continue the analysis of the baseball data and illustrate these methods with additional data on
characteristics of automobile models. Both examples are illustrated in other forms in the corrgram
extensions in Section 4.

3.1.1 Baseball data

Figure 4 compares an arbitrary, alphabetic ordering of variables with ordering based on the angles of
the first two PCs for the baseball data using the shaded encoding. In the left panel (ordered alphabet-
ically), it is difficult to see any overall pattern of relations among these variables, despite the fact that
most correlations are positive, and the relations here are fairly simple. The right panel shows clearly
that (a) Assists and Errors stand out as a separate cluster, (b) RBIs, Walks, Runs, Hits and Atbats form
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a relatively homogeneous grouping with high positive correlations, (c) Putouts has weaker positive
correlations with these, and (d) there are a few correlations which stand out as higher or lower than
their neighbors. (The variable Years actually has a non-linear relation with (log) Salary, and is better
represented in a linear model as a piecewise linear funcgien= min(Years 7), which is linear up
to seven years and flat thereafter. Similarly, a number of the counted variables, such as Hits, Runs,
Homer, etc., are better represented on a square-root scale. These transformations do not affect the
general nature of the interpretations drawn here.)

In this case, these observations could arguably be made more easily from the eigenvector display in
Figure 3. For larger or more complex datasets, the corrgram may have some advantage for exploratory
purposes, because it shows all the correlations, rather than just a low-dimensional summary.
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Figure 4: Corrgrams for Baseball data. Each correlation is shown by color and intensity of shading.
Left: variables in alphabetic order; right: variables ordered by angles of first two eigenvectors.

The baseball dataset actually contains performance statistics for the 1986 season, and similar mea-
sures for the player’s career (whose names have a ‘c’ suffix). Figure 5 shows the corrgram for all 19
variables (including season and career batting averages, calculated from Hits and Atbats).

Here we see, among other things, that: (a) the career hitting statistics are all nearly uniformly
highly positively correlated, and, not surprisingly, highly correlated with Years, (b) Salary (logSal)
is most highly related to the career totals (but it turns out that Years is an efficient proxy for most
of these), (c) the season and career batting average statistics have a moderately strong correlation,
but are weakly associated with most other variables, (d) the fielding variables, Putouts, Assists, and
Errors (all seasonal) form a separate group, with weak correlations to most other variables (perhaps
the correlation between Assists and Errors stands out).

3.1.2 Autodata

Figure 6 shows a corrgram of data on 74 automobile models from the 1979 model year (Chambers
et al., 1983, pp. 352-355). The variables are various physical measures (gear ratio, head-room, trunk
space, rear-seat, length, weight, engine displacement (Displa), turning circle diameter (Turn)) as well
as Price, gas mileage (MPG), and repair-records for each of 1978 and 1979.

It is immediately clear that there are two separate groups of variables: those related to overall size
and weight (which have a positive correlation with Price), and the others, which include Gratio, MPG,



Baseball data: All variables
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Figure 5: Corrgram for Baseball data, using season and career variables.

and the two repair record variables. Within the first group, Length, Weight, Displa, and Turn are most
positively correlated; within the second group, MPG and Gratio are highly correlated, as are the two
repair record variables. We also see strong negative correlations between Gratio and MPG on the one
hand, and the size variables on the other.

4 Extensions

The corrgram is designed to display patterns of (linear) dependence among variables, as well as pat-
terns of independence. This display is easily adapted to conditional or partial dependence and indepen-
dence. See Friendly (1999), Whittaker (1990) for some relations among these forms of independence
for both quantitative and qualitative variables.

4.1 Conditional independence

From Dempster (1969) and from the theory of graphical models (e.g., Whittaker (1990)) it is well
known that the elements of the inverse of the correlation maRi%, expresses conditional depen-
dence and independence relations in the same way that corresponding elenfeetgoéss ordinary
(linear) dependence and independence. More precisely,

rij=0 << Y; LY 2)
r'l =0 <= Y; 1Y;|others,



Auto data

MPG

Rep78 Gratio

Price
Hroom Rep77

Length Trunk
Rseat

Weight

Displa

_m

Gratio Rep78 Price Trunk Length Displa
MPG Rep77 Hroom Rseat Weight Turn

Turn

Figure 6: Corrgram for Auto data, variables ordered according to Eqn. (1).

wherer;; is the (i, j)th element ofR, 7%/ is the (4, j)th element ofR~!, 1 means “is independent
of,” and “others” refers to the complementary set excluding variabdesd ;. Thus, nead elements
in R signify (bivariate, marginal) independence while néaglements inR ! signify conditional
independence, given all other variables in the set.

When the negative oR~! is appropriately rescaled to have unit diagonals, the off-diagonal el-
ements are all pairwise partial correlations, each of the fpfmners Thus, a corrgram of R°!
provides a visualization of conditional independence and dependence, just as the corrig aloesf
for marginal independence and dependence. In a corrgranfot, we should therefore pay partic-
ular attention to empty off-diagonal cells, as well as those which are strongly shaded.

Figure 7 gives an example, for the baseball data seasonal variables. For ease of comparison, the
variables have been ordered in the same way as in Figure 4. We see that most of the partial correlations
defined from— R~ are small in magnitude, but there are a few notable exceptions: controlling for all
other variables, there are still sizeable correlations between Years and logSal, Homers and RBIs, Hits
and Atbats, and Errors and Assists.

All of these have sensible interpretations. For example, comparing Figure 7 with Figure 4, the
positive relations between Years and logSal, and between Homers and RBIs remain when all other
variables are controlled. On the other hand, although logSal was positively related (marginally) to all
of the hitting performance statistics in Figure 4, we see in Figure 7 that these (conditional) relations
are negligible when the other variables are taken into account. Figure 7 may therefore be interpreted
to say that the relation between logSal and the hitting performance measures is largely a reflection of
Years in the major leagues.
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4.2 Partial independence

Partial correlationsR(Y | X), give the correlations among one set of variablé} (vhen another set
(X) have been statistically controlled (“held constant”), adjusted for, or “partialled out”. Conceptu-
ally, they differ from the conditional correlations just discussed only in that the s&twdriables is
fixed, rather than all the others, for each p@i; Y;). Computationally, they may be viewed as the
correlations among the residuals in the regressions of each dfdlom all of theX's.

Several interpretations of partial correlations are useful for visual display by corrgrams.

e If ordinary (zero-order) correlations between t&@ are large in magnitude, but the partial
correlations, given one or more are near zero, thenXkemay be said “to account” for the
correlation between the correspondivig.

¢ Interchanging the typical roles of andY’, if the one or moreX's are considered responses,
and theY's explanatory, then the partial correlatiaRg€Y'| X') may be interpreted as correlations
among the explanatory variables “focused on” (or partialling out) their relations to the response
variables (Falissard, 1999).

In both cases, suppose th#tis a subset of the variables to be partialled out. Then, we show a
corrgram of the partitioned matrix,
RY | X 0

WhereRy‘X = Ryy — RYXR)‘(lxRXy is the matrix of partial correlations. If there is only oe
that row and column will be the representation of zeros; otherwiseRihe portion will portray the

9



correlations among th&'s.

Auto data: Partialling Price, MPG
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Figure 8: Partial independence corrgram for Auto data, MPG and Price partialed out.

To illustrate, using the Auto data, we might wish to explore the partial correlations among the
remaining variables when Price and MPG are partialled out, for example to determine whether the
dependencies among the remaining variables can be accounted for by Price and gas mileage. Figure 8
shows the corrgram display, using circular encodings to better depict the numerical values of the partial
correlations. Here, th&x x portion (bottom right) shows the moderately strong negative zero-order
correlation between Price and gas mileage (MPG).

The Ry | x portion shows that, controlling for both of these, the size variables are all positively
correlated, but particularly so for Length, Weight, Displacement and Turn. The remaining variables
(Gratio, Rep77 and Rep78) are generally positively correlated with each other, although the two repair-
record variables stand out most strongly. Between these two subsets, there is a consistent pattern for
Gratio vs. the others, but somewhat weaker for the two repair-record variables.

Figure 9 illustrates the second case of a partial correlation display, showing the correlations among
the (seasonal) predictors of logSal in the baseball data, focused on the salary response variable. Con-
trolling for salary, years in the major leagues has (weak) negative correlations with all other variables.
Errors and Assists are still highly correlated with each other, but weakly correlated with the batting
variables. Even taking salary into account, the batting variables are still highly positively related, and
again the relation between Homers and RBIs stands out against the relations of the other variables in
the upper left corner.

10
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Figure 9: Partial independence corrgram for Baseball data.

5 Reéated methods

Several graphic methods, oftedl hoc, for depicting the structure of matrices and rendering their
values have been proposed in a variety of contexts. The brief review below attempts to relate the
present methods to this other work.

51 Ordering

For example, Paolini and Santangelo (1991) use similar displays for visual analysis of the pattern of
sparsity in thep x p coefficient matrix, A, in large linear systems of the fordx = b, wherep

may be of sizel0* or more. Permutation of the matrix rows and columns is used to search for block
structure in the non-zero elements, enabling specialized solvers to find solutions for these systems far
more efficiently.

In earlier work, Hills (1969) proposed two techniques for graphical analysis of large correlation
matrices: a half-normal plot of Fisheristransforms to identify correlation values too large to have
come from zero population values, and an application of metric multidimensional scaling (MDS) to
identify clusters of variables “such that members of the same group are all fairly positively correlated
with each other, and behave similarly in their relations with other variables.”

In the metric MDS analysis, the variables are represented as poiktslimensional Euclidean
space determined from the firBteigenvectors of the double-centered matrix with elemepjts-

7. —7.; + 7..). Distances between pairs of points approxinite— ;) (to the extent that the firgt
eigenvalues are large), so close points represent variables with high positive correlations.

For comparison with the present methods, Figure 10 shows a network graph representation of the
conditional independence relations in the baseball data depicted in Figure 7. In the network graph,
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Figure 10: Conditional independence network graph for the Baseball data. The locations of variables
were determined by an MDS analysis of the partial correlation matrix derived-fr®. Line style
and thickness are proportional to the partial correlation.

the positions of the variables were derived from a non-metric MDS analysis of the partial correlation
matrix, ;| gthersderived from—R~"!, which allows a monotonic, but not necessarily linear relation
between the partial correlation value and distance in the 2D spatial representation. Note that the
spacing of the points, by themselves, does not lead to identification of similar clusters of variables, nor
does it provide any coherent interpretation.

To show a graph representation of the conditional independencies in these data, we follow Friendly
(1999) to extend the simple 0/1 graph diagrams of Whittaker (1990). In Figure 10 we have added lines
between pairs of variables, for all cases Wh’%rF‘others> 0.18, the smallest value required to make
the graph connected. In this graph, line-style and thickness encode the magnitude, and color encodes
the sign of the conditional correlation. Comparing Figure 10 with Figure 7, we can see the same
conditional relations identified earlier: Strong positive relations between 5 and logSal, Homers and
RBIs, Hits and Atbats, and Errors and Assists, when all other variables are controlled. In addition
several negative conditional relations attract attention, e.g., RBIs and Runs, Hits and Homers, Putouts
and Assists. In this network graph, it is perhaps somewhat easier to see these relations than in the
corresponding corrgram. We have found, however, that the usefulness of such graphs depends critically
on the use of a (somewhat arbitrary) threshold for drawing lines, and the encoding of correlation value
by line-style and thickness is often less effective than in the corrgram.

Other related techniques stem from the method of McQuitty (1968), which involves iteratively
re-calculating correlations among the columns of the correlation matrix itsef?) 1= corr (Y') is
the original correlation matrix, the sequendd?), R, ... is calculated asR(®) = corr (R(—1).

McQuitty showed that this sequence often converges to a matrix whose elements-ateoali-1,

which allows the variables to be partitioned into two groups. Recursive application of this method
to each group may then be used to generate a hierarchical clustering of the variables. This method
was apparently re-discovered by Breiger et al. (1975) as the CONCOR algorithm, who applied it to
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proximity matrices and social network analysis.

Most recently, Chen (1996, 1999) used these ideas to develop a “generalized association plot” in
which (a) the iterative procedure is continued uiil becomes (nearly) rank two, (b) the eigenvec-
tors of R® have an elliptical structure, whose order is used to seriate the variables, and (c) shadings
of the re-ordered matrix are used to display its structure.

5.2 Rendering

Finally, itis of some interest to compare the techniques presented here with other methods for schematic
rendering of correlation values. Murdoch and Chow (1996) adopt a minimalist approach by using ellip-
tical glyphs whose eccentricity is scaled to the signed correlation value, an approach which is suitable
for large p > 25, say) matrices. However, they eschew the use of color and shading, and present no
general scheme for variable ordering.

The current techniques may also be compared with methods based on the scatterplot matrix and its’
enhancements cited in the introduction. Fox (personal communication, 2001) suggested the combina-
tion of concentration ellipses and loess smooths as schematic visual summaries of linear and possibly
nonlinear association.

For the baseball data, our version of such a plot is shown in Figure 11, with a “1 standard deviation”
ellipse of 68% coverage centered at the means, and the variables ordered as in Figure 4 (right). To
highlight the patterns of association, all extraneous ink has been suppressed— points, plot frames, tick
marks, etc. Fop = 11 variables, this display shows far more detail than the corrgrams presented
here, but it also suggests that some of the relation we have assumed to be linear are actually nonlinear.
While this form of rendering may be better for some tasks, it would be difficult to accommodate many
more variables, and it is clearly more difficult to see the overall pattern of relations among variables in
Figure 11 than in the corresponding corrgram in Figure 4.

6 Software

The corrgrams shown here are all drawn by a general SAS macro progiamgr am sas, de-

scribed inht t p: // www. mat h. yor ku. ca/ SCS/ sasmac/ corr gr am ht m , from which the

source code may be downloaded. The program has a large variety of options and is easily used. For
example, Figure 2, using shaded encodings below the diagonal, and circular encodings above, is pro-
duced by the macro call,

title 'Baseball data: PC2/1 order’;

%orrgram dat a=basebal I,
var=l ogSal 5 Homer Runs Hits RBlI Atbat Wl ks Putouts Assists Errors,
fill=S E O;

The analogous partial independence corrgram in Figure 9 is obtained by adding the keyword option
parti al =l ogSal and removing théi || =S E C option. The program requires SAS/IML and
SAS/GRAPH in addition to the basic SAS System.

A program for MATLAB, cor r map. mwas developed by Barry Wise, and is availablétat p:

/ I www. ei genvect or. conl MATLAB/ corr map. ht ml . This program uses a version of the k-
nearest neighbor algorithm to reorder the variables. It appears to encode correlation values by a
“pseudo-color map” which ranges from white fo= 41 through yellow and red, to black fer= —1.

This is not a good choice, but other color mappings may be readily used, and the source code is avail-
able.

Finally, SYSTAT provides a variety of matrix clustering algorithms, clustering both rows and
columns. When applied to a correlation matrix, the rows and columns are permuted according to the
cluster structure, and the correlation values are depicted by colored squares, but using an apparently
arbitrary and fixed color scheme.
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Figure 11: Schematic scatterplot matrix for Baseball data. Each panel shows the bivariate 68% con-
centration ellipse (truncated at the data bounding box) and a loess smoothed curve.

7 Conclusions

In awide sense there is not much thadldsolutely novel here— various methods for visually depicting
correlation matrices have been proposed (or just used, e.g., Dobkins et al. (2000, Fig. 2)), and various
schemes for reordering variables in such matrices have also been suggested. Yet, surprisingly, there
has been no published work we have found treating these methods in any coherent way.

We can claim to have presented a more general and comprehensive account of the possibilities
than has appeared previously. We have also (a) suggested a new scheme for ordering variables in such
displays, (b) extended the idea of correlation mapping to more general concepts of dependence and
independence, and (c) illustrated (we hope convincingly) why they might be useful. We also provide a
flexible implementation of these ideas (Section 6) with which others can work, and perhaps extend.

In particular, the details of the various rendering technigues suggested here bear further study:
continuously-scaled vs. classed colors, accounting for the non-linearity of color reproduction and per-
ception, circles or bars vs. shaded boxes, and so forth. It was not until we had tried several alternatives
that the differences among them became apparent.

For large matrices, these techniques scale relatively well, but the results are most often successful
when the level of detail in the rendering is minimized (e.g., using shading, elliptical glyphs, etc.).
Labeling of the variables, important for interpretation, also becomes more difficult, but this is easily
solved by flexible font orientation and scaling.

Finally, we note that these graphical techniques are applicable to the wider class of symmetric
matrices, including distance and proximity matrices. In addition, the method of correlation-based
variable ordering described here has been shown (Friendly and Kwan, 2002) to facilitate perception of
relations in other multivariate data displays (e.g., parallel coordinate plots, star plots).
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