Milestones in the History of Scientific Visualization

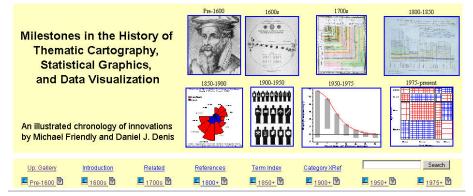
Michael Friendly, York University "Seeing Science", AAAS, Boston, Feb. 18, 2008 Slides: www.math.yorku.ca/SCS/Papers/aaas/

Visualization-based scientific discoveries ??

- When have graphics led to scientific discoveries that might not have been achieved otherwise?
 - Snow (1854): cholera as a water-borne disease
 - Galton (1883): anti-cyclonic weather pattern
 - E.W. Maunder (1904): sunspot cycle
 - Hertzsprung/Russell (1911): temperature classes of stars (spectral type)
 - Moseley (1913): concept of atomic number
 - Phillips (1958): "Phillips curve" --- inverse relation between inflation and unemployment
- In the history of graphs, what features led to these?

Vignettes from the history of data visualization

Topics:

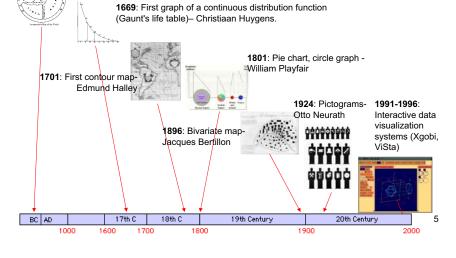

- Early graphical successes
- Sunspots: Galileo → Maunder
- Graphic vision of Minard
- ISOs: Halley → Galton
- Galton's greatest graphical discovery

Themes:

- Visual thinking & explanation
- Escaping flatland
- Mapping the invisible
- Data \rightarrow Theory \rightarrow Practice
- Graphical excellence

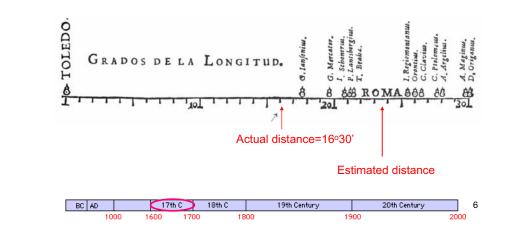
Context: Milestones Project

www.math.yorku.ca/SCS/Gallery/milestone



Project goals:

- Comprehensive catalog of developments in history of data visualization
- · Tool to study themes, antecedents, influences, patterns, trends, etc.


2

Milestones: Content Overview Every picture has a story – Rod Stewart c. 550 BC: The first world map? (Anaximander of Miletus) 1669: First graph of a continuous distribution function (Gaunt's life table) – Christiaan Huygens

Why the 1st statistical graph got it right

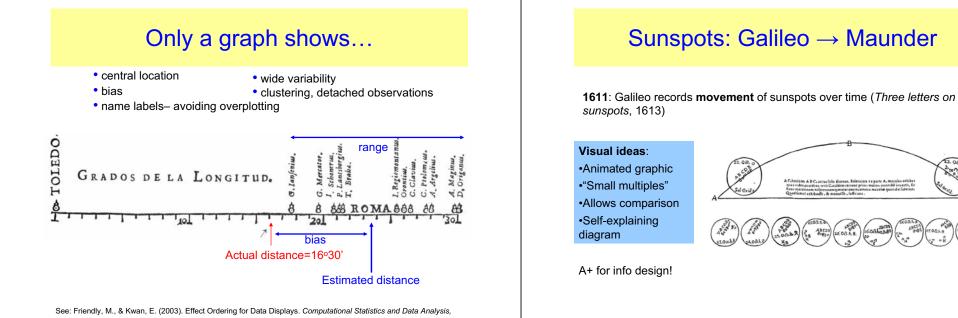
1644: First visual representation of statistical data: determination of longitude between Toledo and Rome- Michel Florent van Langren, Spain

What else could he have done?

- What would occur to men of his time to convey a message to the king?
- ... he could used a table have sorted by year to establish priority (or show change).

Sorted by Priority								
Year Name	Longitude	Where						
150 Ptolomeus, C.	27.7	Egypt						
1471 Regiomontanus,	25.4	Germany						
1501 Ianfonius, G.	17.7							
1530 Lantsbergius, P.	21.1							
1536 Schonerus, I.	20.8	Germany						
1541 Argelius, A.	28.0	-						
1542 Ortonius	26.0	France						
1567 Mercator, G.	19.6	Flanders						
1567 Clavius, C.	26.5	Germany						
1578 Brahe, T.	21.5	Denmark						
1582 Maginus, A.	29.8	Italy						
1601 Organus, D.	30.1	-						

 ... he could have sorted by *name*, to show *authority*.

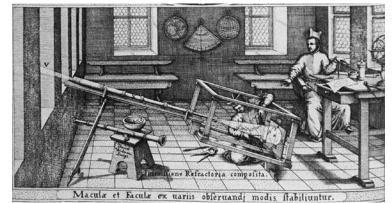

> • ... he could have sorted by *longitude* to show the *range*.

Sorted by Authority

Name	Longitude	Year	Where
Argelius, A.	28.0	1541	
Brahe, T.	21.5	1578	Denmark
Clavius, C.	26.5	1567	Germany
anfonius, G.	17.7	1501	
Lantsbergius, P.	21.1	1530	
Maginus, A.	29.8	1582	Italy
Mercator, G.	19.6	1567	Flanders
Organus, D.	30.1	1601	
Ortonius	26.0	1542	France
Ptolomeus, C.	27.7	150	Alexandria
Regiomontanus, I.	25.4	1471	Germany
Schonerus, I.	20.8	1536	Germany

Sorted by Longitude

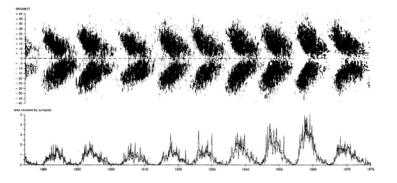
Longitude	Name	Year	Where
17.7	G. lanfonius	1501	
19.6	G. Mercator	1567	Flanders
20.8	I. Schonerus	1536	Germany
21.1	P. Lantsbergius	1530	
21.5	T. Brahe	1578	Denmark
25.4	I. Regiomontanus	1471	Germany
26.0	Orontius	1542	France
26.5	C. Clavius	1567	Germany
27.7	C. Ptolomeus	150	Egypt
28.0	A. Argelius	1541	
29.8	A. Maginus	1582	Italy
30.1	D. Organus	1601	-



9

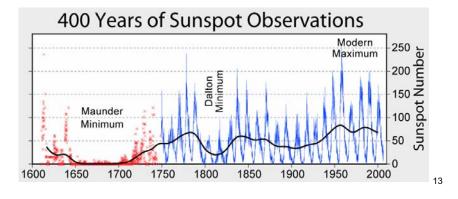
43(4), 509--539.

Scheiner: systematic recording


1626: Christoph Scheiner invents helioscope & camera obscura to record sunspots (*Rosa Ursina sive Sol*, 1626-1630)

11

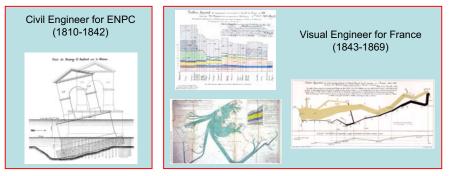
Maunder: Butterfly diagram


1904: E.W. Maunder plots distribution of sunspots in sun's latitude by timeDiscovery of 11-year sunspot cycles (& 22-yr: reversal of sun's magnetic field)

Maunder: Butterfly diagram

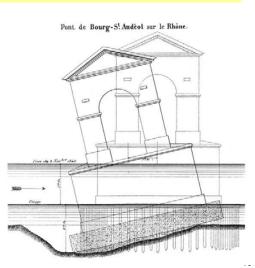
1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time

- Discovery of "Maunder minimum" (1645-1715): "Little Ice Age"
- Smoothing reveals other extrema


The graphic vision of C. J. Minard

- Marey (1878): "defies the pen of the historian in its brutal eloquence"
- Tufte (1983): "the best statistical graphic ever produced"

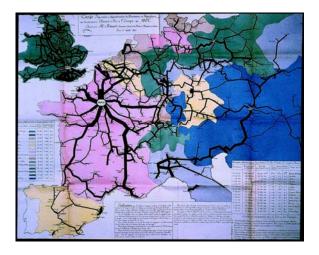
Why Minard?


- Study breadth and depth of his work
 - How related to work in his time?
 - How related to modern statistical graphics?
 - How related to his personal history?

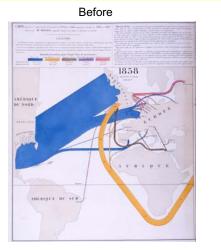
Visual thinking, visual explanation

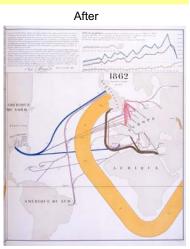
1840: Why did the bridge at Bourg-St. Andèol collapse?

Minard's report consisted essentially of this self-explaining diagram.

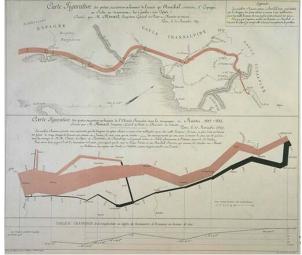

14

Visual tools for state planning

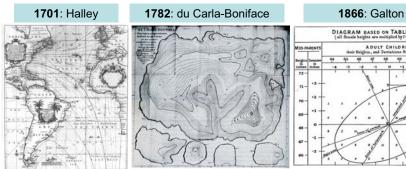

- 1830—1860: emergence of modern French state, dawn of globalization
- Trade, commerce, transportation:
 - Where to build railroads, canals?
 - Visualizing changes over time, differences over space
 - \rightarrow Flow maps and other graphical innovations

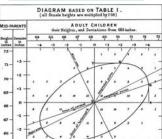

Flow maps as visual tools

Transport of passengers on the principal railroads in Europe in 1862


Effect of US civil war on cotton trade

The March Re-Visited (1869)

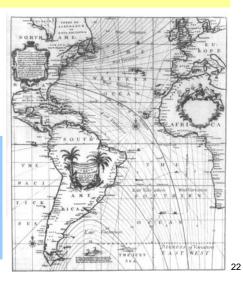



17

18

Escaping flatland

3D maps & graphs from Halley to Galton

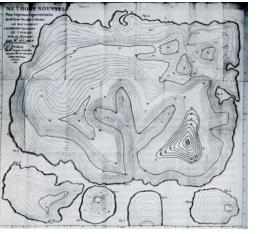

Halley: Mapping the invisible

1701: Halley's contour maps (an isogonic map: lines of equal magnetic declination for the world) -- first thematic contour map of a data-based variable.

Visual ideas:

- · Smooth curves of equal value
- · Depicted an entire corpus of systematic & organized information

 Theory of magnetism → interpolated values where data missing

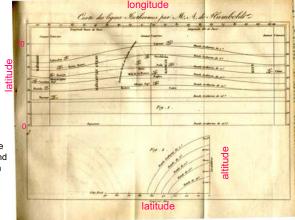


Topo maps as 3D level-slices

1782: Marcellin du Carla-Boniface. France First topographical map, showing contours of equal elevation.

Visual ideas:

- Contours: horizontal slices of a landscape
- Spacing indicates slope

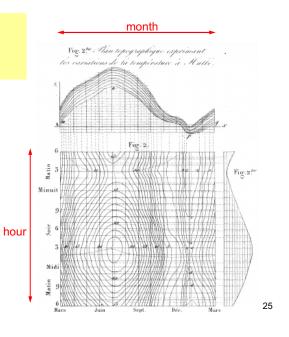


1817: Alexander von Humboldt (1769-1859) Germany First graph of isotherms, showing mean temperature around the world by latitude and longitude.

Visual ideas:

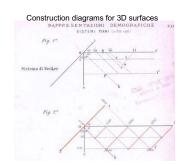
- average & smooth
- suppress the map
- moderating variable

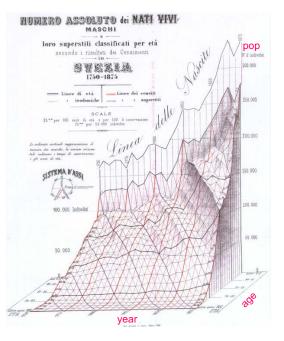
Recognizing that temperature depends more on latitude and altitude, a subscripted graph shows the direct relation of temperature on these two variables



3D maps → Graphs

1843: Léon Lalanne, France Contour diagram of a table: temperature ~ hour x month


Visual ideas:

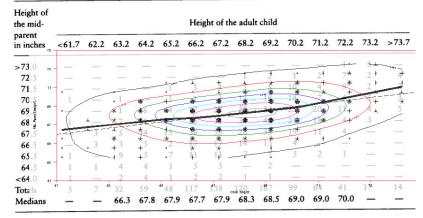

- Ordered table like a map
- 3D level curves
- 2D marginal projections
- multiple views: plan, elevation, section

1879: Luigi Perozzo, Italy Stereogram (3D population pyramid) modeled on actual data (Swedish census, 1750--1875)

Visual ideas: • isometric projection • 3D stereogram

Galton's discovery of the bivariate normal correlation surface (1886)

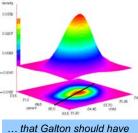
Table 9.1 Height of the mid- parent in inches	One of Galton's correlation tables													
		Height of the adult child												
	<61.7	62.2	63.2	64.2	65.2	66.2	67.2	68.2	69.2	70.2	71.2	72.2	73.2	>73.7
>73.0			_	_	_	_	_	_	_	—	_	1	3	_
72.5	-		_	_		-	_	1	2	1	2	7	2	4
71.5				_	1	3	4	3	5	10	4	9	2	2
70.5	1	_	1	_	1	1	3	12	18	14	7	4	3	3
69.5	_	_	1	16	4	17	27	20	33	25	20	11	4	5
68.5	1	_	7	11	16	25	31	34	48	21	18	4	3	-
67.5	_	3	5	14	15	36	38	28	38	19	11	4	—	_
66.5	_	3	3	5	2	17	17	14	13	4			—	
65.5	1	-	9	5	7	11	11	7	7	5	2	1	—	—
64.5	1	1	4	4	1	5	5		2		-		—	—
<64.0	1	_	2	4	1	2	2	1	1		-	—	—	—
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14
Medians	_	_	66.3	67.8	67.9	67.7	67.9	68.3	68.5	69.0	69.0	70.0	-	_

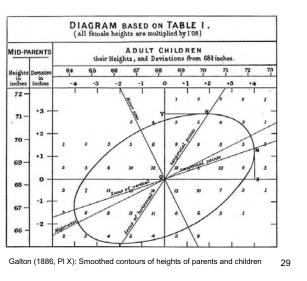

Source: Galton (1886), p. 68.

. . .

27

Visual smoothing \rightarrow Insight


Table 9.1 One of Galton's correlation tables


Source: Galton (1886), p. 68.

Visual insight \rightarrow Theory

Level curves are ellipses
Regression lines are loci of conjugate tangents

evolved all this ... is to my mind one of the most noteworthy scientific discoveries arising from analysis of pure observation (Pearson 1920, p37)

Galton's discovery of weather patterns-

Perhaps the most notable purely graphic discovery ever!

METEOROGRAPHICA,

METHODS OF MAPPING THE WEATHER;

ILLUSTRATED BY UPWARDS OF 600 PRINTED AND LITHOGRAPHED DIAGRAMS

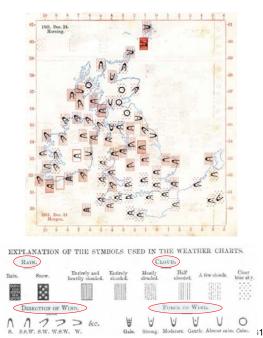
THE WEATHER OF A LARGE PART OF EUROPE,

During the Month of December 1861.

By FRANCIS GALTON, F.R.S.

(Galton, 1863)

30


Method: All weather stations across Europe asked to record data 3x/day for all of Dec., 1861

Data: recordings of barometric pressure, wind dir/speed, rain, temp., cloud: 3x/day, 50 weather stations in Europe.

Graphic analysis: 3x31=93 maps, each with multivariate glyphs showing all variables

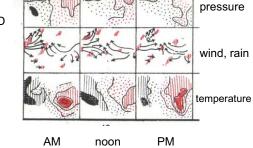
Visual ideas:

- Iconic symbols
- Multivariate glyphs (stamps!)

Visual abstraction \rightarrow Patterns

What varies with what, over time and space?

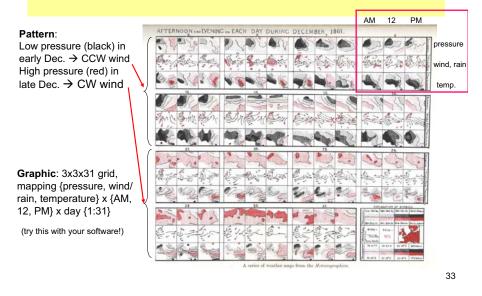
- mini, abstract maps: vars x TOD
- iso-contours, shading to show equivalence
- arrows to show wind direction


TIM

38-42" 2

32-28" E 27-23" E 22-18" F. 17" & Belo

43-47"E 48"4.a)

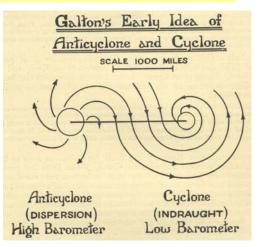

from Nerth 33-37*E

AFTERNOON AND EVENING

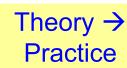
Data for Dec 5, 1861

The large picture \rightarrow Insight

Visual insight \rightarrow Theory


Visual insight from 93 (3x31) high-D graphs: • Changes in wind dir w/ pressure over time • → Winds revolve inwardly (CCW) in low pressure areasas in a cyclone; • → revolve outwardly (CW) in high pressure areas- "anti-

cvclone"


Theory:

• Explained by Dove's 'Law of Gyration'

• Prediction: reversed pattern (CW/CCW) in southern hemisphere – confirmed!

34

The first modern weather map, *London Times*, Apr. 1, 1875

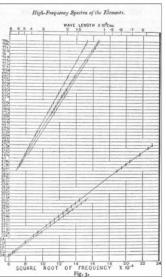
Galton did for weathermen what Kepler did for Tycho Brahe. This is no small accomplishment. (Wainer 2005) WEATHEE CHART, MARCH 31, 1575,

The dotted lines indicate the gradations of barometric presume The wristions of the temperature are marked by figures, the state of the sea and sky by descriptive words, and the direction of the wind by arrows-barbed and feathered according to its force. O denotes calm.

35

Moseley's discovery of atomic number

1913: Henry Moseley Plot of serial numbers of elements vs. square root of frequencies from X-ray spectra:

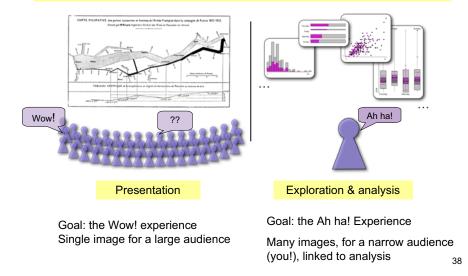

 linear relations → periodic table better explained by atomic number than weight

• gaps in series → predicted existence of several undiscovered elements!

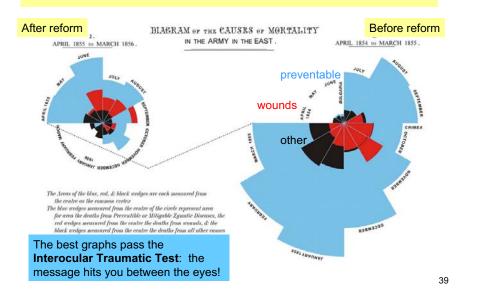
(serial # must have a physical basis).

• multiple lines later explained with discovery of the spin of electrons.

The hallmark of good science is the discovery of laws that unify & simplify findings, and allow prediction of yet unobserved phenomena.


Conclusions

- In the history of science, visualization often:
 - ... proved crucial in discovery
 - ... provided simple explanations for complex phenomena
- Notable examples in this history illustrate
 - Importance of visual thinking
 - Interoccularity: message hits you between the eyes
 - Role of **smoothing** in seeing patterns, gaining insight
 - Necessity to escape flatland:
 - · Progress in display of increasingly rich and complex data
 - Data \rightarrow Visual abstraction \rightarrow Theory \rightarrow Practice


37

Graphs: Different strokes for different folks

Two roles for data visualization in science

Presentation graph: Nightingale (1857)

