Data Screening: Part 3

- Assessing multivariate problems
 - Multivariate normality
 - Outliers: univariate, bivariate, multivariate
 - Robust outlier detection

- Dealing with missing data
 - Estimation with missing data (EM algorithms)
 - Simple Imputation
 - Multiple imputation
 - Plots for missing data

Michael Friendly
York University
SCS Short Course
October, 2004
Some multivariate statistical methods assume that all measures are jointly multivariate normal.

- e.g., Factor analysis, discriminant analysis, MANOVA
- Regression: Usually not required for predictors
- Is required for multivariate MRA

Statistical measures

- Univariate: Skewness, kurtosis → Shapiro-Wilk test
- Multivariate: Mardia's multivariate skewness, kurtosis
- But: these are sensitive to small deviations from strict (multi-) normality.

Multivariate normality: Chi-square QQ plot

- Graphical method: Chi-square QQ plot
 - 1 variable: \(z_i = \frac{(x_i - \bar{x})}{s} \sim \mathcal{N}(0, 1) \), or \(z_i^2 = \frac{(x_i - \bar{x})^2}{s^2} \sim \chi^2_{(1)} \).
 - 2 variables: If uncorrelated, squared distance of \((x_{i1}, x_{i2})\) from the mean is \(D_i^2 = z_{i1}^2 + z_{i2}^2 \sim \chi^2_{(2)} \).

- \(p \) variables: Calculate generalized (Mahalanobis) squared distance, \(D_i^2 \) of each observation \(x_i \) from the mean vector,

\[
D_i^2 = (x_i - \bar{x})^T S^{-1} (x_i - \bar{x}) \sim \chi^2_{(p)}
\]

where \(S \) is the \(p \times p \) sample covariance matrix.
Multivariate normality: Chi-square QQ plot

- \(\Rightarrow \) QQ plot of ordered distances, \(D_{ij}^2 \), against corresponding \(\chi^2_{(p)} \) quantiles should give a straight line through the origin for multivariate normal data.

\[
\begin{align*}
\text{ChiSquare QQ plot: Uncorrelated} & \\
\text{ChiSquare QQ plot: Correlated}
\end{align*}
\]

Computation:

- The \(D_i^2 \) can be easily calculated by transforming the data to standardized principal component scores, i.e., \(D_i^2 = \sum_j^{P} z^2_{ij} \):

 \[
 \text{proc princomp STD out=PC; } \\
 \text{var X1-X10; } \\
 \text{data pc; } \\
 \text{set pc; } \\
 \text{Dsq = USS(of PRIN1-PRIN10);}
 \]

- The `multnorm` macro calculates univariate and multivariate normality tests, and produces the Chi-square QQ plot.

- Confidence bands for the distribution help to judge how close the \(D_i^2 \) are to a \(\chi^2 \) distribution.
- But: outliers can make the graphical test less sensitive.

Example: Mammals teeth: number of incisors, canines, molars, etc. in 32 species

\[
\%\text{include data(teeth); } \\
\%\text{multnorm(data=teeth, var=v1-v8, id=mammal);}
\]

<table>
<thead>
<tr>
<th>Var</th>
<th>Test</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Test Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Shapiro-Wilk</td>
<td>-0.6993</td>
<td>-0.8885</td>
<td>0.790</td>
<td>0.00001</td>
</tr>
<tr>
<td>V2</td>
<td>Shapiro-Wilk</td>
<td>-0.3040</td>
<td>-1.0806</td>
<td>0.829</td>
<td>0.00008</td>
</tr>
<tr>
<td>V3</td>
<td>Shapiro-Wilk</td>
<td>-1.0216</td>
<td>-1.0246</td>
<td>0.560</td>
<td>0.00000</td>
</tr>
<tr>
<td>V4</td>
<td>Shapiro-Wilk</td>
<td>-0.5421</td>
<td>-1.8244</td>
<td>0.608</td>
<td>0.00000</td>
</tr>
<tr>
<td>V5</td>
<td>Shapiro-Wilk</td>
<td>-0.8124</td>
<td>0.2687</td>
<td>0.863</td>
<td>0.00060</td>
</tr>
<tr>
<td>V6</td>
<td>Shapiro-Wilk</td>
<td>-0.5955</td>
<td>-0.2693</td>
<td>0.883</td>
<td>0.00206</td>
</tr>
<tr>
<td>V7</td>
<td>Shapiro-Wilk</td>
<td>-0.4687</td>
<td>-1.7688</td>
<td>0.671</td>
<td>0.00000</td>
</tr>
<tr>
<td>V8</td>
<td>Shapiro-Wilk</td>
<td>-0.9541</td>
<td>-0.5410</td>
<td>0.702</td>
<td>0.00000</td>
</tr>
<tr>
<td>All</td>
<td>Mardia Skew</td>
<td>40.7550</td>
<td>.</td>
<td>242.640</td>
<td>0.00000</td>
</tr>
<tr>
<td>All</td>
<td>Mardia Kurt</td>
<td>.</td>
<td>81.1770</td>
<td>.</td>
<td>0.79241</td>
</tr>
</tbody>
</table>

- All test statistics indicate substantial deviation from univariate and multivariate normality
- QQ plot does not reveal anything strange. Why?
Outliers

- Different kinds of outliers: univariate, bivariate, multivariate, or just observations which don’t fit your model (large residuals)
- Univariate outliers:
 - Typical analysis: Examine standardized scores \(z_i = (x_i - \bar{x})/s \), for \(|z_i| > \pm 2 (1.96: p < 0.05)\)
 - But: outliers will shift the mean, inflate the std. dev., making obs. look less outlying!
 - Better: Boxplot uses inner fences– quartiles \(\pm 1.5IQR \), \((p < 0.05)\), outer fences– quartiles \(\pm 3IQR \), \((p < 0.001)\).
 - \texttt{datachk} macro gives a brief summary for a collection of variables
- Univariate checks are useful, but not always sufficient: Can you spot the outliers?

Bivariate outliers

- Bivariate plots can reveal— bivariate outliers!

  ```
  data outlier1;
  do i = 1 to 100;
    x1 = normal(33445); * Correlated;
    x2 = x1 + normal(22345)/4; * bivariate normal;
    output;
  end;
  *-- Generate two additional obs: outliers;
  x1 = 2; x2 = -2; output;
  x1 = -2; x2 = 2; output;
  
  Ex 1: Scatterplot shows bivariate outliers
  ```

- But, only bivariate outliers
- Bivariate plot suggests rotation to principal components
Multivariate outliers

- Transforming variables to principal components:
 - Principal components rotate the cloud of points to new (orthogonal) axes.
 - PRIN1 has greatest variance, PRINp has smallest variance
 - Outliers will usually appear as extreme values on the last principal component.

Ex 1: Scatterplot shows bivariate outliers
Ex 1: Scatterplot rotated to principal components

```
proc princomp std noprint data=outlier1 out=prin;
var x1-x2;
title 'Ex 1: Scatterplot rotated to principal components';
%contour(data=prin,y=prin2, x=prin1, pvalue=.95);
```

Can you spot the outliers?

With 3 or more variables, bivariate plots may show nothing strange.

```
data outlier2;
do i = 1 to 100;
x1 = uniform(54321);
x2 = uniform(54321);
x3 = uniform(54321);
x1 = x1 / sum(of x1-x3);
x2 = x2 / sum(of x1-x3);
x3 = x3 / sum(of x1-x3);
output;
end;
x1 = .1; x2 = .1; x3 = .1; output; /* outlier */
x1 = .15; x2 = .05; x3 = .1; output; /* outlier */
```

Michael Friendly
Multivariate outliers

- Again, outliers show up clearly on the last PC

 proc princomp std noprint data=outlier2 out=prin;
 var x1-x3;
 %scatmat(data=prin, var=prin1-prin3, symbols=square);

Robust Outlier Detection

- The χ^2 plot for multivariate normality is not resistant to the effects of outliers.
- A few discrepant observations affect the mean vector, \bar{x}, and—worse—the variance-covariance matrix, S.
- Inflating $S \rightarrow$ decreases D^2: extreme obs. look less discrepant!
- One simple solution is to use multivariate trimming (Gnanadesikan and Kettenring, 1972) to calculate D^2 values not affected by potential outliers:
 1. Calculate $D^2_{(i)}$ values
 2. Find $\text{prob}_i = P(r_{D^2} > D^2_{(i)})$
 3. Set weight$_i = 0$ for any observation with prob$_i < \alpha$.
 4. Repeat steps 1–3.
• The outlier macro
 - performs 1 or more passes of multivariate trimming,
 - produces a χ^2 QQ plot.

`title 'Original data with 80% Data Ellipse';
%contour(data=outlier1, y=x2, x=x1, pvalue=.80);

`title 'Outlier DSQ plot, 1 pass, pvalue=0.01';
%outlier(data=outlier1, var=x1-x2, id=sub, out=chiplot, passes=1, pvalue=.01);

Original data with 80% Data Ellipse

Outliers weighted=0, with 80% Data Ellipse

Observations trimmed in calculating Mahalanobis distance

<table>
<thead>
<tr>
<th>PASS</th>
<th>CASE</th>
<th>DSQ</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>9.6729</td>
<td>.0079353</td>
</tr>
<tr>
<td>51</td>
<td>25.2015</td>
<td>.0000034</td>
<td>*</td>
</tr>
<tr>
<td>52</td>
<td>25.1222</td>
<td>.0000035</td>
<td>*</td>
</tr>
</tbody>
</table>

See: www.math.yorku.ca/SCS/sss/outlier.html
Multivariate outliers: Mammals teeth

- Multivariate normality QQ plot (no trimming) looked OK:

![QQ plot graph]

- Effect of multivariate trimming: D^2 increases for outliers

![Squared distance graph]

<table>
<thead>
<tr>
<th>PASS</th>
<th>MAMMAL</th>
<th>CASE</th>
<th>DSQ</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elephant seal</td>
<td>2</td>
<td>18.7217</td>
<td>0.016421</td>
</tr>
<tr>
<td>2</td>
<td>Mole</td>
<td>2</td>
<td>17.0421</td>
<td>0.029674</td>
</tr>
<tr>
<td>2</td>
<td>Elephant seal</td>
<td>28</td>
<td>60.3055</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>Elephant seal</td>
<td>28</td>
<td>48.6327</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Multivariate outliers: Practical issues

- 2 passes usually sufficient; more obs. may be trimmed in later passes.
- An effective, but *ad hoc* procedure: No hypothesis tests.
- Results of any automatic procedure must be tempered by substantive knowledge.
- Which obs. are trimmed depends on the p-value used (e.g., Mammals teeth: Racoon trimmed at p-value=0.07).
- The *outlier* macro uses p-value=0.05 by default. A more conservative p-value (e.g., $p < 0.001$) may be more appropriate.
- “OK, I’ve got outliers.” What to do?
 - Answer depends on the context and the analysis.
 - Generally, prefer to remove only probable errors or truly extreme outliers.
 - Classical methods: Do analysis with and without. Do the conclusions or main results change?
 - Consider a more robust model fitting method (retain, but down-weight outliers), e.g., *robust* macro.
Dealing with missing data

- Gertrude Cox: “The best thing to do about missing data is not to have any.”
- Most software uses one of two procedures for missing data:
 - Complete case analysis (listwise deletion) — Discard data with any missing variables
 - Available case analysis (pairwise deletion) — Discard data with missing values on the analysis variables
- E.g., in linear models (regression, ANOVA, etc.):
 - Univariate statistics based on available data
 - Missing on any predictor → case deleted (listwise)
 - Missing on response → case not used, but a fitted value is generated.
 - Multiple responses (MANOVA, Multivar regression): software differs
- Caveats:
 - Must assume at least missing-at-random (MAR): “missingness” on \(X \) is unrelated to value of \(X \)
 - E.g., not MAR if respondents with high income are more likely not to report income.
 - Failure of MAR → results (predicted values, coefficients) are biased
 - Factor analysis, PCA, etc.: available case analysis can → improper correlation matrices (not PD)

Missing data: General strategies

- Single imputation: replace missing by ‘suitable estimates’, use complete-case analysis.
- Weighting: discard if any missing, but weight complete cases to compensate for incomplete cases.
- Direct analysis of incomplete data. Two forms:
 - Available case analysis
 - Maximum likelihood estimation over available data (e.g., PROC MIXED, E-M algorithm)
- Multiple imputation:
 - Impute \(m > 1 \) from appropriate distribution for each missing observation.
 - Combine → estimates, std. errors that incorporate missing-data uncertainty.
Missing data: Imputation

- Trade-offs
 - + Get complete data → use software not handling missings
 - + Makes good use of info on incomplete cases
 - − Analyses overstate precision: nominal 95% CI may have only 80%–90% coverage; p-values < .05 may be really 0.10–0.20!

- Some imputation methods:
 - Unconditional imputation: fill in the grand mean
 - Only gives illusion of progress!
 - Estimates of variance are understated!
 - Conditional imputation
 - Regression-based imputation: Fill-in \(\hat{x} \) using other \(X \)'s as predictors, i.e., \(\mathcal{E}(X | \text{others}) \).
 - Sub-group means, i.e., \(\mathcal{E}(X | \text{group}) \).
 - Cluster-based imputation: group into clusters; fill-in cluster mean
 - Stochastic conditional imputation
 - Regression: Fill-in \(\hat{x}_i + r_i \), where \(r_i \sim \mathcal{N}(0, \sigma^2) \).
 - "Hot-deck" imputation: cluster, then fill-in randomly chosen observation in same cluster.
 - Multiple imputation: Impute \(m \geq 2 \) values for each missing obs.; use variability of these imputations to correct std. errors, p-values

Single Imputation: Examples

Auto data: some missing values for repair record in 77 & 78
- Unconditional means (Not A Good Idea)
 %include data(auto);
data auto;
 set auto;
r77 = rep77; *-- copy original vars;
r78 = rep78;
 proc standard REPLACE;
 var rep77 rep78;
 proc print;
 where (r77=. or r78=.);
 MODEL ORIGIN REP77 REP78 R77 R78
 AMC SPIRIT A 3.20 3.41 . .
 BUICK OPEL A 3.20 3.41 . .
 FORD FIESTA A 3.20 4.00 . 4
 MERC. MONARCH A 3.20 3.00 . 3
 PEUGEOT 604 SL E 3.20 3.41 . .
 PLYM. HORIZON A 3.20 3.00 . 3
 PLYM. SAPPORO A 3.20 3.41 . .
 PONT. PHOENIX A 3.20 3.41 . .

What’s wrong with mean substitution?

- Problems:
 - Corrupts marginal distribution of each imputed variable: \(\sigma^2 \) too small (\(\bar{x} \) OK)
 - Corrupts covariances and correlations with other variables: \(|r| \) too small

Mean imputation: Before vs. After

Mean imputation: Before

Mean imputation: After

```r
# Conditional means (by region of origin)
proc sort data=auto;
  by origin;
proc standard REPLACE;
  by origin;
  var rep77 rep78;
```

<table>
<thead>
<tr>
<th>MODEL</th>
<th>ORIGIN</th>
<th>REP77</th>
<th>REP78</th>
<th>R77</th>
<th>R78</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC SPIRIT</td>
<td>A</td>
<td>2.98</td>
<td>3.02</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>BUICK OPEL</td>
<td>A</td>
<td>2.98</td>
<td>3.02</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>FORD FIESTA</td>
<td>A</td>
<td>2.98</td>
<td>4.00</td>
<td>.</td>
<td>4</td>
</tr>
<tr>
<td>MERC. MONARCH</td>
<td>A</td>
<td>2.98</td>
<td>3.00</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>PLYM. HORIZON</td>
<td>A</td>
<td>2.98</td>
<td>3.00</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>PLYM. SAPPORO</td>
<td>A</td>
<td>2.98</td>
<td>3.02</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PONT. PHOENIX</td>
<td>A</td>
<td>2.98</td>
<td>3.02</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PEUGEOT 604 SL</td>
<td>E</td>
<td>2.90</td>
<td>4.00</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Single Imputation: Examples

- Regression estimates
 - Include vars with missing as dependents
 - Replace missing values with predicted values from regression
 - PROC REG: Output data set with predicted values

```plaintext
proc reg data=auto;
  model rep77 rep78 = price mpg hroom rseat trunk weight length turn displa gratio;
  output out=newauto p=p77 p78;
```

```
  MODEL ORIGIN P77 P78 REP77 REP78
  AMC SPIRIT  A  3.85  4.38    .    .
  BUICK OPEL  A  3.76  3.58    .    .
  FORD FIESTA A  2.76  3.70    .    4
  MERC. MONARCH A  3.00  3.06    .    3
  PLYM. HORIZON A  3.42  4.34    .    3
  PLYM. SAPPORO A  4.07  3.87    .    .
  PONT. PHENIX  A  3.08  2.86    .    .
  PEUGEOT 604 SL E  3.31  4.20    .    .
```

- Problems:
 - Inflates covariances and correlations with other variables

Single Imputation: Examples

- Cluster-based imputation: PROC FASTCLUS

```plaintext
proc fastclus IMPUTE data=auto out=auto2 maxclusters=10 delete=1 summary;
  var price -- gratio;
  id model;
```

```
  MODEL ORIGIN REP77 REP78 CLUSTER DIST _IMPUTE_
  AMC SPIRIT  A  2.5  2.7  1  702.05  2
  BUICK OPEL  A  3.6  4.0  8  347.71  2
  FORD FIESTA A  3.6  4.0  8  291.73  1
  MERC. MONARCH A  2.5  3.0  1  408.48  1
  PEUGEOT 604 SL E  3.0  2.7  2  941.74  2
  PLYM. HORIZON A  3.6  3.0  8  274.28  1
  PLYM. SAPPORO A  3.9  4.4  4  411.99  2
  PONT. PHENIX  A  2.5  2.7  1  410.23  2
```

Problems with single imputation

- Subsequent analyses do not reflect missing data uncertainty
 - sample size, N and degrees of freedom are overstated
 - confidence intervals too narrow
 - Type I error rates too high
- Problem gets worse as rate of missing and model complexity (number of parameters) increase
- Example:
 - 30% missing
 - One confidence interval (regression coeff., odds ratio, ...)

Nominal coverage (%)	90	95	99
Actual coverage (%)	77	85	94
 - Testing a 10-parameter H_0 (e.g., regression F-test)

Nominal α	0.10	0.05	0.01
Actual α	0.57	0.45	0.25

Multiple imputation

Original data set

Data augmentation - m imputations

- EM Algorithm -
 - mean vector
 - covariance matrix
- t-tests
- confidence intervals

Combine results

Analyze each

```
proc reg outest=parameters;
model y = x1 - x3;
by dsnum;
```

Michael Friendly
Multiple imputation

- Missing values replaced by \(m > 1 \) simulated versions, \((3 \leq m \leq 10) \).
- Each imputed complete dataset is analyzed by standard methods,
- Results combined to produce estimates and confidence intervals that incorporate missing-data uncertainty
- High efficiency, even for small \(m \).

\[
\text{Rel. Efficiency} = \left(1 + \gamma m\right)^{-1}
\]

where \(\gamma \) = rate of missing info (about a parameter)

<table>
<thead>
<tr>
<th>(m)</th>
<th>.1</th>
<th>.3</th>
<th>.5</th>
<th>.7</th>
<th>.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>97</td>
<td>91</td>
<td>86</td>
<td>81</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>94</td>
<td>91</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>97</td>
<td>95</td>
<td>93</td>
<td>96</td>
</tr>
</tbody>
</table>

Multiple imputation: Combining estimates

Rubin (1987) method for MI inference, *scalar quantities* \(\hat{\theta} \)--

- \(m \) imputations \(\rightarrow m \) estimates, \(\hat{\theta}_i \), each with an estimated sampling variance \(\text{var}(\hat{\theta}_i) \).
- MI point estimates: average the \(m \) values of \(\hat{\theta}_i \)

\[
\bar{\theta} = \frac{1}{m} \sum_{i=1}^{m} \hat{\theta}_i
\]

- Proper tests and CI for imputed data must take into account:
 - **Within-imputation variance**: average sampling variance of the \(m \) estimates.
 \[
 \bar{W} = \sum \text{var}(\hat{\theta}_i) / m
 \]
 - **Between-imputation variance**: variability of the estimates across \(m \) imputations.
 \[
 B = \sum (\hat{\theta}_i - \bar{\theta})^2 / (m - 1)
 \]
- These are combined to give the **Total-imputation variance** of \(\bar{\theta} \),

\[
T \equiv \text{var}(\bar{\theta}) = \bar{W} + \left(1 + \frac{1}{m}\right)B
\]
Multiple imputation: Significance tests and CI

- MI hypothesis tests: \(t_{obs} = \frac{\bar{\theta}}{\sqrt{T}} \sim t_{df} \)
- MI adjusted confidence interval: \(\bar{\theta} \pm t_{df} \sqrt{T} \)
- Degrees of freedom:
 \[
 df = (m - 1) \left(1 + \frac{mW}{(m+1)B}\right)^2
 \]
- Fraction of missing info \((\gamma) \), relative increase in variance due to nonresponse \((r) \):
 \[
 \gamma = \frac{r + 2/(df + 3)}{r + 1} \quad r = \frac{T - W}{W} = \frac{(1 + m^{-1})B}{W}
 \]

Multiple imputation: Software

- SAS:
- SPSS: Missing Value Analysis (MVA) add-in module [EM only]
- Splus and Win95/NT (Joe Schafer)
 - NORM - Multivariate normal
 - CAT - Multivariate categorical
 - MIX - Continuous and categorical
 - PAN - Panel or clustered
- Other software listed at www.utexas.edu/cc/faqs/stat/general/gen25.html
Multiple imputation: PROC MI and PROC MIANALYZE

- **PROC MI** — Different methods for different missing patterns:
 - **Monotone**
 - **Non-Monotone**

- Monotone missing data pattern: $Y_j = . \Rightarrow Y_k = ., \forall k > j$.
- Parametric regression (assumes multivariate normality)
- Non-parametric, propensity scores method
- Non-monotone missing data pattern
 - Markov chain monte carlo (MCMC) for all (comp. intensive) [default!]
 - MCMC → monotone pattern. Then, use monotone methods.
 - Generates m imputed data sets, with index variable _Imputation_.

- **PROC MIANALYZE**
 - Any analysis step BY _Imputation_, producing estimates. (PROC REG, PROC GLM, PROC MIXED, PROC GENMOD, etc.)
  ```
  proc reg data=outmi outest=outreg covout nopolrint;
  model Oxygen = RunTime RunPulse;
  by \_imputation\_;
  ```
 - Combines estimates, à la Rubin (1987), Schafer (1997)
 - Provides both univariate (t) and multivariate (F) tests.
Baseball data: **PROC MI and PROC MIANALYZE**

- Salary and performance data for \(n = 322 \) players
- Salary missing for 18% of players (monotone pattern)
- Model: \(\log(\text{salary}) \sim \min(\text{years}, 7) + \text{trpc} + \text{batavgc} \)
- MI assumes:
 - Variables are multivariate-normal (transform first if not)
 - Model used for imputation is the same as the analysis model

0. **Screen and transform variables**

```sas
%include data(baseball);
*-- Screen/Transform variables;
data baseball;
set baseball;
if salary ^=.
  then logsal = log(salary);
years7 = min(years,7);
trpc = (runsc + rbic + homerc) / years;
label logsal = 'log Salary'
  trpc='Total career runs/year'
  years7='Years, up to 7';
```

1. **Generate \(m \) imputed data sets**

```sas
... basemi.sas ...
```

```
%include data(baseball);
*-- Screen/Transform variables;
data baseball;
set baseball;
if salary ^=.
  then logsal = log(salary);
years7 = min(years,7);
trpc = (runsc + rbic + homerc) / years;
label logsal = 'log Salary'
  trpc='Total career runs/year'
  years7='Years, up to 7';
```

```
title 'Proc MI: Regression method (monotone)';
proc mi data=baseball seed=42424241 out=basemi;
monotone method=regression;
var years7 trpc batavgc logsal;
run;
```

Printed output:

The MI Procedure
Model Information
- Data Set WORK BASEBALL
- Method Regression
- Number of Imputations 5
- Seed for random number generator 42424241

Missing Data Patterns

<table>
<thead>
<tr>
<th>Group</th>
<th>years7</th>
<th>trpc</th>
<th>batavgc</th>
<th>logsal</th>
<th>Freq</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>263</td>
<td>81.68</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>.</td>
<td>59</td>
<td>18.32</td>
</tr>
</tbody>
</table>

Missing Data Patterns

--- Group Means ---

<table>
<thead>
<tr>
<th>Group</th>
<th>years7</th>
<th>trpc</th>
<th>batavgc</th>
<th>logsal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.224335</td>
<td>94.246679</td>
<td>262.794677</td>
<td>5.927417</td>
</tr>
<tr>
<td>2</td>
<td>5.237288</td>
<td>73.385852</td>
<td>255.474576</td>
<td>.</td>
</tr>
</tbody>
</table>

Notes:

- Are there differences in means among different missing patterns?
- Is there evidence that data is not MAR?
2. Analyze m complete data sets

- Use output dataset from PROC MI as input to PROC REG
- Obtain output dataset containing parameter estimates (and covariance matrices)
- Use by _Imputation_; to repeat analysis m times

```sas
proc reg data=basemi noprint outest=outreg covout;
    model logsal = years7 trpc batavgc;
    by _Imputation_; 
run;
```

Print parameter estimates:

```sas
proc print data=outreg;
    id _Imputation_; 
    by _Imputation_; 
    where (_Type_ = 'PARMS');
    var Intercept years7 trpc batavgc;
    title2 'Parameter estimates from imputed data sets'; 
run;
```

Output:

<table>
<thead>
<tr>
<th>Imputation</th>
<th>Intercept</th>
<th>years7</th>
<th>trpc</th>
<th>batavgc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.62497</td>
<td>0.25947</td>
<td>0.007388496</td>
<td>0.004761202</td>
</tr>
<tr>
<td>2</td>
<td>2.56478</td>
<td>0.25190</td>
<td>0.007207141</td>
<td>0.005198336</td>
</tr>
<tr>
<td>3</td>
<td>2.48735</td>
<td>0.25515</td>
<td>0.006764982</td>
<td>0.005615983</td>
</tr>
<tr>
<td>4</td>
<td>2.76897</td>
<td>0.25300</td>
<td>0.008087116</td>
<td>0.00410438</td>
</tr>
<tr>
<td>5</td>
<td>3.26130</td>
<td>0.25139</td>
<td>0.008340637</td>
<td>0.002135631</td>
</tr>
</tbody>
</table>
```

3. Combine results with PROC MIANALYZE

- Use output dataset from PROC REG as input to PROC MIANALYZE

```sas
proc mianalyze data=outreg mult edf=318;
 var Intercept years7 trpc batavgc;
run;
```

Printed output:

**The MIANALYZE Procedure**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Between</th>
<th>Within</th>
<th>Total</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.095088</td>
<td>0.095850</td>
<td>0.209955</td>
<td>12.38</td>
</tr>
<tr>
<td>years7</td>
<td>0.000010826</td>
<td>0.000219</td>
<td>0.000232</td>
<td>241.56</td>
</tr>
<tr>
<td>trpc</td>
<td>0.000000399</td>
<td>0.000000537</td>
<td>0.000001015</td>
<td>16.254</td>
</tr>
<tr>
<td>batavgc</td>
<td>0.000001878</td>
<td>0.000001779</td>
<td>0.000004032</td>
<td>11.73</td>
</tr>
</tbody>
</table>

**Parameter estimates, standard errors and CI:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std Error</th>
<th>95% Confidence Limits</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.741474</td>
<td>0.458209</td>
<td>1.74651</td>
<td>3.736435</td>
</tr>
<tr>
<td>years7</td>
<td>0.254181</td>
<td>0.015215</td>
<td>0.22421</td>
<td>0.284153</td>
</tr>
<tr>
<td>trpc</td>
<td>0.007542</td>
<td>0.001508</td>
<td>0.00541</td>
<td>0.009675</td>
</tr>
<tr>
<td>batavgc</td>
<td>0.004344</td>
<td>0.002008</td>
<td>-0.00004</td>
<td>0.008730</td>
</tr>
</tbody>
</table>
3. Combine results with PROC MIANALYZE

Individual hypothesis tests \( H_0 : \theta_i = 0 \):

Multiple Imputation Parameter Estimates

| Parameter | Theta0 | Parameter=Theta0 | Pr > |t| |
|-----------|--------|------------------|------|---|
| Intercept | 0      | 5.98             | <.0001 |
| years7    | 0      | 16.71            | <.0001 |
| trpc      | 0      | 7.49             | <.0001 |
| batavgc   | 0      | 2.16             | 0.0519 |

Multivariate hypothesis test \( H_0 : \theta_1 = \theta_2 = \cdots = 0 \):

Multiple Imputation Multivariate Inference

Assuming Proportionality of Between/Within Covariance Matrices

<table>
<thead>
<tr>
<th>Avg Relative Increase in Variance</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Parameter=Theta0</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.502386</td>
<td>4</td>
<td>94.202</td>
<td>7499.13</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

- Marginal plots
  - Ordinary bivariate plots ignore all missing observations
  - Instead, show missing observations as marginal points
  - Are the missing observations consistent with the marginal distributions? (weak test of MAR)

- Example: Baseball data, marginal plots for Career runs/year (trpc) and Career batting average (batavgc)
  - Only logsal is missing here.
  - Missing observations shown at margins (red).
  - For illustration, \( \sim 10\% \) of observations with missing salary also had batavgc set to missing.

Plots for missing data

Marginal plots for missing data

- Ordinary bivariate plots ignore all missing observations
- Instead, show missing observations as marginal points
- Are the missing observations consistent with the marginal distributions? (weak test of MAR)

- Example: Baseball data, marginal plots for Career runs/year (trpc) and Career batting average (batavgc)
  - Only logsal is missing here.
  - Missing observations shown at margins (red).
  - For illustration, \( \sim 10\% \) of observations with missing salary also had batavgc set to missing.
Plots for missing data

- Imputation plots
  - For missing observations, calculate typical value (mean, median) and variability (std., stderr, IQR) over the $m$ imputed data sets.
  - Show fully observed data as points, missings as typical value (mean, median), with error bars for variability, over the $m$ imputed data sets.
  - miplot macro: takes input data, imputed data $\rightarrow$ plot for $(x, y)$; std. error bars for missing on one, diamonds for missing on both.

```sas
proc mi data=baseball out=basemi impute=10;
 monotone method=regression;
 var years7 trpc batavgc logsal;
run;

%miplot(data=baseball, imputed=basemi, x=trpc, y=logsal, id=name);
%miplot(data=baseball, imputed=basemi, x=batavgc, y=logsal, id=name);
```

Plots:

Michael Friendly

References


Tukey, J. W. *Exploratory Data Analysis*. Addison Wesley, Reading, MA, 1977. 54