in 1973.

Part 2: Two-way and n-way tables

Topics:

- $\mathbf{Z} \times 2$ tables and fourfold displays
- Sieve diagrams
- Observer agreement
- Mosaic displays and loglinear models for *n*-way tables
- Correspondence analysis

SCS Short Course

57

Standard analysis: PROC FREQ

Methods for 2×2 tables

■ Bickel et al. (1975): data on admissions to graduate departments at U. C. Berkeley

Table 3: Admissions to Berkeley graduate programs

Rejected

1493

1278

2771

Total

2691

1835

4526

% Admitted

44.52

30.35

38.78

Aggregate data for the six largest departments:

 $G_{(1)}^2 = 93.7, \chi_{(1)}^2 = 92.2, p < 0.0001$

■ → Males 84% more likely to be admitted.

Males

Total

Evidence for gender bias?

Females

Admitted

1198

557

1755

© Michael Friendly

SCS Short Course

© Michael Friendly

Categorical Data Analysis with Graphics

twobytwo

Categorical Data Analysis with Graphics

vismethods

grcfoils

Visualizing Contingency tables

55

- Two-way tables
 - 2×2 tables Visualize odds ratio (FFOLD macro)
 - $= 2 \times 2 \times k$ tables Homogeneity of association
 - $r \times 3$ tables Trilinear plots (TRIPLOT macro)
 - $r \times c$ tables Visualize association (SIEVE program)
 - $r \times c$ tables Visualize association (MOSAIC macro)
 - Square $r \times r$ tables Visualize agreement (AGREE program)
- n-way tables
 - Fit loglinear models, visualize lack-of-fit (MOSAIC macro)
 - Test & visualize partial association (MOSAIC macro)
 - Visualize pairwise association (MOSMAT macro)
 - Visualize conditional association (MOSMAT macro)
 - Visualize loglinear structure (MOSMAT macro)
- Correspondence analysis and MCA (CORRESP macro)

 \blacksquare Odds ratio, $\theta = \frac{\mathsf{Odds}(\mathsf{Admit}\,|\,\mathsf{Male})}{\mathsf{Odds}(\mathsf{Admit}\,|\,\mathsf{Female})} = \frac{1198/1493}{557/1276} = 1.84$

proc freq data=berkeley;

weight freq;

tables gender*admit / chisq;

Output:

Statistics for Table of gender by admit

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient	1 1 1 1	92.2053 93.4494 91.6096 92.1849 0.1427	<.0001 <.0001 <.0001 <.0001

58

How to visualize and interpret?

Fourfold displays for 2 \times 2 tables

- **Quarter circles**: radius $\sim \sqrt{n_{ij}} \Rightarrow$ area \sim frequency
- **Independence**: Adjoining quadrants ≈ align
- **Odds ratio:** ratio of areas of diagonally opposite cells
- **Confidence rings**: Visual test of $H_0: \theta = 1 \leftrightarrow$ adjoining rings overlap

Confidence rings do not overlap: $\theta \neq 1$

SCS Short Course

59

(C) Michael Friendly

What happened here?

Simpson's paradox:

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
 - Large differences in admission rates across departments.
 - Men and women apply to these departments differentially.
 - Women applied in large numbers to departments with low admission rates.
- (This ignores possibility of structural bias against women: differential funding of fields to which women are more likely to apply.)
- Other graphical methods can show these effects.

SCS Short Course

61

(C) Michael Friendly

Categorical Data Analysis with Graphics

twobytwo

twobytwo

Categorical Data Analysis with Graphics

Fourfold displays for $2 \times 2 \times k$ tables

- Data in Table 3 had been pooled over departments
- Stratified analysis: one fourfold display for each department
- lacktriangle Each 2 imes 2 table standardized to equate marginal frequencies
- Shading: highlight departments for which $H_a: \theta_i \neq 1$

• Only one department (A) shows association; $\theta_A = 0.349 \rightarrow$ women $(0.349)^{-1} = 2.86$ times as likely as men to be admitted.

twobytwo

The FOURFOLD program and the FFOLD macro

- The FOURFOLD program is written in SAS/IML.
- The FFOLD macro provides a simpler interface.
- Printed output: (a) significance tests for individual odds ratios, (b) tests of homogeneity of association (here, over departments) and (c) conditional association (controlling for department).

Plot by department:

SCS Short Course

```
berk4f.sas
%include catdata(berkeley)
%ffold(data=berkeley,
   var=Admit Gender,
                           /* panel variables
   by=Dept,
                           /* stratify by dept */
                           /* panel arrangement */
   down=2, across=3,
   htext=2);
                           /* font size
```

Aggregate data: first sum over departments, using the TABLE macro:

```
%table(data=berkeley, out=berk2,
                          /* omit dept
   var=Admit Gender,
                          /* frequency variable */
   weight=count,
   order=data);
%ffold(data=berk2, var=Admit Gender);
```

Table 4: Hair-color eye-color data

Two-way frequency tables

Eye					
Color	Black	Brown	Red	Blond	Total
Green	5	29	14	16	64
Hazel	15	54	14	10	93
Blue	20	84	17	94	215
Brown	68	119	26	7	220
Total	108	286	71	127	592

Brown 68 1119 26 7

Black Brown Red Blond Hair Color

■ Shading \sim observed frequency, n_{ij} , color: $\mathrm{sign}(n_{ij} - \hat{m}_{ij})$. Independence: Shown when density of shading is uniform.

■ Height/width \sim marginal frequencies, n_{i+}, n_{+j} ■ Area \sim expected frequency, $\sim n_{i+}n_{+j}$

SCS Short Course

63

© Michael Friendly

SCS Short Course

65

Sieve diagrams

© Michael Friendly

Categorical Data Analysis with Graphics

twow

Categorical Data Analysis with Graphics

Two-way frequency tables: Sieve diagrams

- $lue{}$ count \sim area
 - When row/col variables are independent, $n_{ij} \sim n_{i+} n_{+j}$
 - $\blacksquare\Rightarrow$ each cell can be represented as a rectangle, with area = height \times width \sim frequency, n_{ij}

Sieve diagrams

■ Effect ordering: Reorder rows/cols to make the pattern coherent

Categorical Data Analysis with Graphics

Sieve diagrams

■ Vision classification data for 7477 women

SCS Short Course

67

© Michael Friendly

Categorical Data Analysis with Graphics

Observer Agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
 - → square table, Rater 1 x Rater 2
 - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
 - Intraclass correlation: ANOVA framework— multiple raters!
 - Cohen's κ : compares the observed agreement, $P_o = \sum p_{ii}$, to agreement expected by chance if the two observer's ratings were independent,

$$P_c = \sum p_{i+} p_{+i}.$$

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

Categorical Data Analysis with Graphics

twoway

SCS Short Course

69

© Michael Friendly

Sieve diagrams: Example

```
sieve2.sas
proc iml:
  %include iml(sieve);
    *-- frequency table;
  tab = \{1520 \quad 266 \quad 124 \}
                              66,
           234 1512
                       432
                              78.
                362 1772
                             205.
                 82 179
                             492 };
    *-- variable and level names;
  vnames = {'Right Eye Grade' 'Left Eye Grade'};
  lnames = { 'High' '2' '3' 'Low',
              'High' '2' '3' 'Low');
  title = {'Unaided distant vision data'};
    *-- Global options;
  font='hwpsl011';
  run sieve(tab, vnames, lnames, title );
quit;
```

Online weblet: http://www.math.yorku.ca/SCS/Online/sieve/

Categorical Data Analysis with Graphics

- Properties of Cohen's κ :
- perfect agreement: $\kappa = 1$
- minimum κ may be < 0; lower bound depends on marginal totals
- Unweighted κ : counts only diagonal cells (same category assigned by both
- Weighted κ : allows partial credit for near agreement. (Makes sense only when the categories are ordered.)
- Weights: Cicchetti-Alison (inverse integer spacing) vs. Fleiss-Cohen (inverse square spacing)

	Integer	Weights		Fle	eiss-Cohe	n Weigh	ts
1	2/3	1/3	0	1	8/9	5/9	0
2/3	1	2/3	1/3	8/9	1	8/9	5/9
1/3	2/3	1	2/3	5/9	8/9	1	8/9
0	1/3	2/3	1	0	5/9	8/9	1
U	1/3	2/3	1	U	5/9	8/9	1

SCS Short Course 68

© Michael Friendly

SCS Short Course

70

agree

Cohen's κ : Example

The table below summarizes responses of 91 married couples to a questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

Husband's Rating	Never fun	Wife's Fairly often	Rating Very Often	Almost always	SUM
Never fun Fairly often Very often Almost always	7 2 1 2	7 8 5 8	2 3 4 9	3 7 9 14	19 20 19 33
SUM	12	28	18	33	91

Computing κ with SAS

Output (CA weights):

Statistics for Table of Husband by Wife

Test of Symmetry 3.8778 Statistic (S) Pr > S 0.6932

Kappa Statistics

Statistic	Value	ASE	95%	Confidence	Limits
Simple Kappa	0.1293	0.0686	•	.0051	0.2638
Weighted Kappa	0.2374	0.0783		.0839	0.3909

Sample Size = 91

Using Fleiss-Cohen weights:

0.3320 0.0973 0.1413 0.5227 Weighted Kappa

SCS Short Course

71

© Michael Friendly

SCS Short Course

73

© Michael Friendly

Categorical Data Analysis with Graphics

Categorical Data Analysis with Graphics

Computing κ with SAS

- PROC FREQ: Use AGREE option on TABLES statement
 - Gives both unweighted and weighted κ (default: CA weights)
 - AGREE (wt=FC) uses Fleiss-Cohen weights
 - Bowker's (Bowker, 1948) test of symmetry: $H_0: p_{ij} = p_{ji}$

kappa3.sas

```
title 'Kappa for Agreement';
  data fun:
     do Husband = 1 to 4;
     do Wife = 1 to 4;
        input count @@;
        output;
        end; end;
   datalines;
   2
         8
               3
   1
14 proc freq;
    weight count;
                                                   /* default: CA weights*/
    tables Husband * Wife / noprint agree;
    tables Husband * Wife / noprint agree(wt=FC);
```

Observer agreement: Multiple strata

- When the individuals rated fall into multiple groups, one can test for:
 - Agreement within each group
 - Overall agreement (controlling for group)
 - Homogeneity: Equal agreement across groups

Example: Diagnostic classification of mulitiple sclerosis by two neurologists, for two populations (Landis and Koch, 1977)

NO rater:	Winnipeg patients			New Orleans patients					
NU rater:	Cert	Prob	Pos	Doubt		Cert	Prob	Pos	Doubt
Winnipeg rater: Certain MS Probable Possible Doubtful MS	38 33 10 3	5 11 14 7	0 3 5 3	1 0 6 10		5 3 2 1	3 11 13 2	0 4 3 4	0 0 4 14

74

Analysis:

```
proc freq;
  tables strata * rater1 * rater2 / agree;
```

Observer agreement: Multiple strata

```
msdiag.sas
   data msdiag;
    do patients='Winnipeg ', 'New Orleans';
       do N_rating = 1 to 4;
          do W_rating = 1 to 4;
             input count 0;
             output;
             end;
          end:
       end;
   label N_rating = 'New Orleans neurologist'
         W_rating = 'Winnipeg neurologist';
  38 5 0 1
  33 11 3 0
  10 14 5 6
   3 7 3 10
   5 3 0 0
   3 11 4 0
   2 13 3 4
   1 2 4 14
21
   *-- Agreement, separately, and conrolling for Patients;
23
proc freq data=msdiag;
     weight count;
     tables patients * N_rating * W_rating / norow nocol nopct agree;
```

Observer agreement: Multiple strata

Output, strata 2: (Winnipeg patients):

Statistics for Table 2 of N_rating by W_rating Controlling for patients=Winnipeg

Test of Symmetry

Statistic (S) 46.7492 <.0001 Pr > S

Kappa Statistics

Statistic	Value	ASE	95% Confidence	Limits
 Simple Kappa Weighted Kappa	0.2079 0.3797	0.0505 0.0517	0.1091 0.2785	0.3068 0.4810

Sample Size = 149

SCS Short Course

75

© Michael Friendly

SCS Short Course

77

© Michael Friendly

Categorical Data Analysis with Graphics

agree

Categorical Data Analysis with Graphics

Observer agreement: Multiple strata

Output, strata 1: (New Orleans patients):

Statistics for Table 1 of N_rating by W_rating Controlling for patients=New Orleans

Test of Symmetry

Statistic (S) 9.7647 DF Pr > S0.1349

Kappa Statistics

Statistic	Value	ASE	95% Confidenc	e Limits
Simple Kappa	0.2965	0.0785	0.1427	0.4504
Weighted Kappa	0.4773	0.0730	0.3341	0.6204

Sample Size = 69

Observer agreement: Multiple strata

Overall test:

Summary Statistics for N_rating by W_rating Controlling for patients

Overall Kappa Coefficients

Statistic	Value	ASE	95% Confiden	ce Limits
Simple Kappa	0.2338	0.0424	0.1506	0.3170
Weighted Kappa	0.4123	0.0422	0.3296	

Homogeneity test: $H_0: \kappa_1 = \kappa_2 = \dots$

Tests for Equal Kappa Coefficients

Statistic	Chi-Square	DF	Pr > ChiSq
Simple Kappa	0.9009	1	0.3425
Weighted Kappa	1.1889	1	0.2756

Total Sample Size = 218

SCS Short Course

© Michael Friendly

SCS Short Course

(C) Michael Friendly

agree

Bangdiwala's Observer Agreement Chart

- The observer agreement chart Bangdiwala (1987) provides
 - a simple graphic representation of the strength of agreement, and
 - a measure of strength of agreement with an intuitive interpretation.
- Construction:
 - \blacksquare $n \times n$ square, n=total sample size
 - Black squares, each of size $n_{ii} \times n_{ii} \rightarrow$ observed agreement
 - \blacksquare Positioned within larger rectangles, each of size $n_{i+} \times n_{+i} \to \max$ maximum possible agreement
 - ⇒ visual impression of the strength of agreement is

$$B_N = rac{ ext{area of dark squares}}{ ext{area of rectangles}} = rac{\sum_i^k \ n_{ii}^2}{\sum_i^k \ n_{i+} \ n_{+i}}$$

Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b steps from the main diagonal, using weights $1>w_1>w_2>\cdots$.

$$n_{i-b,i}$$
 w_2 \vdots w_1 $n_{i,i-b}$ \cdots $n_{i,i}$ \cdots $n_{i,i+b}$ w_2 w_1 1 w_1 w_2 \vdots w_1 \vdots w_2 w_2

- \blacksquare Add shaded rectangles, size \sim sum of frequencies, $A_{bi},$ within b steps of main diagonal
- ⇒ weighted measure of agreement,

$$B_N^w = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_i^k \left[n_{i+} n_{+i} - n_{ii}^2 - \sum_{b=1}^q w_b A_{bi}\right]}{\sum_i^k n_{i+} n_{+i}}$$

SCS Short Course

79

© Michael Friendly

SCS Short Course

SCS Short Course

81

© Michael Friendly

Categorical Data Analysis with Graphics

Categorical Data Analysis with Graphics

gree

Husbands and wives: $B_N = .146$

Agreement Chart: Husband's and Wives Sexual Fun

Husbands and wives: $B_N^w = .628$ with $w_1 = 8/9$

Agreement Chart: Husband's and Wives Sexual Fun

Marginal homogeneity and Observer bias

- Different raters may consistently use higher or lower response categories
- Test– marginal homogeneity: $H_0: n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line

■ Winnipeg neurologist tends to use more severe categories

Testing marginal homogeneity

```
· · agreemar.sas
  title2 'Testing equal marginal proportions';
  proc catmod data=ms;
21
     weight count;
22
     response marginals;
     model win_diag * no_diag = _response_ / oneway;
     repeated neuro 2 / _response_= neuro;
```

Output:

```
Testing equal marginal proportions
       Analysis of Variance
```

Source	DF	Chi-Square	Pr > ChiSq
Intercept Neuro	3 3	222.62 10.54	<.0001 0.0145
Residual	0		

⇒ marginal proportions differ.

SCS Short Course

(C) Michael Friendly

SCS Short Course

85

© Michael Friendly

Categorical Data Analysis with Graphics

Categorical Data Analysis with Graphics

Testing marginal homogeneity

83

- Test marginal homogeneity using PROC CATMOD
 - Two tests available:
 - Equal marginal frequencies: RESPONSE marginals; statement
 - Equal mean scores: RESPONSE means; statement

```
agreemar.sas ···
title 'Classification of Multiple Sclerosis: Marginal Homogeneity';
proc format;
  value diagnos 1='Certain ' 2='Probable' 3='Possible' 4='Doubtful';
data ms;
format win_diag no_diag diagnos.;
  do win_diag = 1 to 4;
  do no_diag = 1 to 4;
     input count @@;
     if count=0 then count=1e-10; /* avoid structural zeros */
     output;
     end: end:
datalines;
                      0
  5
       11
                      0
  2
       13
              3
                     4
                     14
```

Testing marginal homogeneity

Test of mean scores is more powerful for ordered categories:

```
··· agreemar.sas
title2 'Testing equal means';
proc catmod data=ms;
   weight count;
   response means:
   model win_diag * no_diag = _response_ / oneway;
   repeated neuro 2 / _response_= neuro;
```

Output:

Testing equal means Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept Neuro	1 1	570.61 7.97	<.0001 0.0048
Residual	0		

86

84 SCS Short Course

© Michael Friendly

SCS Short Course

(C) Michael Friendly

Mosaic displays and Log-linear Models

Hartigan and Kleiner (1981), Friendly (1994, 1999):

- **Width** \sim one set of marginals, n_{i+}
- **Height** \sim relative proportions of other variable, $p_{j+i} = n_{ij}/n_{i+1}$
- lacksquare \Rightarrow area \sim frequency, $n_{ij}=n_{i+}p_{j\,|\,i}$

SCS Short Course

87

© Michael Friendly

Mosaic displays

Departments \times Gender:

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

- Model [Dept] [Gender]: $G_{(5)}^2$ = 1220.6.
- **Note**: Departments ordered A–F by overall rate of admission.

SCS Short Course 89 (© Michael Friendly

Categorical Data Analysis with Graphics

nway2

...

- **Shading**: Sign and magnitude of Pearson χ^2 residual, $d_{ij}=(n_{ij}-\hat{m}_{ij})/\sqrt{\hat{m}_{ij}}$ (or L.R. G^2)
 - Sign: negative in red; + positive in blue
 - Magnitude: intensity of shading: $|d_{ij}| > 0, 2, 4, \dots$
- *Independence*: Rows \approx align, *or* cells are empty!
- E.g., aggregate Berkeley data, independence model:

Categorical Data Analysis with Graphics

90

- Dark hair goes with dark eyes, light hair with light eyes
- Red hair, hazel eyes an exception?
- Effect ordering: Rows/cols permuted by CA Dimension 1

SCS Short Course 88 (© Michael Friendly

SCS Short Course

se

Mosaic displays for multiway tables

- Generalizes to *n*-way tables: divide cells recursively
- Can fit any log-linear model (e.g., 3-way),

Table 5: Log-linear Models for Three-Way Tables

Model	Model symbol	Independence interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(A B) \perp C$
Conditional independence	[AC][BC]	$(A \perp B) \mid C$
All two-way associations	[AB][AC][BC]	(none)
Saturated model	[ABC]	(none)

e.g., the model for conditional independence ($A \perp C \mid B$):

$$[AB][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{jk}^{BC}$$

- Each mosaics shows:
 - DATA (size of tiles)
 - **■** (some) **marginal** frequencies (spacing → visual grouping)
 - RESIDUALS (shading) what associations have been omitted?

SCS Short Course

© Michael Friendly

Categorical Data Analysis with Graphics

SCS Short Course

DWOV

© Michael Friendly

Categorical Data Analysis with Graphics

nwa

nway2

 \blacksquare E.g., Joint independence, [DG][A] (null model, Admit as response) [$G_{(11)}^2$ = 877.1]:

91

Mosaic displays for multiway tables

- Visual fitting:
 - Pattern of lack-of-fit (residuals) → "better" model— smaller residuals
 - "cleaning the mosaic" → "better" model— empty cells
 - best done interactively!

Model: (DeptGender)(DeptAdmit)

- E.g., Add [Dept Admit] association → Conditional independence:
 - Fits poorly, overall ($G_{(6)}^2$ = 21.74)
 - But, only in Department A!

Sequential plots and models

93

- Mosaic for an n-way table → hierarchical decomposition of association in a way analogous to sequential fitting in regression
- Joint cell probabilities are decomposed as

$$p_{ijk\ell\cdots} = \underbrace{p_i \times p_{j|i} \times p_{k|ij}}_{\{v_1v_2v_3\}} \times p_{\ell|ijk} \times \cdots \times p_{n|ijk\cdots}$$

- First 2 terms \rightarrow mosaic for v_1 and v_2
- First 3 terms \rightarrow mosaic for v_1 , v_2 and v_3
-
- Sequential models of *joint independence* \rightarrow additive decomposition of the total association, $G^2_{[v_1][v_2]...[v_n]}$ (mutual independence),

94

$$G^2_{[v_1][v_2]\dots[v_p]} = G^2_{[v_1][v_2]} + G^2_{[v_1v_2][v_3]} + G^2_{[v_1v_2v_3][v_4]} + \dots + G^2_{[v_1\dots v_{p-1}][v_p]}$$

SCS Short Course 92 © Michael Friendly

SCS Short Course

nway2

© Michael Friendly

Blond

Brown

nway2

Mosaic matrices

- Analog of *scatterplot matrix* for categorical data (Friendly, 1999)
 - Shows all p(p-1) pairwise views in a coherent display
 - Each pairwise mosaic shows bivariate (marginal) relation
 - Fit: marginal independence
 - Residuals: show marginal associations
 - Direct visualization of the "Burt" matrix analyzed in multiple correspondence analysis for p categorical variables

SCS Short Course

99

© Michael Friendly

Categorical Data Analysis with Graphics

© Michael Friendly SCS Short Course 101

Categorical Data Analysis with Graphics

nway2

Categorical Data Analysis with Graphics

Stratified analysis:

■ How does the association between two (or more) variables vary over levels of other variables?

Partial association, Partial mosaics

- Mosaic plots for the main variables show *partial association* at each level of the other variables.
- E.g., Hair color, Eye color BY Sex ↔ TABLES sex * hair * eye;

102

Hair Brown Haz Grn Blue Female Eye Sex Black Brown Red Blond Brown Haz Grn Blue

> 100 © Michael Friendly

SCS Short Course

Partial association, Partial mosaics

Stratified analysis:

lacksquare For models of partial independence, $A\perp B$ at each level of (controlling for) C $A \perp B \mid C_k$, partial G^2 s add to the overall G^2 for conditional independence,

$$G_{A\perp B \mid C}^2 = \sum_k G_{A\perp B \mid C(k)}^2$$

Table 6: Partial and Overall conditional tests, $Hair \perp Eye \mid Sex$

Model	df	G^2	p-value
[Hair][Eye] Male	9	44.445	0.000
[Hair][Eye] Female	9	112.233	0.000
[Hair][Eye] Sex	18	156.668	0.000

SCS Short Course

103

© Michael Friendly

SCS Short Course

105

© Michael Friendly

Categorical Data Analysis with Graphics

nway2

Categorical Data Analysis with Graphics

Software for Mosaic Displays

Demonstration web applet:

http://www.math.yorku.ca/SCS/Online/mosaics/

- Runs the *current* version of mosaics via a cgi-script
- Can run sample data, upload a data file, enter data in a form.
- Choose model fitting and display options (not all supported).

Software for Mosaic Displays

- Macro interface: mosaic macro, table macro, mosmat macro
- mosaic macro
 - Easiest to use:
 - Direct input from a SAS dataset
 - No knowledge of SAS/IML required
 - Reorder table variables; collapse, reorder table levels with table macro
 - Convenient interface to partial mosaics (BY=)

table macro

- Create frequency table from raw data
- Collapse, reorder table categories
- Re-code table categories using SAS formats, e.g., 1='Male' 2='Female'

mosmat macro

Mosaic matrices— analog of scatterplot matrix (Friendly, 1999)

SCS Short Course

(C) Michael Friendly

Categorical Data Analysis with Graphics

mossoft

mossoft

Software for Mosaic Displays

SAS software & documentation:

http://www.math.yorku.ca/SCS/mosaics.html http://www.math.yorku.ca/SCS/vcd/

- **Examples**: Many in *VCD* and on web site
- SAS/IML modules: mosaics.sas SAS/IML program
 - Enter frequency table directly in SAS/IML, or read from a SAS dataset.
 - Most flexible:
 - Select, collapse, reorder, re-label table levels using SAS/IML statements
 - Specify structural 0s, fit specialized models (e.g., quasi-independence)
 - Interface to models fit using PROC GENMOD

Categorical Data Analysis with Graphics

mosaic macro example: Berkeley data

109

```
berkelev.sas
title 'Berkeley Admissions data';
proc format;
   value admit 1="Admitted" 0="Rejected"; value dept 1="A" 2="B" 3="C" 4="D" 5="E" 6="F";
        value $sex 'M'='Male'
                                 'F'='Female':
data berkeley;
   do dept = 1 to 6;
      do gender = 'M', 'F';
         do admit = 1, 0;
            input freq @@;
            output;
   end; end; end;
/* -- Male --  - Female- */
/* Admit Rej Admit Rej */
datalines;
     512 313
                  89
                       19 /* Dept A */
     353 207
                 17
                        8 /*
                                    B */
                     391 /*
                                    C */
     120 205
                 202
                 131
                     244 /*
     138 279
                                    D */
                      299
                          /*
                                    E */
      53 138
                 94
                     317 /*
      22 351
                  24
```


Data set berkeley: dept gender admit freq 512 313 1 89 0 19 22223333 353 207 М 17 8 120 М 205 202 М 0 391 0 М 138 1 279 131 0 244 5 5 53 138 М 0 94 1 299 6 22 М 6 0 351 М 6 1 24 317

Model: (Dept)(Gender)

© Michael Friendly

SCS Short Course

© Michael Friendly

Categorical Data Analysis with Graphics

SCS Short Course

mossoft

Categorical Data Analysis with Graphics

mossoft

mosaic macro example: Berkeley data

111

```
mosaic9m.sas
goptions hsize=7in vsize=7in;
%include catdata(berkeley);
*-- apply character formats to numeric table variables;
%table(data=berkeley,
   var=Admit Gender Dept,
   weight=freq,
   char=Y, format=admit admit. gender $sex. dept dept.,
   order=data, out=berkeley);
%mosaic(data=berkeley,
   vorder=Dept Gender Admit, /* reorder variables */
                             /* which plots?
   plots=2:3,
                             /* fit joint indep. */
   fittype=joint,
   split=H V V, htext=3);
                             /* options
```

mosmat macro: Mosaic matrices

winclude catdata(berkeley);
mosmat(data=berkeley,
vorder=Admit Gender Dept, sort=no);

Admit

Gender

Admit

Reject

Dept

114

113

© Michael Friendly

SCS Short Course

Partial mosaics mospart3.sas %include catdata(hairdat3s);

%gdispla(OFF); %mosaic(data=haireye, vorder=Hair Eye Sex, by=Sex,

htext=2, cellfill=dev); %gdispla(ON);

%panels(rows=1, cols=2);

SCS Short Course 115 © Michael Friendly

Using the vcd package in R

- The loglm() function fits a loglinear model, returns a loglm object
- The mosaic() function plots the object

R>## Independence model of hair and eye color and sex. R>mod.1 <- loglm(~1+2+3, data=HairEyeColor)</pre> R>mod.1

Call:

loglm(formula = ~1 + 2 + 3, data = HairEyeColor)

Statistics:

 $X^2 df P(> X^2)$

Likelihood Ratio 175.7934 24 Pearson 171.8144 24

SCS Short Course 117 © Michael Friendly

Categorical Data Analysis with Graphics

R/ex1

mossoft

Categorical Data Analysis with Graphics

R/ex1

Using the vcd package in R

R># load the vcd library & friends R>library(vcd) R>data("HairEyeColor")

R>structable(HairEyeColor)

Eye Brown Blue Hazel Green Hair Sex Black Male 32 3 11 10 Female 36 9 5 2 Brown Male 38 50 25 15 Female 81 34 29 14 Red Male 10 10 7 7 Female 7 Blond Male 3 30 8 Female 64

R>mosaic(mod.1, main="model: [Hair][Eye][Sex]") model: [Hair][Eye][Sex] Brown Blue Hazel Green Male Pearson residuals: 4.00 2.00 Hair se x 0.00 -2.00

SCS Short Course 116 © Michael Friendly SCS Short Course

Joint independence

R>## Joint independence model.
R>mod.2 <- log1m(~1*2+3, data=HairEyeColor)
R>mod.2

Call:

loglm(formula = ~1 * 2 + 3, data = HairEyeColor)

Statistics:

X^2 df P(> X^2)

119

Likelihood Ratio 29.34982 15 0.01449443 Pearson 28.99286 15 0.01611871

SCS Short Course

© Michael Friendly

Testing differences between models

- For nested models, $M_1\subset M_2$ (M_1 nested within, a special case of M_2), the difference in LR G^2 , $\Delta=G^2(M_1)-G^2(M_2)$ is a specific test of the difference between them. Here, $\Delta\sim\chi^2$ with $df=df_1-df_2$.
- R functions are object-oriented: they do different things for different types of objects.

R>anova(mod.1, mod.2)

LR tests for hierarchical log-linear models

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev) Model 1 175.79340 24

Model 2 29.34982 15 146.44358 Saturated 0.00000 0 29.34982

9 0.00000 15 0.01449

Categorical Data Analysis with Graphics

Wilchael Friend

R/ex1

Categorical Data Analysis with Graphics

SCS Short Course

corror

© Michael Friendly

R>mosaic(mod.2, main="model: [HairEye][Sex]")

Correspondence analysis and MCA

121

- Correspondence analysis (CA): Analog of PCA for frequency data:
 - \blacksquare account for maximum % of χ^2 in few (2-3) dimensions
 - \blacksquare finds scores for row (x_{im}) and column (y_{jm}) categories on these dimensions
 - uses Singular Value Decomposition of residuals from independence, $d_{ij} = (n_{ij} \hat{m}_{ij}) / \sqrt{\hat{m}_{ij}}$

$$\frac{d_{ij}}{\sqrt{n}} = \sum_{m=1}^{M} \lambda_m \, x_{im} \, y_{jm}$$

- optimal scaling: each pair of scores, x_{im}) and column (y_{jm}) , have highest possible correlation $(=\lambda_m)$.
- lacktriangle plots of the row (x_{im}) and column (y_{jm}) scores show associations
- MCA: Extends CA to n-way tables, but only uses bivariate associations (like mosaic matrix)

122

SCS Short Course 120 (© Michael Friendly

SCS Short Course

PROC CORRESP and the CORRESP macro

■ PROC CORRESP

- Handles 2-way CA, extensions to n-way tables, and MCA
- Many options for scaling row/column coordinates and output statistics
- OUTC= option → output dataset for plotting (PROC CORRESP doesn't do plots itself)

CORRESP macro

- Uses PROC CORRESP for analysis
- Produces labeled plots of the category points in either 2 or 3 dimensions
- Many graphic options; can equate axes automatically
- See: http://www.math.yorku.ca/vcd/corresp.html

SCS Short Course

123

© Michael Friendly

SCS Short Course

125

© Michael Friendly

Categorical Data Analysis with Graphics

corresp

corresp

Categorical Data Analysis with Graphics

PROC CORRESP and the CORRESP macro

■ Two forms of input dataset:

■ Dim 1: 89.4% of χ^2 (dark \leftrightarrow light) ■ Dim 2: 9.5% of χ^2 (RED/Green vs. others)

■ dataset in *contingency table* form – column variables are levels of one factor, observations (rows) are levels of the other.

0bs	Eye	BLACK	BROWN	RED	BLOND
1	Brown	68	119	26	7
2	Blue	20	84	17	94
3	Hazel	15	54	14	10
4	Green	5	29	14	16

Raw category responses (case form), or cell frequencies (frequency form), classified by 2 or more factors (e.g., output from PROC FREQ)

0bs	Eye	HAIR	Count
1	Brown	BLACK	68
2	Brown	BROWN	119
3	Brown	RED	26
4	Brown	BLOND	7
15	Green	RED	14
16	Green	BLOND	16

Example: Hair and Eye Color

Input the data in contingency table form

```
corresp2a.sas
data haireye;
 input EYE $ BLACK BROWN RED BLOND ;
  datalines;
        Brown
                 68
                      119
                              26
                                     7
                 20
                        84
                              17
                                    94
        Blue
                                    10
        Hazel
                 15
                        54
                              14
                        29
                              14
                                    16
        Green
```

SCS Short Course 124

© Michael Friendly

SCS Short Course

126

Example: Hair and Eye Color

■ Using PROC CORRESP directly— labeled printer plot

```
proc corresp data=haireye outc=coord short;
                                  /* row variable */
 var black brown red blond;
                                 /* col variables */
proc plot data=coord vtoh=2;
                                 /* plot step
 plot dim2 * dim1 = '*' $eye
  / box haxis=by .1 vaxis=by .1; /* plot options */
```

■ Using the CORRESP macro— labeled high-res plot

```
%corresp (data=haireye,
   id=eye,
                                /* row variable */
    var=black brown red blond, /* col variables */
    dimlab=Dim);
                                /* options
```

Example: Hair and Eye Color

Output dataset(selected variables):

```
_TYPE_
                    EYE
                              DIM1
                                           DIM2
Obs
       INERTIA
                  Brown
2
       OBS
                            -0.49216
                                         -0.08832
3
4
5
       OBS
                  Blue
                             0.54741
                                         -0.08295
       OBS
                            -0.21260
                                         0.16739
                  Hazel
       OBS
                  Green
                             0.16175
                                         0.33904
6
       VAR
                            -0.50456
                                         -0.21482
                  BLACK
       VAR.
                  BROWN
                            -0.14825
                                         0.03267
8
       VAR
                  RED
                            -0.12952
                                         0.31964
9
                  BLOND
                             0.83535
                                         -0.06958
```

Row and column points are distinguished by the _TYPE_ variable: OBS vs. VAR

SCS Short Course

127

© Michael Friendly

SCS Short Course

129

© Michael Friendly

Categorical Data Analysis with Graphics

corresp

corresp

Categorical Data Analysis with Graphics

Example: Hair and Eye Color

Printed output:

```
The Correspondence Analysis Procedure
             Inertia and Chi-Square Decomposition
Singular Principal Chi-
Values
         Inertias Squares Percents 18 36 54 72 90
0.45692
         0.20877
                   123.593 89.37% ****************
                            9.51% ***
0.14909
         0.02223
                    13.158
0.05097
         0.00260
                     1.538
                            1.11%
         0.23360
                    138.29 (Degrees of Freedom = 9)
                       Row Coordinates
                             Dim1
                                           Dim2
                         -.492158
                                       -.088322
              Brown
              Blue
                         0.547414
                                       -.082954
                         -.212597
                                       0.167391
              Hazel
              Green
                         0.161753
                                       0.339040
                      Column Coordinates
                             Dim1
                                           Dim2
              BLACK
                         -.504562
                                       -.214820
              BROWN
                                       0.032666
                         -.148253
              RED
                         -.129523
                                       0.319642
              BLOND
                         0.835348
                                       -.069579
```

Example: Hair and Eye Color

Graphic output from CORRESP macro:

■ Top legend produced with Annotate data set and the INANNO= option to the **CORRESP** macro

130

128 SCS Short Course

(C) Michael Friendly

SCS Short Course

(C) Michael Friendly

Multi-way tables

- Stacking approach: van der Heijden and de Leeuw (1985)—
 - \blacksquare three-way table, of size $I \times J \times K$ can be sliced and stacked as a two-way table, of size $(I \times J) \times K$

- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
- $(I \times J) \times K \rightarrow [AB][C]$
- $I \times (J \times K) \rightarrow [A][BC]$
- $J \times (I \times K) \rightarrow [B][AC]$

131

(C) Michael Friendly

Example: Suicide Rates

Suicide rates in West Germany, by Age, Sex and Method of suicide

Sex	Age	POISON	GAS	HANG	DROWN	GUN	JUMP	
M M M M	10-20 25-35 40-50 55-65 70-90	1160 2823 2465 1531 938	335 883 625 201 45	1524 2751 3936 3581 2948	67 213 247 207 212	512 852 875 477 229	189 366 244 273 268	
F F F F	10-20 25-35 40-50 55-65 70-90	921 1672 2224 2283 1548	40 113 91 45 29	212 575 1481 2014 1355	30 139 354 679 501	25 64 52 29 3	131 276 327 388 383	

- CA of the [Age Sex] by [Method] table:
 - Shows associations between the Age-Sex combinations and Method
 - Ignores association between Age and Sex

SCS Short Course

SCS Short Course

(C) Michael Friendly

Categorical Data Analysis with Graphics

corresp

Categorical Data Analysis with Graphics

Multi-way tables: Stacking

■ PROC CORRESP: Use TABLES statement and option CROSS=ROW or CROSS=COL. E.g., for model [A B] [C],

```
proc corresp cross=row;
   tables A B, C;
   weight count;
```

■ CORRESP macro: Can use / instead of ,

```
%corresp(
   options=cross=row,
   tables=A B/C,
   weight count);
```

Example: Suicide Rates

133

```
suicide5.sas ···
%include catdata(suicide);
    *-- equate axes!;
axis1 order=(-.7 \text{ to } .7 \text{ by } .7) \text{ length=}6.5 \text{ in label=}(a=90 \text{ r=}0);
axis2 order=(-.7 \text{ to } .7 \text{ by } .7) length=6.5 \text{ in};
%corresp(data=suicide, weight=count,
     tables=%str(age sex, method),
     options=cross=row short,
     vaxis=axis1, haxis=axis2);
```

Output:

```
Inertia and Chi-Square Decomposition
Singular Principal Chi-
        Inertias Squares Percents 12 24
Values
0.32138
        0.10328
                  5056.91 60.41% ***************
0.23736
        0.05634
                  2758.41 32.95% *********
0.09378
        0.00879
                  430.55 5.14% **
0.04171
        0.00174
                   85.17 1.02%
0.02867
        0.00082
                   40.24
                          0.48%
        0.17098
                  8371.28 (Degrees of Freedom = 45)
```


