
An introduction to R Graphics
4. ggplot2

Michael Friendly
SCS Short Course

March, 2017

http://www.datavis.ca/courses/RGraphics/

Resources: Books

2

Hadley Wickham, ggplot2: Elegant graphics for data analysis, 2nd Ed.
1st Ed: Online, http://ggplot2.org/book/
ggplot2 Quick Reference: http://sape.inf.usi.ch/quick-reference/ggplot2/
Complete ggplot2 documentation: http://docs.ggplot2.org/current/

Winston Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data
Cookbook format, covering common graphing tasks; the main focus is on ggplot2
R code from book: http://www.cookbook-r.com/Graphs/
Download from: http://ase.tufts.edu/bugs/guide/assets/R%20Graphics%20Cookbook.pdf

Antony Unwin, Graphical Data Analysis with R
R code: http://www.gradaanwr.net/

Resources: Cheat sheets

• Data visualization with ggplot2:
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-
cheatsheet-2.1.pdf

• Data transformation with dplyr:
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-
transformation-cheatsheet.pdf

3

What is ggplot2?

• ggplot2 is Hadley Wickham’s R package for
producing “elegant graphics for data analysis”

It is an implementation of many of the ideas for graphics
introduced in Lee Wilkinson’s Grammar of Graphics
These ideas and the syntax of ggplot2 help to think of
graphs in a new and more general way
Produces pleasing plots, taking care of many of the fiddly
details (legends, axes, colors, …)
It is built upon the “grid” graphics system
It is open software, with a large number of gg_ extensions.
See: http://www.ggplot2-exts.org/gallery/

4

ggplot2 vs base graphics

5

Some things that should be simple
are harder than you’d like in base
graphics

Here, I’m plotting gas mileage (mpg)
vs. horsepower and want to use
color and shape for different # of
cylinders.

But I don’t quite get it right!

mtcars$cyl <- as.factor(mtcars$cyl)
plot(mpg ~ hp , data=mtcars,
 col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2)
legend("topright", legend=levels(mtcars$cyl),
 pch = c(4,6,8),
 col=levels(mtcars$cyl))

colors and point symbols work
differently in plot() and legend()

ggplot2 vs base graphics

6

In ggplot2, just map the data variables
to aesthetic attributes
 aes(x, y, shape, color, size, …)

ggplot() takes care of the rest

library(ggplot2)
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3)

aes() mappings set in the call to
ggplot() are passed to geom_point()
here

Grammar of Graphics

• Every graph can be described as a combination of
independent building blocks:

data: a data frame: quantitative, categorical; local or data base query
aesthetic mapping of variables into visual properties: size, color, x, y
geometric objects (“geom”): points, lines, areas, arrows, …
coordinate system (“coord”): Cartesian, log, polar, map,

7

ggplot2: data + geom -> graph

8

ggplot(data=mtcars,
 aes(x=hp, y=mpg,
 color=cyl, shape=cyl)) +
 geom_point(size=3)

In this call,
• data=mtcars: data frame
• aes(x=hp, y=mpg): plot variables
• aes(color, shape): attributes
• geom_point(): what to plot
• the coordinate system is taken to

be the standard Cartesian (x,y)

ggplot2: geoms

9

Wow! I can really see something there.

How can I enhance this visualization?

Easy: add a geom_smooth() to fit linear
regressions for each level of cyl

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3) +
 geom_smooth(method="lm", aes(fill=cyl))

Grammar of Graphics

• Other GoG building blocks:
statistical transformations (“stat”) -- data summaries:
mean, sd, binning & counting, …
scales: legends, axes to allow reading data from a plot

10

Grammar of Graphics

• Other GoG building blocks:
position adjustments: jitter, dodge, stack, …
faceting: small multiples or conditioning to break a plot
into subsets.

11

ggplot2: GoG -> graphic language

• The implementation of GoG ideas in ggplot2 for R
created a more expressive language for data graphs

layers: graph elements combined with “+” (read: “and”)

themes: change graphic elements consistently

12

ggplot(mtcars, aes(x=hp, y=mpg)) +
 geom_point(aes(color = cyl)) +
 geom_smooth(method ="lm") +

ggplot2: layers & aes()

13

ggplot(mtcars, aes(x=hp, y=mpg)) +
 geom_point(size=3, aes(color=cyl, shape=cyl)) +
 geom_smooth(method="loess", color="black", se=FALSE) +
 geom_smooth(method="lm", aes(color=cyl, fill=cyl))

Aesthetic attributes in the ggplot() call are
passed to geom_() layers

Other attributes can be passed as
constants (size=3, color=“black”) or
with aes(color=, …) in different layers

This plot adds an overall loess smooth to
the previous plot

ggplot2: themes

14

All the graphical attributes of ggplot2 are
governed by themes – settings for all
aspects of a plot

A given plot can be rendered quite
differently just by changing the theme

If you haven’t saved the ggplot object,
last_plot() gives you something to work
with further

 last_plot() + theme_bw()

ggplot2: facets

15

plt <-
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +

geom_point(size=3) +
geom_smooth(method="lm", aes(fill=cyl))

plt + facet_wrap(~gear)

Facets divide a plot into separate subplots based on one or more discrete variables

ggplot2: coords

16

Coordinate systems, coord_*() functions, handle conversion from geometric objects
to what you see on a 2D plot.
A pie chart is just a bar chart in polar coordinates!

p <- ggplot(df, aes(x = "", y = value, fill = group)) +
 geom_bar(stat = "identity")

p + coord_polar("y", start = 0)

Anatomy of a ggplot

17

Other details of ggplot
concern scales
You can control
everything

ggplot objects

18

Traditional R graphics just produce graphical output on a device
However, ggplot() produces a “ggplot” object, a list of elements

> names(plt)
[1] "data" "layers" "scales" "mapping" "theme" "coordinates"
[7] "facet" "plot_env" "labels"
> class(plt)
[1] "gg" "ggplot"

What methods are available?

> methods(class="gg")
[1] +

> methods(class="ggplot")
[1] grid.draw plot print summary

Playfair: Balance of trade charts

19

In the Commercial and Political Atlas, William Playfair used charts of imports and
exports from England to its trading partners to ask “How are we doing”?

Here is a re-creation of one example, using ggplot2. How was it done?

> data(EastIndiesTrade,package="GDAdata")
> head(EastIndiesTrade)
Year Exports Imports

1 1700 180 460
2 1701 170 480
3 1702 160 490
4 1703 150 500
5 1704 145 510
6 1705 140 525

… … …

ggplot thinking

20

I want to plot two time series, & fill the area between them

Start with a line plot of Exports vs. Year: geom_line()
Add a layer for the line plot of Imports vs. Year

c1 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports)) +
 ylim(0,2000) +
 geom_line(colour="black", size=2) +
 geom_line(aes(x=Year, y=Imports), colour="red", size=2)

Fill the area between the curves: geom_ribbon()
change the Y label

c1 <- c1 +
 geom_ribbon(aes(ymin=Exports, ymax=Imports), fill="pink") +
 ylab("Exports and Imports")

21 21

c1 <- c1 +
 annotate("text", x = 1710, y = 0, label = "Exports", size=4) +
 annotate("text", x = 1770, y = 1620, label = "Imports", color="red", size=4) +
 annotate("text", x = 1732, y = 1950, label = "Balance of Trade to the East Indies", color="black", size=5)

That looks pretty good. Add some text labels using annotate()

Finally, change the theme to b/w

c1 <- c1 + theme_bw()

Plot what you want to show

22

Playfair’s goal was to show the balance of trade with different countries.
Why not plot Exports – Imports directly?

c2 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports-Imports)) +

geom_line(colour="red", size=2) +
ylab("Balance = Exports - Imports") +
geom_ribbon(aes(ymin=Exports-Imports, ymax=0), fill="pink",alpha=0.5) +
annotate("text", x = 1710, y = -30, label = "Our Deficit", color="black", size=5) +
theme_bw()

Composing several plots

23

ggplot objects use grid graphics for rendering
The gridExtra package has functions for combining or manipulating grid-based graphs

library(gridExtra)
grid.arrange(c1, c2, nrow=1)

Saving plots: ggsave()

• If the plot is on the screen

 ggsave(“path/filename.png”)

• If you have a plot object

 ggsave(myplot, file=“path/filename.png”)

• Specify size:

 ggsave(myplot, “path/filename.png”, width=6, height=4)

• any plot format (pdf, png, eps, svg, jpg, …)
 ggsave(myplot, file=“path/filename.jpg”)
 ggsave(myplot, file=“path/filename.pdf”)

24

Faceting & tidy data

25

Recall the lattice example plotting solar
radiation vs. latitude over months of the
year.

This was complicated, because the data
structure was untidy--- months were in
separate variables (wide format)

> str(nasa)
'data.frame': 64800 obs. of 15 variables:
$ Lat: int -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Jan: num 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 ...
$ Feb: num 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
$ Mar: num 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
$ Apr: num 0 0 0 0 0 0 0 0 0 0 ...
$ May: num 0 0 0 0 0 0 0 0 0 0 ...
$ Jun: num 0 0 0 0 0 0 0 0 0 0 ...
$ Jul: num 0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num 0 0 0 0 0 0 0 0 0 0 ...
$ Sep: num 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
$ Oct: num 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 ...
$ Nov: num 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
$ Dec: num 11 11 11 11 11 ...
$ Ann: num 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 ...

tidying the data

26

In wide format, I had to construct a plot formula to plot those columns

> x <- paste(names(nasa)[3:14], collapse='+')
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep='')))
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov +
 Dec ~ cut(Lat, pretty(Lat, 20))

It is much easier to reshape the data to long format, so solar is all in one column

library(tidyr)
library(dplyr)
library(ggplot2)

nasa_long <- nasa %>%
 select(-Ann) %>%
 gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
 filter(abs(Lat) < 60) %>%
 mutate(Lat_f = cut(Lat, pretty(Lat, 12)))

%>% “pipes” data to the next
stage
select() extracts or drops
columns
gather() collapses columns into
key-value pairs
filter() subsets observations
mutate() creates new variables

tidying the data

27

> str(nasa_long)
'data.frame': 514080 obs. of 5 variables:
$ Lat : int -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 ...
$ Lon : int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ month: Factor w/ 12 levels "Jan","Feb","Mar",..: 1 1 1 1 1 1 1 1 1 1 ...
$ solar: num 5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ...
$ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",..: 1 1 1 1 1 1 1 1 1 1 ...

> head(nasa_long)
Lat Lon month solar Lat_f

1 -59 -180 Jan 5.19 (-60,-50]
2 -59 -179 Jan 5.19 (-60,-50]
3 -59 -178 Jan 5.25 (-60,-50]
4 -59 -177 Jan 5.25 (-60,-50]
5 -59 -176 Jan 5.17 (-60,-50]
6 -59 -175 Jan 5.17 (-60,-50]

For ease of plotting, I
created a factor version
of Lat with 12 levels

The data are now in a form
where I can plot solar against Lat
or Lat_f and facet by month

ggplot(nasa_long, aes(x=Lat_f, y=solar)) +
 geom_violin(fill="pink") +
 facet_wrap(~ month) +
 theme_bw() +
 theme(axis.text.x =
 element_text(angle = 70,
 hjust = 1))

plotting the tidy data

28 222222222222222222222222222222222222222888

Using geom_violin() shows the shapes of the distributions for levels of Lat_f

facet_wrap(~month) does the
right thing

I had to adjust the x-axis labels for
Lat_f to avoid overplotting

plotting the tidy data: smoothing

29

ggplot(nasa_long, aes(x=Lat, y=solar)) +
 geom_smooth(color="blue") +
 facet_wrap(~ month) +
 theme_bw()

29

Here we treat Lat as quantitative
geom_smooth() uses method =
“gam” here because of large n

The variation in the smoothed
trends over the year suggest
quite lawful behavior

build a model

30

library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)

Family: gaussian
Link function: identity

Formula:
solar ~ Lon + month + s(Lat)

Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.691e+00 6.833e-03 686.409 < 2e-16 ***
Lon -1.713e-04 1.898e-05 -9.022 < 2e-16 ***
monthFeb 1.195e-01 9.664e-03 12.364 < 2e-16 ***
… …

monthDec -8.046e-02 9.664e-03 -8.326 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df F p-value
s(Lat) 8.997 9 37285 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.398 Deviance explained = 39.8%
GCV = 2.0006 Scale est. = 2.0005 n = 514080

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat)

The violin plots suggest that variance is not
constant. I’m ignoring this here by using the
default gaussian model.

Model terms:
• Lon wasn’t included before
• month is a factor, for the plots
• s(Lat) fits a smoothed term in latitude,

averaged over other factors

There are other model choices, but it is
useful to visualize what we have done so far

visualize the model

31

Effect plots show the fitted relationship between the response and model terms,
averaged over other predictors.
The mgcv package has its own versions of these.

plot(nasa.gam, cex.lab=1.25)
termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)
termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)

why the dip at the equator? effect of longitude is very
small, but maybe
interpretable

month should be modeled
as a time variable

ggplot extensions

32

There are a large number of ggplot extensions. See: http://www.ggplot2-exts.org/

ggplot extensions: ggrepel

33

devtools::install_github("slowkow/ggrepel")
library(ggplot2)
library(ggrepel)
ggplot(mtcars, aes(wt, mpg)) +
 geom_point(color = 'red') +
 geom_text_repel(aes(label = rownames(mtcars))) +
 theme_classic(base_size = 16)

Plotting text labels is often
difficult
ggrepel provides geoms for
ggplot2 to repel overlapping text
labels.

p5 <- ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, frame = year)) +
geom_point() +
geom_smooth(aes(group = year), method = "lm", show.legend = FALSE) +
facet_wrap(~continent, scales = "free") +
scale_x_log10()

gganimate(p5)

ggplot extensions: gganimate

34

gganimate is a wrapper for the animation
package with ggplot2.

It adds a frame= aesthetic, and animates the
image as the frame variable changes

Install from github:
devtools::install_github("dgrtwo/gganimate")

ggthemes

35

+ theme_tufte()

+ theme_economist()

+ theme_fivethirtyeight()

install.packages('ggthemes', dependencies = TRUE)

ggthemes provides a large number of extra
geoms, scales, and themes for ggplot

Tables in R
• Not a ggplot topic, but it is useful to know that you can also

produce beautiful tables in R
• There are many packages for this: See the CRAN Task View on

Reproducible Research, https://cran.r-
project.org/web/views/ReproducibleResearch.html

xtable: Exports tables to LaTeX or HTML, with lots of control
stargazer: Well-formatted model summary tables, side-by-side
apaStyle: Generate APA Tables for MS Word

36

Tables in R: xtable

37

Just a few examples, stolen from xtable: vignette(“xtableGallery.pdf”)

Too many decimals are
used here, but you can
control all that

