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Hadley Wickham, ggplot2: Elegant graphics for data analysis, 2nd Ed. 
1st Ed: Online, http://ggplot2.org/book/  
ggplot2 Quick Reference: http://sape.inf.usi.ch/quick-reference/ggplot2/  
Complete ggplot2 documentation: http://docs.ggplot2.org/current/  

Winston Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data 
Cookbook format, covering common graphing tasks; the main focus is on ggplot2 
R code from book: http://www.cookbook-r.com/Graphs/  
Download from: http://ase.tufts.edu/bugs/guide/assets/R%20Graphics%20Cookbook.pdf  

Antony Unwin, Graphical Data Analysis with R 
R code: http://www.gradaanwr.net/  

Resources: Cheat sheets 

• Data visualization with ggplot2: 
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-
cheatsheet-2.1.pdf  

• Data transformation with dplyr: 
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-
transformation-cheatsheet.pdf  
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What is ggplot2? 

• ggplot2 is Hadley Wickham’s R package for 
producing “elegant graphics for data analysis” 

It is an implementation of many of the ideas for graphics 
introduced in Lee Wilkinson’s Grammar of Graphics 
These ideas and the syntax of ggplot2 help to think of 
graphs in a new and more general way 
Produces pleasing plots, taking care of many of the fiddly 
details (legends, axes, colors, …) 
It is built upon the “grid” graphics system
It is open software, with a large number of gg_ extensions. 
See: http://www.ggplot2-exts.org/gallery/  
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ggplot2 vs base graphics 
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Some things that should be simple 
are harder than you’d like in base 
graphics 
 
Here, I’m plotting gas mileage (mpg) 
vs. horsepower and want to use 
color and shape for different # of 
cylinders. 
 
But I don’t quite get it right! 

mtcars$cyl <- as.factor(mtcars$cyl)
plot(mpg ~ hp , data=mtcars,
       col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2)
legend("topright", legend=levels(mtcars$cyl),
              pch = c(4,6,8),
             col=levels(mtcars$cyl))

colors and point symbols work 
differently in plot() and legend()

ggplot2 vs base graphics 
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In ggplot2, just map the data variables 
to aesthetic attributes
  aes(x, y, shape, color, size, …) 
 
ggplot() takes care of the rest 

library(ggplot2)
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
     geom_point(size=3)

aes() mappings set in the call to 
ggplot() are passed to geom_point() 
here 

Grammar of Graphics 

• Every graph can be described as a combination of 
independent building blocks: 

data: a data frame: quantitative, categorical; local or data base query 
aesthetic mapping of variables into visual properties: size, color, x, y 
geometric objects (“geom”): points, lines, areas, arrows, … 
coordinate system (“coord”): Cartesian, log, polar, map,  
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ggplot2: data + geom -> graph 
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ggplot(data=mtcars,
           aes(x=hp, y=mpg, 
                  color=cyl, shape=cyl)) +
     geom_point(size=3)

In this call, 
• data=mtcars: data frame
• aes(x=hp, y=mpg):  plot variables 
• aes(color, shape):  attributes 
• geom_point(): what to plot 
• the coordinate system is taken to 

be the standard Cartesian (x,y)



ggplot2: geoms 
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Wow! I can really see something there. 

How can I enhance this visualization? 
 
Easy:  add a geom_smooth() to fit linear 
regressions for each level of cyl 

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
    geom_point(size=3) +
    geom_smooth(method="lm", aes(fill=cyl))

Grammar of Graphics 

• Other GoG building blocks: 
statistical transformations (“stat”) -- data summaries: 
mean, sd, binning & counting, … 
scales: legends, axes to allow reading data from a plot 
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Grammar of Graphics 

• Other GoG building blocks: 
position adjustments: jitter, dodge, stack, … 
faceting: small multiples or conditioning to break a plot 
into subsets. 
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ggplot2: GoG -> graphic language 

• The implementation of GoG ideas in ggplot2 for R 
created a more expressive language for data graphs 

layers:  graph elements combined with “+” (read: “and”)
 
 
 
themes: change graphic elements consistently 
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ggplot(mtcars, aes(x=hp,  y=mpg)) +
     geom_point(aes(color = cyl)) +
     geom_smooth(method ="lm") +



ggplot2: layers & aes() 
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ggplot(mtcars, aes(x=hp, y=mpg)) +
    geom_point(size=3, aes(color=cyl, shape=cyl)) +
    geom_smooth(method="loess", color="black", se=FALSE) +
    geom_smooth(method="lm", aes(color=cyl, fill=cyl))

Aesthetic attributes in the ggplot() call are 
passed to geom_() layers 
 
Other attributes can be passed as 
constants (size=3, color=“black”) or 
with aes(color=, …) in different layers 
 
This plot adds an overall loess smooth to 
the previous plot 

ggplot2: themes 
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All the graphical attributes of ggplot2 are 
governed by themes – settings for all 
aspects of a plot 
 
A given plot can be rendered quite 
differently just by changing the theme 
 
If you haven’t saved the ggplot object, 
last_plot() gives you something to work 
with further 

 last_plot() + theme_bw() 

ggplot2: facets 
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plt <-
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +

geom_point(size=3) +
geom_smooth(method="lm", aes(fill=cyl))

plt + facet_wrap(~gear)

Facets divide a plot into separate subplots based on one or more discrete variables 

ggplot2: coords 
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Coordinate systems, coord_*() functions,  handle conversion from geometric objects 
to what you see on a 2D plot. 
A pie chart is just a bar chart in polar coordinates! 

p <- ggplot(df, aes(x = "", y = value, fill = group)) +
         geom_bar( stat = "identity")

p + coord_polar("y", start = 0) 



Anatomy of a ggplot 
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Other details of ggplot 
concern scales 
You can control 
everything 

ggplot objects 
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Traditional R graphics just produce graphical output on a device 
However, ggplot() produces a “ggplot” object, a list of elements  

> names(plt)
[1] "data"        "layers"      "scales"      "mapping"     "theme"       "coordinates"
[7] "facet"       "plot_env"    "labels"     
> class(plt)
[1] "gg"     "ggplot"

What methods are available? 

> methods(class="gg")
[1] +

> methods(class="ggplot")
[1] grid.draw     plot      print     summary  

Playfair: Balance of trade charts 
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In the Commercial and Political Atlas, William Playfair used charts of imports and 
exports from England to its trading partners to ask “How are we doing”?
 
Here is a re-creation of one example, using ggplot2.  How was it done? 

> data(EastIndiesTrade,package="GDAdata")
> head(EastIndiesTrade)
Year Exports Imports

1 1700     180     460
2 1701     170     480
3 1702     160     490
4 1703     150     500
5 1704     145     510
6 1705     140     525

…         …       …

ggplot thinking 
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I want to plot two time series, & fill the area between them 

Start with a line plot of Exports vs. Year: geom_line() 
Add a layer for the line plot of Imports vs. Year 

c1 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports)) + 
             ylim(0,2000) + 
             geom_line(colour="black", size=2) + 
             geom_line(aes(x=Year, y=Imports), colour="red", size=2) 

Fill the area between the curves: geom_ribbon() 
change the Y label

c1 <- c1 +
    geom_ribbon(aes(ymin=Exports, ymax=Imports), fill="pink") +
     ylab("Exports and Imports") 
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c1 <- c1 + 
       annotate("text", x = 1710, y = 0, label = "Exports", size=4) +
      annotate("text", x = 1770, y = 1620, label = "Imports", color="red", size=4) +
       annotate("text", x = 1732, y = 1950, label = "Balance of Trade to the East Indies", color="black", size=5)             

That looks pretty good.  Add some text labels using annotate() 

Finally, change the theme to b/w 

c1 <- c1 + theme_bw()

Plot what you want to show 

22 

Playfair’s goal was to show the balance of trade with different countries. 
Why not plot Exports – Imports directly?

c2 <-
ggplot(EastIndiesTrade, aes(x=Year, y=Exports-Imports)) + 

geom_line(colour="red", size=2) +
ylab("Balance = Exports - Imports") +
geom_ribbon(aes(ymin=Exports-Imports, ymax=0), fill="pink",alpha=0.5) + 
annotate("text", x = 1710, y = -30, label = "Our Deficit", color="black", size=5) +             
theme_bw()

Composing several plots 
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ggplot objects use grid graphics for rendering
The gridExtra package has functions for combining or manipulating grid-based graphs 

library(gridExtra) 
grid.arrange(c1, c2, nrow=1)

Saving plots: ggsave() 

• If the plot is on the screen 

 ggsave(“path/filename.png”) 

• If you have a plot object 

 ggsave(myplot, file=“path/filename.png”) 

• Specify size: 

  ggsave(myplot, “path/filename.png”, width=6, height=4) 

• any plot format (pdf, png, eps, svg, jpg, …) 
 ggsave(myplot, file=“path/filename.jpg”) 
 ggsave(myplot, file=“path/filename.pdf”) 
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Faceting & tidy data 
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Recall the lattice example plotting solar 
radiation vs. latitude over months of the 
year. 
 
This was complicated, because the data 
structure was untidy--- months were in 
separate variables (wide format) 

> str(nasa)
'data.frame':   64800 obs. of  15 variables:
$ Lat: int  -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
$ Lon: int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Jan: num  9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 ...
$ Feb: num  5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
$ Mar: num  0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
$ Apr: num  0 0 0 0 0 0 0 0 0 0 ...
$ May: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jun: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jul: num  0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num  0 0 0 0 0 0 0 0 0 0 ...
$ Sep: num  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
$ Oct: num  3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 ...
$ Nov: num  8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
$ Dec: num  11 11 11 11 11 ...
$ Ann: num  3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 ...

tidying the data 
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In wide format, I had to construct a plot formula to plot those columns 

> x <- paste(names(nasa)[3:14], collapse='+')
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep='')))
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov + 
    Dec ~ cut(Lat, pretty(Lat, 20))

It is much easier to reshape the data to long format, so solar is all in one column 

library(tidyr)
library(dplyr)
library(ggplot2)

nasa_long <- nasa %>%
    select(-Ann) %>%
    gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
    filter( abs(Lat) < 60 ) %>%
    mutate( Lat_f = cut(Lat, pretty(Lat, 12)))

%>% “pipes” data to the next 
stage 
select() extracts or drops 
columns 
gather() collapses columns into 
key-value pairs 
filter() subsets observations 
mutate() creates new variables 

tidying the data 
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> str(nasa_long)
'data.frame':   514080 obs. of  5 variables:
$ Lat : int -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 ...
$ Lon  : int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ month: Factor w/ 12 levels "Jan","Feb","Mar",..: 1 1 1 1 1 1 1 1 1 1 ...
$ solar: num  5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ...
$ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",..: 1 1 1 1 1 1 1 1 1 1 ...

> head(nasa_long)
Lat Lon month solar     Lat_f

1 -59 -180   Jan  5.19 (-60,-50]
2 -59 -179   Jan  5.19 (-60,-50]
3 -59 -178   Jan  5.25 (-60,-50]
4 -59 -177   Jan  5.25 (-60,-50]
5 -59 -176   Jan  5.17 (-60,-50]
6 -59 -175   Jan  5.17 (-60,-50]
 

For ease of plotting, I 
created a factor version 
of Lat with 12 levels 

The data are now in a form 
where I can plot solar against Lat 
or Lat_f and facet by month 

ggplot(nasa_long, aes(x=Lat_f, y=solar)) + 
    geom_violin(fill="pink") +  
    facet_wrap(~ month) + 
    theme_bw() + 
    theme(axis.text.x =  
              element_text(angle = 70,  
                                      hjust = 1)) 

plotting the tidy data 
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Using geom_violin() shows the shapes of the distributions for levels of Lat_f 

facet_wrap(~month) does the 
right thing 
 
I had to adjust the x-axis labels for 
Lat_f to avoid overplotting 



plotting the tidy data: smoothing 
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ggplot(nasa_long, aes(x=Lat, y=solar)) +
    geom_smooth(color="blue" ) +
    facet_wrap(~ month) +
    theme_bw()
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Here we treat Lat as quantitative 
geom_smooth() uses method = 
“gam” here because of large n 
 
The variation in the smoothed 
trends over the year suggest 
quite lawful behavior 

build a model 
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library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)

Family: gaussian
Link function: identity 

Formula:
solar ~ Lon + month + s(Lat)

Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.691e+00  6.833e-03 686.409  < 2e-16 ***
Lon         -1.713e-04  1.898e-05  -9.022  < 2e-16 ***
monthFeb     1.195e-01  9.664e-03  12.364  < 2e-16 ***
…            …

monthDec    -8.046e-02  9.664e-03  -8.326  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
         edf Ref.df     F p-value    
s(Lat) 8.997      9 37285  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.398   Deviance explained = 39.8%
GCV = 2.0006  Scale est. = 2.0005    n = 514080

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat) 

The violin plots suggest that variance is not 
constant. I’m ignoring this here by using the 
default gaussian model.   
 
Model terms: 
• Lon wasn’t included before 
• month is a factor, for the plots 
• s(Lat) fits a smoothed term in latitude, 

averaged over other factors 
 
There are other model choices, but it is 
useful to visualize what we have done so far 

visualize the model 
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Effect plots show the fitted relationship between the response and model terms, 
averaged over other predictors.
The mgcv package has its own versions of these. 

plot(nasa.gam, cex.lab=1.25)
termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)
termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)

why the dip at the equator? effect of longitude is very 
small, but maybe 
interpretable 

month should be modeled 
as a time variable 

ggplot extensions 
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There are a large number of ggplot extensions.  See: http://www.ggplot2-exts.org/  



ggplot extensions: ggrepel 
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devtools::install_github("slowkow/ggrepel")
library(ggplot2)
library(ggrepel)
ggplot(mtcars, aes(wt, mpg)) + 
   geom_point(color = 'red') + 
   geom_text_repel(aes(label = rownames(mtcars))) + 
   theme_classic(base_size = 16)

Plotting text labels is often 
difficult 
ggrepel provides geoms for 
ggplot2 to repel overlapping text 
labels. 

p5 <- ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, frame = year)) +
geom_point() +
geom_smooth(aes(group = year), method = "lm", show.legend = FALSE) +
facet_wrap(~continent, scales = "free") +
scale_x_log10()

gganimate(p5)

ggplot extensions: gganimate 
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gganimate is a wrapper for the animation 
package with ggplot2.
 
It adds a frame= aesthetic, and animates the 
image as the frame variable changes 
 
Install from github: 
devtools::install_github("dgrtwo/gganimate") 

ggthemes 
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+ theme_tufte()  

+ theme_economist()  

+ theme_fivethirtyeight()  

install.packages('ggthemes', dependencies = TRUE)

ggthemes provides a large number of extra 
geoms, scales, and themes for ggplot 

Tables in R 
• Not a ggplot topic, but it is useful to know that you can also 

produce beautiful tables in R 
• There are many packages for this: See the CRAN Task View on 

Reproducible Research, https://cran.r-
project.org/web/views/ReproducibleResearch.html

xtable: Exports tables to LaTeX or HTML, with lots of control 
stargazer: Well-formatted model summary tables, side-by-side 
apaStyle: Generate APA Tables for MS Word 
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Tables in R: xtable 
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Just a few examples, stolen from xtable: vignette(“xtableGallery.pdf”) 

Too many decimals are 
used here, but you can 
control all that 


