Confirmatory Factor Analysis & Structural Equation Models
Lecture 1: Overview & Path Analysis

Michael Friendly

SCS Short Course, May, 2019
Course overview

Course notes & other materials will be available at:
http://datavis.ca/courses/CFA-SEM

- **Lecture 1: Setting the stage: EFA, CFA, SEM, Path analysis**
 - Goal: Understand relations among a large number of observed variables
 - Goal: Extend regression methods to (a) multiple outcomes, (b) latent variables, (c) accounting for measurement error or unreliability
 - Thinking: Equations \rightarrow Path diagram \rightarrow estimate, test, visualize

- **Lecture 2: Measurement models & CFA**
 - Effects of measurement error
 - Testing equivalence of measures with CFA
 - Multi-factor, higher-order models

- **Lecture 3: SEM with latent variables**
Overview

EFA, CFA, SEM?

Exploratory Factor Analysis (EFA)

- Method for “explaining” correlations of observed variables in terms of a small number of “common factors”
- Primary Q: How many factors are needed?
- Secondary Q: How to interpret the factors?

Three-factor EFA model. Each variable loads on all factors. The factors are assumed to be uncorrelated.
EFA, CFA, SEM?

Confirmatory Factor Analysis (CFA)
- Method for testing hypotheses about relationships among observed variables
- Does this by imposing restrictions on an EFA model
- Q: Do the variables have a given factor structure?
- Q: How to compare competing models?

Two-factor CFA model with non-overlapping factors
The factors are allowed to be correlated, as are two unique factors
EFA, CFA, SEM?

Structural Equation Models (SEM)

- Generalizes EFA, CFA to include
 - Simple and multiple regression
 - General linear model (Anova, multivariate regression, ...)
 - Path analysis — several simultaneous regression models
 - Higher-order CFA models
 - Multi-sample CFA models (“factorial invariance”)
 - Latent growth/trajectory models
 - Many more ...

- A general framework for describing, estimating and testing linear statistical models
Recall basic EFA ideas

- Observed variables, x_1, x_2, \ldots, x_p is considered to arise as a set of regressions on some unobserved, latent variables called common factors, $\xi_1, \xi_2, \ldots, \xi_k$.
- That is, each variable can be expressed as a regression on the common factors. For three variables and one common factor, ξ, the model is:

 $x_1 = \lambda_1 \xi + z_1$
 $x_2 = \lambda_2 \xi + z_2$
 $x_3 = \lambda_3 \xi + z_3$

- The common factors account for correlations among the xs.
- The z_i are error terms, or unique factors.
The EFA model

- For k common factors, the common factor model is

$$
\begin{align*}
x_1 &= \lambda_{11} \xi_1 + \cdots + \lambda_{1k} + z_1 \\
x_2 &= \lambda_{21} \xi_1 + \cdots + \lambda_{2k} + z_2 \\
 &\vdots \\
x_p &= \lambda_{p1} \xi_1 + \cdots + \lambda_{pk} + z_p
\end{align*}
$$

$$
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_p
\end{bmatrix}
=
\begin{bmatrix}
\lambda_{11} & \cdots & \lambda_{1k} \\
\lambda_{21} & \cdots & \lambda_{2k} \\
\vdots & \ddots & \vdots \\
\lambda_{p1} & \cdots & \lambda_{pk}
\end{bmatrix}
\begin{bmatrix}
\xi_1 \\
\xi_2 \\
\vdots \\
\xi_k
\end{bmatrix}
+
\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_p
\end{bmatrix}
$$

- This looks like a set of multiple regression models for the xs, but it is not testable, because the factors, ξ, are unobserved
The EFA model

However, the EFA model implies a particular form for the variance-covariance matrix, Σ, which is testable

$$x = \Lambda \xi + z \quad \rightarrow \quad \Sigma = \Lambda \Phi \Lambda^T + \Psi$$

where:

- $\Lambda_{p \times k}$ = factor pattern ("loadings")
- $\Phi_{k \times k}$ = matrix of correlations among factors.
- Ψ = diagonal matrix of unique variances of observed variables.

Typically, it is initially assumed that factors are uncorrelated ($\Phi = I$, the identity matrix)

Can use an oblique rotation to allow correlated factors
Limitations of EFA

- The only true **statistical tests** in EFA are tests for the number of common factors (when estimated by ML)

\[H_0 : k = k_0 \quad k_0 \text{ factors are sufficient} \]
\[H_a : k > k_0 \quad > k_0 \text{ factors are necessary} \]

- **Substantive questions** about the nature of factors can only be addressed approximately through factor rotation methods
 - Varimax & friends attempt rotation to **simple structure**
 - Oblique rotation methods allow factors to be correlated
 - Procrustes rotation allows rotation to a “target” (hypothesized) loading matrix
Overview EFA to CFA

Historical development: EFA → CFA

- ML estimation for the EFA model finds estimates that minimize the difference between the observed covariance matrix, S, and that reproduced by the model, $\hat{\Sigma} = \hat{\Lambda}\hat{\Phi}\hat{\Lambda}^T + \hat{\Psi}$
 - Requires imposing k^2 restrictions for a unique solution
 - Gives a χ^2 test for goodness of fit

$$\frac{(N - 1)F_{\min}(S, \hat{\Sigma})}{\chi^2} \sim \chi^2 \text{ with } df = \left(\frac{(p - k)^2 - p - k}{2}\right)$$

- Joreskog (1969) proposed that a factor hypothesis could be tested by imposing restrictions on the EFA model—fixed elements in Λ, Ψ, usually 0
 - Needs more than k^2 restrictions
 - The ML solution is then found for the remaining free parameters
 - The χ^2 for the restricted solution gives a test for how well the hypothesized factor structure fits.
CFA: Restricted EFA

The pattern below specifies two non-overlapping oblique factors. The x's are the only free parameters.

\[
\Lambda = \begin{bmatrix}
 x & 0 \\
 x & 0 \\
 x & 0 \\
 0 & x \\
 0 & x \\
 0 & x \\
\end{bmatrix}
\]
\[
\Phi = \begin{bmatrix}
 1 \\
 x \\
 1 \\
\end{bmatrix}
\]

- This CFA model has only 7 free parameters and $df = 15 - 7 = 8$.
- A $k = 2$-factor EFA model would have all parameters free and $df = 15 - 11 = 4$ degrees of freedom.
- If this restricted model fits (has a small χ^2/df), it is strong evidence for two non-overlapping oblique factors.
- That hypothesis cannot be tested by EFA + rotation.
Historical development: CFA → SEM

Higher-order factor analysis: The ACOVS model

- With more than a few factors, allowed to be correlated ($\Phi \neq I$), can we factor the factor correlations?
- In EFA, this was done by another EFA of the estimated factor correlations from an oblique rotation
- The second stage of development of CFA/SEM models combined these steps into a single model, and allowed different hypotheses to be compared
Jöreskog (1973) further generalized the ACOVS model to include structural equation models along with CFA.

Two parts:

- **Measurement model** — How the latent variables are measured in terms of the observed variables; measurement properties (reliability, validity) of observed variables. [Traditional factor analysis models]
- **Structural equation model** — Specifies causal relations among observed and latent variables.
 - Endogenous variables - determined within the model (y)
 - Exogenous variables - determined outside the model (x)

Measurement models for observed variables

\[
x = \Lambda_x \xi + \delta\]

\[
y = \Lambda_y \eta + \epsilon\]

Structural eqn. for latent variables

\[
\eta = B\eta + \Gamma \xi + \zeta
\]
LISREL/SEM Model

SEM model for measures of Math Self-Concept and MATH achievement:

This model has:
- 3 observed indicators in a measurement model for MSC (x)
- 2 observed indicators in a measurement model for MATH achievement (y)
- A structural equation predicting MATH achievement from MSC
LISREL/SEM Model

Measurement sub-models for x and y

Structural model, relating ξ to η
CFA/SEM software: LISREL

LISREL (http://www.ssicentral.com/) [student edition available]

- Originally designed as stand-alone program with matrix syntax
- LISREL 8.5+ for Windows/Mac: includes
 - interactive, menu-driven version;
 - PRELIS (pre-processing, correlations and models for categorical variables);
 - SIMPLIS (simplified, linear equation syntax)
 - path diagrams from the fitted model
CFA/SEM software: Amos

- import data from SPSS, Excel, etc; works well with SPSS
- Create the model by drawing a path diagram
- simple facilities for multi-sample analyses
- nice comparative displays of multiple models
SAS: PROC CALIS

- **SAS 9.3+: PROC CALIS**
 - MATRIX (à la LISREL), LINEQS (à la EQS), RAM, ... syntax
 - Now handles multi-sample analyses
 - Multiple-model analysis syntax, e.g., Model 2 is like Model 1 except ...
 - Enhanced output controls
 - Customizable fit summary table

- **SAS macros** [http://datavis.ca/sasmac/]:
 - **caliscmp** macro: compare model fits from PROC CALIS à la Amos
 - **csmpower** macro: power estimation for covariance structure models
R: sem, lavaan and others

- **sem** package (John Fox)
 - flexible ways to specify models: `cfa()`, `linearEquations()`, and `multigroupModel()`
 - `bootSem()` provides bootstrap analysis of SEM models
 - `miSem()` provides multiple imputation
 - path diagrams using `pathDiagram()` → `graphviz`
 - `polychor` package for polychoric correlations

- **lavaan** package (Yves Rossell)
 - Functions `lavaan()`, `cfa()`, `sem()`, `growth()` (growth curve models)
 - Handles multiple groups models
 - `semTools` provides tests of measurement invariance, multiple imputation, bootstrap analysis, power analysis for RMSEA, ...

- **semPlot** package — path diagrams for `sem`, `lavaan`, Mplus, ... models
Mplus

Mplus https://www.statmodel.com/ [$$$, but cheaper student price]

- Handles the widest range of models: CFA, SEM, multi-group, multi-level, latent group
- Variables: continuous, censored, binary, ordered categorical (ordinal), unordered categorical (nominal), counts, or combinations of these variable types
- For binary and categorical outcomes: probit, logistic regression, or multinomial logistic regression models.
- For count outcomes: Poisson and negative binomial regression models.
- Extensive facilities for simulation studies.
Caveats

- CFA and SEM models are fit using the covariance matrix (S)
 - The raw data is often not analyzed
 - Graphs that can reveal potential problems often not made
- Typically, this assumes all variables are complete, continuous, multivariate normal. Implies:
 - S is a sufficient statistical summary
 - Relations assumed to be linear are in fact linear
 - Goodness-of-fit (χ^2) and other tests based on asymptotic theory ($N \rightarrow \infty$)
 - Missing data, skewed or long-tailed variables must be handled first
- Topics not covered here:
 - Using polychoric correlations for categorical indicators
 - Distribution-free estimation methods (still asymptotic)
 - Bootstrap methods to correct for some of the above
 - Multiple imputation to handle missing data
Path diagrams: Symbols

Visual representation of a set of simultaneous equations for EFA, CFA, SEM models (idea from Sewell Wright, 1920s)

- Rectangles and square boxes represent observed (manifest) variables
- Double-headed curved arrows represent unanalyzed association (correlation)

- Ellipses and circles represent unobserved (latent) variables
- Straight, single-headed arrows indicate causal relations from base to head
- Unenclosed symbol is an error term (in equation or measurement error)

- Double single-headed arrows indicate reciprocal causation
- Allows different weights for each path
Path diagrams

Schematic Examples:

CFA, 1-factor model (correlated errors)

SEM, two latent variables, each with two indicators
Causal relation between ξ (Xs) and η (Ys)
Path diagrams

Substantive example: Path analysis model for union sentiment (McDonald & Clelland, 1984)

- No latent variables— all variables are observed indicators
- x_1, x_2 are exogenous variables— they are not explained within the model
- Correlation between x_1, x_2 is shown as a double-headed arrow
- y_1, y_2, y_3 are endogenous variables— they are explained within the model
- Causal relations are shown among the variables by single-headed arrows
- Residual (error) terms, $\zeta_1, \zeta_2, \zeta_3$ are shown as single-headed arrows to the y variables
Path diagrams

Substantive example: SEM with multiple indicators, path model for latent variables (error terms not shown)
Path analysis is a simple special case of SEM
- These models contain only observed (manifest) variables,
- No latent variables
- Assumes that all variables are measured without error
- The only error terms are residuals for y (endogenous) variables

They are comprised of a set of linear regression models, estimated simultaneously
- Traditional approaches using MRA fit a collection of separate models
- Multivariate MRA (MMRA) usually has all y variables predicted by all x variables
- In contrast, SEM path models allow a more general approach, in a single model
Path Analysis: Simple examples

Simple linear regression

\[y_i = \gamma x_i + \zeta_i \]

- \(\gamma \) is the slope coefficient; \(\zeta \) is the residual (error term)
- Means and regression intercepts usually not of interest, and suppressed

Multiple regression

\[y_i = \gamma_1 x_{1i} + \gamma_2 x_{2i} + \zeta_i \]

- Double-headed arrow signifies the assumed correlation between \(x_1 \) & \(x_2 \)
- In univariate MRA (\(y \sim x_1 + \ldots \)), there can be any number of \(x \)s
Path Analysis: Simple examples

Multivariate multiple regression

\[
\begin{align*}
 y_{1i} &= \gamma_{11} x_{1i} + \gamma_{12} x_{2i} + \zeta_{1i} \\
 y_{2i} &= \gamma_{21} x_{2i} + \gamma_{22} x_{2i} + \zeta_{2i}
\end{align*}
\]

- Now need two equations to specify the model
- Note subscripts: \(\gamma_{12} \) is coeff of \(y_1 \) on \(x_2 \); \(\gamma_{21} \) is coeff of \(y_2 \) on \(x_1 \)

With more equations and more variables, easier with vectors/matrices

\[
\begin{pmatrix}
 y_1 \\
 y_2
\end{pmatrix} =
\begin{bmatrix}
 \gamma_{11} & \gamma_{12} \\
 \gamma_{21} & \gamma_{22}
\end{bmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} +
\begin{pmatrix}
 \zeta_1 \\
 \zeta_2
\end{pmatrix}
\text{ or } y = \Gamma x + \zeta
Path Analysis: Simple examples

Simple mediation model

\[
\begin{align*}
y_{1i} &= \gamma_{11} x_i + \zeta_{1i} \\
y_{2i} &= \gamma_{21} x_i + \beta_{21} y_{1i} + \zeta_{2i}
\end{align*}
\]

- Something new: \(y_1\) is a dependent variable in the first equation, but a predictor in the second
- This cannot be done simultaneously via standard MRA or MMRA models

\[
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} =
\begin{bmatrix}
0 & 0 \\
\beta_{21} & 0
\end{bmatrix}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} +
\begin{pmatrix}
\gamma_{11} \\
\gamma_{21}
\end{pmatrix}
\begin{pmatrix}
x
\end{pmatrix} +
\begin{pmatrix}
\zeta_1 \\
\zeta_2
\end{pmatrix}
\]

or

\[
y = By + \Gamma x + \zeta
\]
Exogenous and Endogenous Variables

Exogenous variables
- Are only independent \((x)\) variables in the linear equations
- Never have arrows pointing at them from other variables
- They are determined outside (“ex”) the model
- In path analysis models they are considered measured w/o error

Endogenous variables
- Serves as a dependent variable (outcome) in at least one equation
- If a variable has at least one arrow pointing to it, it is endogenous
- They are determined inside (“en”) the model
- In path analysis models they always have error terms

In the simple mediation model, \(x\) is exogenous, and \(y_1, y_2\) are endogenous
Example: Union sentiment

Norma Rae example—Union sentiment among non-union Southern textile workers (McDonald & Clelland (1984); Bollen (1986))

- Exogenous variables: x_1 (years of work); x_2 (age)
- Endogenous variables: y_1 (deference to managers); y_2 (support for labor activism); y_3 (support for unions)

The hypothesized model is comprised of three linear regressions

\[
\begin{align*}
y_1 &= \gamma_{12} x_2 + \zeta_1 \\
y_2 &= \beta_{21} y_1 + \gamma_{22} x_2 + \zeta_2 \\
y_3 &= \beta_{31} y_1 + \beta_{32} y_2 + \gamma_{31} x_1 + \zeta_3
\end{align*}
\]

These can be expressed as a single matrix equation for the y variables:

\[
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} =
\begin{bmatrix}
0 & 0 & 0 \\
\beta_{21} & 0 & 0 \\
\beta_{31} & \beta_{32} & 0
\end{bmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} +
\begin{bmatrix}
0 & \gamma_{12} \\
0 & 0 & \gamma_{22} \\
\gamma_{31} & 0 & 0
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} +
\begin{pmatrix}
\zeta_1 \\
\zeta_2 \\
\zeta_3
\end{pmatrix}
\]
The general path analysis model

The general form of a SEM path analysis model is expressed in the matrix equation

\[y = B y + \Gamma x + \zeta \]

where:

- \(y \) is a \(p \times 1 \) vector of endogenous variables
- \(x \) is a \(q \times 1 \) vector of exogenous variables
- \(B_{p \times p} \) ("Beta") gives the regression coefficients of endogenous (\(y \)) variables on other endogenous variables
- \(\Gamma_{p \times q} \) ("Gamma") gives the regression coefficients of endogenous variables on the exogenous variables (\(x \))
- \(\zeta_{p \times 1} \) is the vector of errors in the equations (i.e., regression residuals)

However, some parameters in \(B \) and \(\Gamma \) are typically fixed to 0

\[
B = \begin{bmatrix}
0 & 0 & 0 \\
\beta_{21} & 0 & 0 \\
\beta_{31} & \beta_{32} & 0 \\
\end{bmatrix} \quad \Gamma = \begin{bmatrix}
0 & \gamma_{12} \\
0 & \gamma_{22} \\
\gamma_{31} & 0 \\
\end{bmatrix}
\]
The general path analysis model

Other parameters pertain to variances and covariances of the exogenous variables and the error terms

- $\Phi_{q \times q}$ ("Phi")— variance-covariance matrix of the exogenous variables. Typically, these are all free parameters. For the union sentiment example, Φ is a 2×2 matrix:

$$
\Phi = \begin{bmatrix}
\text{var}(x_1) \\
\text{cov}(x_1, x_2) & \text{var}(x_2)
\end{bmatrix}
$$

- $\Psi_{p \times p}$ ("Psi")— variance-covariance matrix of the error terms (ζ). Typically, the error variances are free parameters, but their covariances are fixed to 0 (models can allow correlated errors). For the union sentiment example, Ψ is a 3×3 diagonal matrix:

$$
\Psi = \begin{bmatrix}
\text{var}(\zeta_1) \\
0 & \text{var}(\zeta_2) \\
0 & 0 & \text{var}(\zeta_2)
\end{bmatrix}
$$
Union sentiment: using the sem package

Read the variance-covariance matrix of the variables using `readMoments()`

```r
library(sem)
union <- readMoments(diag=TRUE,
                      names=c('y1', 'y2', 'y3', 'x1', 'x2'),
                      text="
14.610 -5.250 11.017
-8.057 11.087 31.971
-0.482 0.677 1.559 1.021
-18.857 17.861 28.250 7.139 215.662
")
```

The model can be specified in different, equivalent notations, but the simplest is often linear equations format, with `specifyEquations()`

```r
union.mod <- specifyEquations(covs="x1, x2", text="
y1 = gam12*x2
y2 = beta21*y1 + gam22*x2
y3 = beta31*y1 + beta32*y2 + gam31*x1
")
```
Union sentiment: using the sem package

Internally, sem expresses the model using “RAM” path notation (same as used by specifyModel()):

```r
union.mod

## Path Parameter
## 1 x2 -> y1 gam12
## 2 y1 -> y2 beta21
## 3 x2 -> y2 gam22
## 4 y1 -> y3 beta31
## 5 y2 -> y3 beta32
## 6 x1 -> y3 gam31
## 7 x1 <-> x1 V[x1]
## 8 x1 <-> x2 C[x1,x2]
## 9 x2 <-> x2 V[x2]
## 10 y1 <-> y1 V[y1]
## 11 y2 <-> y2 V[y2]
## 12 y3 <-> y3 V[y3]
```

Fit the model using sem():

```r
union.sem <- sem(union.mod, union, N=173)
```
Union sentiment: Goodness-of-fit statistics

The `summary()` method prints a collection of goodness-of-fit statistics:

```r
opt <- options(fit.indices = c("GFI", "AGFI", "RMSEA", "NNFI", "CFI", "AIC", "BIC"))
summary(union.sem)
```

```r
##
## Model Chisquare = 1.25  Df = 3 Pr(>Chisq) = 0.741
## Goodness-of-fit index = 0.997
## Adjusted goodness-of-fit index = 0.986
## RMSEA index = 0  90% CI: (NA, 0.0904)
## Tucker-Lewis NNFI = 1.0311
## Bentler CFI = 1
## AIC = 25.3
## BIC = -14.2
##
## R-square for Endogenous Variables
## y1  y2  y3
## 0.113 0.230 0.390
##
## ...
## Parameter Estimates

|              | Estimate | Std Error | z value | Pr(>|z|) | y1 <--- x2 | y2 <--- y1 | y2 <--- x2 | y3 <--- y1 | y3 <--- x1 | x1 <--> x1 | x2 <--> x1 | y1 <--> y1 | y2 <--> y2 | y3 <--> y3 |
|--------------|----------|-----------|---------|----------|----------|----------|----------|----------|---------|----------|----------|----------|----------|----------|
| gam12        | -0.0874  | 0.0187    | -4.68   | 2.90e-06 |          |          |          |          |         |          |          |          |          |          |
| beta21       | -0.2846  | 0.0617    | -4.61   | 3.99e-06 |          |          |          |          |         |          |          |          |          |          |
| gam22        | 0.0579   | 0.0161    | 3.61    | 3.09e-04 |          |          |          |          |         |          |          |          |          |          |
| beta31       | -0.2177  | 0.0971    | -2.24   | 2.50e-02 |          |          |          |          |         |          |          |          |          |          |
| beta32       | 0.8497   | 0.1121    | 7.58    | 3.52e-14 |          |          |          |          |         |          |          |          |          |          |
| gam31        | 0.8607   | 0.3398    | 2.53    | 1.13e-02 |          |          |          |          |         |          |          |          |          |          |
| V[x1]        | 1.0210   | 0.1101    | 9.27    | 1.80e-20 |          |          |          |          |         |          |          |          |          |          |
| C[x1,x2]     | 7.1390   | 1.2556    | 5.69    | 1.30e-08 |          |          |          |          |         |          |          |          |          |          |
| V[x2]        | 215.6620 | 23.2554   | 9.27    | 1.80e-20 |          |          |          |          |         |          |          |          |          |          |
| V[y1]        | 12.9612  | 1.3976    | 9.27    | 1.80e-20 |          |          |          |          |         |          |          |          |          |          |
| V[y2]        | 8.4882   | 0.9153    | 9.27    | 1.80e-20 |          |          |          |          |         |          |          |          |          |          |
| V[y3]        | 19.4542  | 2.0978    | 9.27    | 1.80e-20 |          |          |          |          |         |          |          |          |          |          |

The fitted model is:

\[
\hat{y}_1 = -0.087x_2 \\
\hat{y}_2 = -0.285y_1 + 0.058x_2 \\
\hat{y}_3 = -0.218y_1 + 0.850y_2 + 0.861x_1
\]

\[
\hat{\Psi} = \begin{bmatrix}
12.96 & 0 & 8.49 \\
0 & 0 & 19.45 \\
\end{bmatrix}
\]
Path diagrams for a `sem()` model can be produced using `pathDiagram(model)`

This uses the `graphviz` program (dot), that must be installed first (http://www.graphviz.org/)

The latest version (sem 3.1-6) uses the `DiagrammeR` package instead

Edges can be labeled with parameter names, values, or both

```r
pathDiagram(union.sem,
 edge.labels="values",
 file="union-seml",
 min.rank=c("x1", "x2"))
```
Union sentiment: Path diagrams

- **dot** produces a text file describing the path diagram
- This can easily be (hand) edited to produce a nicer diagram
- Using color or linestyle for + vs. − edges facilitates interpretation

![Path diagram]

The coefficients shown are **unstandardized**— on the scale of the variables
- Can also display **standardized** coefficients, easier to compare
Fundamental hypothesis of CFA & SEM

- The covariance matrix ($\Sigma$) of the observed variables is a function of the parameters ($\theta$) of the model

$$\Sigma = \Sigma(\theta)$$

- That is, if
  - $\Sigma$ is the population covariance matrix of the observed variables, and
  - $\theta$ is a vector of all unique free parameters to be estimated,
  - then, $\Sigma(\theta)$ is the model implied or predicted covariance matrix, expressed in terms of the parameters.

- If the model is correct, and we knew the values of the parameters, then

$$\Sigma = \Sigma(\theta)$$

says that the population covariance matrix would be *exactly* reproduced by the model parameters.
Fundamental hypothesis of CFA & SEM

Example: Consider the simple linear regression model,

\[ y_i = \gamma x_i + \zeta_i \]

If this model is true, then the variance and covariance of \((y, x)\) are

\[
\begin{align*}
\text{var}(y_i) &= \text{var}(\gamma x_i + \zeta_i) \\
&= \gamma^2 \text{var}(x_i) + \text{var}(\zeta_i) \\
\text{cov}(y_i, x_i) &= \gamma \text{var}(x_i)
\end{align*}
\]

The hypothesis \(\Sigma = \Sigma(\theta)\) means that \(\Sigma\) can be expressed in terms of the model-implied parameters, \(\gamma\) (regression slope), \(\text{var}(\zeta)\) (error variance) and \(\text{var}(x)\):

\[
\Sigma \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} \text{var}(y) \\ \text{cov}(y, x) \end{pmatrix} = \begin{pmatrix} \gamma^2 \text{var}(x) + \text{var}(\zeta) \\ \gamma \text{var}(x) \end{pmatrix} = \Sigma \begin{pmatrix} \gamma \\ \text{var}(\zeta) \\ \text{var}(x) \end{pmatrix}
\]
This general hypothesis forms the basis for several important ideas in CFA and SEM

- **Model identification**: How to know if you can find a unique solution?
- **Model estimation**: How to fit a model to an observed covariance matrix ($S$)?
- **Goodness-of-fit** statistics: How to assess the discrepancy between $S$ and $\Sigma(\theta)$?
Model identification

- A model is **identified** if it is possible to find a *unique* estimate for each parameter.
- A **non-identified** model has an *infinite* number of solutions— not too useful.
- Such models may be made identified by:
  - Setting some parameters to fixed constants (like $\beta_{12} = 0$ or $\text{var}(\zeta_1) = 1$)
  - Constraining some parameters to be equal (like $\beta_{12} = \beta_{13}$)
- Identification can be stated as follows:
  - An unknown parameter $\theta$ is identified if it can be expressed as a function of one or more element of $\Sigma$
  - The whole model is identified if all parameters in $\theta$ are identified.
- Complex models can often lead to identification problems, but there are a few simple helpful rules.
Model identification: *t*-rule and degrees of freedom

The simplest rule, the *t*-rule says:

- The number of unknown parameters to be estimated (*t*) cannot exceed the number of non-redundant variances and covariances of the observed variables.
- This is a **necessary** condition for identification, but it is not **sufficient**.

For path analysis models, let $P = p + q$ be the total number of endogenous ($y$) and exogenous ($x$) variables in $\Sigma$, and let $t$ be the number of free parameters in $\theta$. The *t*-rule is

$$P(P + 1)/2 \geq t$$

The difference gives the number of **degrees of freedom** for the model:

$$df = P(P + 1)/2 - t$$

- If $df < 0$, the model is **under-identified** (no unique solution)
- If $df = 0$, the model is **just-identified** (can’t calculate goodness-of-fit)
- If $df > 0$, the model is **over-identified** (can calculate goodness-of-fit)

$\implies$ Useful SEM models should be **over-identified**!!
Example: Union sentiment

For the Union sentiment model, the model parameters were:

\[ B = \begin{bmatrix} 0 & 0 & 0 \\ \beta_{21} & 0 & 0 \\ \beta_{31} & \beta_{32} & 0 \end{bmatrix} \quad \Gamma = \begin{bmatrix} 0 & \gamma_{12} \\ 0 & \gamma_{22} \\ \gamma_{31} & 0 \end{bmatrix} \]

and

\[ \Phi = \begin{bmatrix} \text{var}(x_1) \\ \text{cov}(x_1, x_2) \\ \text{var}(x_2) \end{bmatrix} \quad \Psi = \begin{bmatrix} \text{var}(\zeta_1) \\ 0 \quad \text{var}(\zeta_2) \\ 0 \quad 0 \quad \text{var}(\zeta_2) \end{bmatrix} \]

Observed covariance matrix: \( p = 3 \) endogenous \( ys \) + \( q = 2 \) exogenous \( xs \) \( \implies \Sigma_{5 \times 5} \) has \( 5 \times 6/2 = 15 \) variances and covariances.

12 free parameters in the model:
- 6 regression coefficients (3 non-zero in \( B \), 3 non-zero in \( \Gamma \))
- 3 variances/covariances in \( \Phi \)
- 3 residual variances in diagonal of \( \Psi \)

The model \( df = 15 - 12 = 3 > 0 \), so this model is over-identified
**B rules: \( B = 0 \)**

Another simple rule applies if no endogenous \( y \) variable affects any other endogenous variable, so \( B = 0 \)

For example:

\[
\begin{align*}
    y_1 & = \gamma_{11} x_1 + \gamma_{12} x_2 + \zeta_1 \\
    y_2 & = \gamma_{21} x_1 + \gamma_{23} x_3 + \zeta_2 \\
    y_3 & = \gamma_{31} x_1 + \gamma_{33} x_3 + \gamma_{34} x_4 + \zeta_3
\end{align*}
\]

- \( B = 0 \) because no \( y \) appears on the RHS of an equation
- Such models are *always* identified
- This is a *sufficient*, but not a necessary condition
- Residuals \( \zeta_i \) in such models need not be uncorrelated, i.e., \( \Psi \) can be non-diagonal (“seemingly unrelated regressions”)}
**B** rules: recursive rule

The **recursive rule** applies if

- the only free elements in **B** are on its lower (or upper) triangle, and
- **Ψ** is diagonal (no correlations amongst residuals)
- This basically means that there are no reciprocal relations among the ys and no feedback loops
- This also is a sufficient condition for model identification.

The union sentiment mode is recursive because **B** is lower-triangular and **Ψ** is diagonal

\[
B = \begin{bmatrix}
0 & 0 & 0 \\
\beta_{21} & 0 & 0 \\
\beta_{31} & \beta_{32} & 0
\end{bmatrix} \quad \Psi = \begin{bmatrix}
\text{var}(\zeta_1) & 0 \\
0 & \text{var}(\zeta_2) \\
0 & 0 & \text{var}(\zeta_2)
\end{bmatrix}
\]
**B rules: recursive rule**

Non-recursive because $B$ is not lower-triangular:

$$B = \begin{bmatrix} 0 & \beta_{12} \\ \beta_{21} & 0 \end{bmatrix} \quad \Psi = \begin{bmatrix} \text{var}(\zeta_1) \\ 0 & \text{var}(\zeta_2) \end{bmatrix}$$

Non-recursive because $\Gamma$ is not diagonal:

$$B = \begin{bmatrix} 0 & 0 \\ \beta_{21} & 0 \end{bmatrix} \quad \Psi = \begin{bmatrix} \text{var}(\zeta_1) \\ \text{cov}(\zeta_1, \zeta_2) & \text{var}(\zeta_2) \end{bmatrix}$$
Model estimation

How to fit the model to your data?

- In ordinary regression analysis, the method of least squares is used to find values of the parameters (regression slopes) that minimize the sum of squared residuals, \( \sum(y_i - \hat{y}_i)^2 \).
  - This is fitting the model to the individual observations

- In contrast, SEM methods find parameter estimates that fit the model to the observed covariance matrix, \( S \).

- They are designed to minimize a function of the residual covariances, \( S - \Sigma_\theta \)
  - If the model is correct, then \( \Sigma_\theta = \Sigma \) and as \( N \to \infty \), \( S = \Sigma \).
  - There is a variety of estimation methods for SEM, but all attempt to choose the values of parameters in \( \theta \) to minimize a function \( F(\bullet) \) of the difference between \( S \) and \( \Sigma_\theta \)
Model estimation: Maximum likelihood

- Maximum likelihood estimation is designed to maximize the likelihood ("probability") of obtaining the observed data ($\Sigma$) over all choices of parameters ($\theta$) in the model

$$L = Pr(\text{data} | \text{model}) = Pr(S | \Sigma_\theta)$$

- This assumes that the observed data are multivariate normally distributed
- ML estimation is equivalent to minimizing the following function:

$$F_{ML} = \log |\Sigma_\theta| - \log |S| + \text{tr}(S\Sigma_\theta^{-1}) - p$$

- All SEM software obtains some initial estimates ("start values") and uses an iterative algorithm to minimize $F_{ML}$
Model estimation: Maximum likelihood

- **ML estimates have optimal properties**
  - **Unbiased:** $\mathcal{E}(\hat{\theta}) = \theta$
  - Asymptotically **consistent:** as $N \to \infty$, $\hat{\theta} \to \theta$
  - **Maximally efficient:** smallest standard errors

- As $N \to \infty$, parameter estimates $\hat{\theta}_i$ are normally distributed, $\mathcal{N}(\hat{\theta}_i, \text{var}(\theta_i))$, providing $z$ (Wald) tests and confidence intervals

  $$z = \frac{\hat{\theta}}{\text{s.e.}(\hat{\theta})}$$

  $$\text{Cl}_{1-\alpha} : \hat{\theta} \pm z_{1-\alpha/2} \text{s.e}(\hat{\theta})$$

- As $N \to \infty$, the value $(N - 1)F_{ML}$ has a $\chi^2$ distribution with $df = P(P + 1)/2 - t$ degrees of freedom, giving an **overall test** of model fit.
Model evaluation

Model fit

- SEM provides $R^2$ values for each endogenous variable — the same as in separate regressions for each equation

  ```
 ## R-square for Endogenous Variables
 ## y1 y2 y3
 ## 0.113 0.230 0.390
  ```

- More importantly, it provides **overall measures** of fit for the entire model.
- The model for union sentiment fits very well, even though the $R^2$s are rather modest

  ```
 ## Model Chisquare = 1.25 Df = 3 Pr(>Chisq) = 0.741
 ## Goodness-of-fit index = 0.997
 ## Adjusted goodness-of-fit index = 0.986
 ## RMSEA index = 0 90% CI: (NA, 0.0904)
 ## Bentler CFI = 1
 ## AIC = 25.3
 ## BIC = -14.2
  ```

- A **just-identified** model will always fit perfectly— but that doesn’t mean it is a good model: there might be unnecessary or trivial parameters.
- An **over-identified** model that fits badly might have too many fixed or constrained parameters
Model fit: $\chi^2$ test

- The fitting function $F(S, \hat{\Sigma})$ used to minimize the discrepancy between $S$ and the model estimate $\hat{\Sigma} = \Sigma(\hat{\theta})$ gives a chi-square test of model fit.

- If the model is correct, then the minimized value, $F_{\text{min}}$, has an asymptotic chi-square distribution,

$$X^2 = (N - 1)F_{\text{min}} \sim \chi^2_{df}$$

with $df = P(P + 1)/2 - t$ degrees of freedom.

- This gives a test of the hypothesis that the model fits the data.

$$H_0 : \Sigma = \Sigma(\theta)$$

- A large (significant) $X^2$ indicates that the model does not fit the data.
Model fit: $\chi^2$ test— problems

- The test statistic, $X^2 = (N - 1)F_{\text{min}}$ is a function of sample size.
- With large $N$, trivial discrepancies will give a significant chi-square.
- Worse, it tests an unrealistic hypothesis that the model fits perfectly:
  - the specified model is exactly correct in all details
  - any lack-of-fit is due only to sampling error
  - it relies on asymptotic theory ($X^2 \sim \chi^2$ as $N \to \infty$) and an assumption of multivariate normality
- Another problem is parsimony— a model with additional free parameters will always fit better, but smaller models are simpler to interpret.
- If you fit several nested models, $M_1 \supset M_2 \supset M_3 \ldots$, chi-square tests for the difference between models are less affected by these problems:
  $$\Delta X^2 = X^2(M_1) - X^2(M_2) \sim \chi^2 \text{ with } df = df_1 - df_2$$
Model fit: RMSEA

The measure of root mean square error of approximation (RMSEA) attempts to solve these problems (Browne & Cudeck, 1993)

\[
RMSEA = \sqrt{\frac{X^2 - df}{(N - 1)df}}
\]

- Relatively insensitive to sample size
- Parsimony adjusted—denominator adjusts for greater \( df \)
- Common labels for RMSEA values:

<table>
<thead>
<tr>
<th>RMSEA</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>perfect fit</td>
</tr>
<tr>
<td>( \leq .05 )</td>
<td>close fit</td>
</tr>
<tr>
<td>.05 – .08</td>
<td>acceptable fit</td>
</tr>
<tr>
<td>.08 – .10</td>
<td>mediocre fit</td>
</tr>
<tr>
<td>&gt; .10</td>
<td>poor fit</td>
</tr>
</tbody>
</table>
Model fit: RMSEA

In addition, the RMSEA statistic has known sampling distribution properties (McCallum et al., 1996). This means that:

- You can calculate confidence intervals for RMSEA
- It allows to test a null hypothesis of “close fit” or “poor fit”, rather than “perfect fit”

\[ H_0 : \ RMSEA < 0.05 \]
\[ H_0 : \ RMSEA > 0.10 \]

- It allows for power analysis to find the sample size \( (N) \) required to reject a hypothesis of “close fit” \( (RMSEA \leq 0.05) \)
Model evaluation

Other fit indices

Incremental fit indices

- Creating new indices of goodness-of-fit for CFA/SEM models was a “growth industry” for many years—there are many possibilities.
- Incremental fit indices compare the existing model with a null or baseline model.
  - The null model, $M_0$, assumes all variables are uncorrelated— the worst possible model.
  - Incremental fit indices compare the $X^2_M$ for model $M$ with $X^2_0$ for the null model.
  - All of these are designed to range from 0 to 1, with larger values (e.g., > 0.95) indicating better fit.
- The generic idea is to calculate an $R^2$-like statistic, of the form
  \[
  \frac{f(\text{null model}) - f(\text{my model})}{f(\text{null model}) - f(\text{best model})}
  \]
  for some function $f(\bullet)$ of $X^2$ and $df$, and where the “best” model fits perfectly.
Incremental fit indices

Parsimony-adjusted indices also adjust for model $df$

- Bentler’s comparative fit index (CFI) is often widely used

$$CFI = 1 - \frac{X^2_M - df_M}{X^2_0 - df_0}$$

- Tucker-Lewis Index (TLI), also called “non-normed fit index” (NNFI) are also popularly reported

$$TLI \equiv NNFI = \frac{X^2_0/df_0 - X^2_M/df_M}{X^2_0/df_0 - 1}$$
Information criteria: AIC, BIC

- Other widely used criteria, particularly when you have fit a collection of potential models are the “information criteria”, \textbf{AIC} and \textbf{BIC}
- Unlike the likelihood ratio tests these can be used to compare non-nested models
- Each of these uses a penalty for model complexity; BIC expresses a greater preference for simpler models as the sample size increases.

\[
\begin{align*}
AIC & = X^2 - 2df \\
BIC & = X^2 - \log(N)df
\end{align*}
\]

- Smaller is better
Model modification

What to do when your model fits badly?

- First, note that a model might fit badly due to data problems:
  - outliers, missing data problems
  - non-normality (highly skewed, excessive kurtosis)
  - non-linearity, omitted interactions, ...
- Otherwise, bad model fit usually indicates that some important paths have been omitted, so some variances or covariances in $S$ are poorly reproduced by the model
  - Some regression effects among $(x, y)$ omitted (fixed to 0)?
  - Covariances among exogenous variables omitted? (all should be included)
  - Covariances among residuals might need to be included as free parameters
- Actions:
  - Examine residuals, $S − Σ(\hat{θ})$ to see which variances/covariances are badly fit
  - Modification indices provide a way to test the impact of freeing each fixed parameter
Example: Union sentiment

To illustrate, consider what would have happened if we omitted the important path of $y_3$ (sentiment) on $y_2$ (activism) in the Union sentiment example.

```
mod.bad <- specifyEquations(covs="x1, x2", text="
y1 = gam12*x2
y2 = beta21*y1 + gam22*x2
y3 = beta31*y1 + gam31*x1
")
```

Fit the model:

```
union.sem.bad <- sem(mod.bad, union, N=173)
```

```
##
Model Chisquare = 50.235 Df = 4
##
gam12 beta21 gam22 beta31 gam31 V[x1]
-0.087438 -0.284563 0.057938 -0.509024 1.286631 1.021000
7.139000 215.662000 12.961186 8.488216 25.863934
Iterations = 0
```
As expected, this model fits very badly

```r
summary(union.sem.bad, fit.indices=c("RMSEA", "NNFI", "CFI"))
```

```r
Model Chisquare = 50.235 Df = 4 Pr(>Chisq) = 3.2251e-10
RMSEA index = 0.25923 90% CI: (0.19808, 0.32556)
Tucker-Lewis NNFI = 0.38328
Bentler CFI = 0.75331
##
Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.159 0.000 0.000 0.594 0.330 5.247
##
R-square for Endogenous Variables
y1 y2 y3
0.1129 0.2295 0.1957
##...
```
Normalized residuals show the differences $S - \Sigma(\hat{\theta})$ as approximate z-scores, so values outside of $\pm 2$ can be considered significantly large.

```r
round(normalizedResiduals(union.sem.bad), 3)
```

<table>
<thead>
<tr>
<th></th>
<th>y1</th>
<th>y2</th>
<th>y3</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.103</td>
<td>0.477</td>
<td>0.000</td>
</tr>
<tr>
<td>y2</td>
<td>0.000</td>
<td>0.000</td>
<td>5.246</td>
<td>0.330</td>
<td>0.000</td>
</tr>
<tr>
<td>y3</td>
<td>0.103</td>
<td>5.246</td>
<td>-0.054</td>
<td>-0.159</td>
<td>1.454</td>
</tr>
<tr>
<td>x1</td>
<td>0.477</td>
<td>0.330</td>
<td>-0.159</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>x2</td>
<td>0.000</td>
<td>0.000</td>
<td>1.454</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- This points to the one very large residual for the $y_2 \rightarrow y_3$ (or $y_3 \rightarrow y_2$) path
- In this example Union sentiment ($y_3$) is the main outcome, so it would make sense here to free the $y_2 \rightarrow y_3$ path
Modification indices

- Modification indices provide test statistics for fixed parameters
- The statistics estimate the decrease in $\chi^2$ if each fixed parameter was allowed to be freely estimated
- These are $\chi^2(1)$ values, so values $> 4$ can be considered “significantly” large.

```r
modIndices(union.sem.bad)
```

```r
5 largest modification indices, A matrix (regression coefficients):
y3<-y2 y2<-y3 x2<-y3 y3<-x2 y1<-y3
42.071 38.217 4.240 3.947 3.763
##
5 largest modification indices, P matrix (variances/covariances):
y3<-y2 y3<-y1 x2<-y3 x1<-y3 x1<-y2
38.3362 3.9468 3.9468 3.9468 0.4114
```

Once again, we see large values associated with the $y_2 \rightarrow y_3$ path
Modification indices: Caveats

- Using modification indices to improve model fit is called **specification search**
- This is often deprecated, unless there are good substantive reasons for introducing new free parameters
  - New paths or covariances in the model should make sense theoretically
  - Large modification indices could just reflect sample-specific effects
Summary I

- **Structural equation models** are an historical development of EFA and CFA methods and path analysis
  - EFA and CFA attempt to explain correlations among observed variables in terms of latent variables (“factors”)
  - EFA used factor rotation to obtain an interpretable solution
  - CFA imposes restrictions on a solution, and allows specific hypothesis tests
  - Higher-order CFA further generalized CFA to the ACOVS model
  - Meanwhile, path analysis developed methods for analyzing systems of equations together
  - The result, was SEM, in the form of the LISREL model
Path diagrams provide a convenient way to portray or visualize a SEM
- Direct translation from/to a system of linear equations
- Some software (AMOS graphics) allows construction of the model via a path diagram
- Most SEM software provides for output of models and results as path diagrams

Path analysis models provide a basic introduction to SEM
- No latent variables— only observed (“manifest”) ones
- Does not allow for errors of measurement in observed variables
- Exogenous variables (xs)— only predictors in the linear equations
- Endogenous variables (ys)— a dependent variable in one or more equations
- Error terms reflect errors-in-equations— unmodeled predictors, wrong functional form, etc.

An important question in SEM models is model identification— can the parameters be uniquely estimated?

Another important question is how to evaluate model fit?